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Title : Multi-fidelity, multi-level, model selection/aggregation : how the
presence of several versions of a code can improve the prediction of complex
phenomena ?

Main objectives :

How to exploit different versions of a code with a hierarchy of
accuracies ?

How to exploit different competitive versions of a code (no clear
hierarchy of precision between the different versions) ?

⇒ Multi-level (ML) and multi-fidelity (MF) for the first question,

⇒ Bayesian model averaging (BMA) and model selection techniques for
the second question.

CEA-EDF-INRIA School
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Day Title Speakers

Monday Introduction G. Perrin (Université
Gustave Eiffel)

Tuesday Multi-level approaches F. Nobile (EPFL,
Lausanne)

Wednesday Multi-fidelity approaches C. Cannamela and
B. Kerleguer (CEA)

Thursday Bayesian Model Averaging P. Cinnella (Sorbonne
Université)

Friday Model Selection S. Arlot and M. Gallopin
(Université Paris Saclay)

Lecture course in the morning and practical session in the afternoon.

Organization of the week
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Organizing committee :

Teachers :

Pedagogical team
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1 What is statistical learning (SL) ?

2 Formalization of a SL problem

3 Generalization and over-fitting

4 Model selection

5 The particular case of Gaussian regression

6 Conclusions

This course
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Definition (Wikipedia)

→ SL theory is a framework for machine learning drawing from the
fields of statistics and functional analysis.

→ SL theory deals with the problem of finding a predictive function
based on data.

⇒ It is a hybrid scientific field (statistics, computer sciences, signal
processing, control theory,...) relying on generalist techniques (database
management, optimization techniques, hardware...) with a wide range of
applications (computer vision, speech recognition, detection of pathologies,
risk analysis...).

What is statistical learning (SL) ?
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Some resounding successes :

1997 : DeepBlue defeats Kasparov,
2017 : AlphaGO defeats Ke Jie,
2019 : AlphaStar is the new Starcraft II champion.

Epistemic reason : one may not know how to model a complex
system, yet have many examples representing a wide variety of
situations ⇒ "data-driven" vs "model-based".

Scientific reason : learning is an essential faculty of life.

Economic reason : data collection is easier than expertise
development.

Why such an interest in SL ?
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The scientific method is historically a deductive approach starting
from hypotheses ⇒ the data validates the model.

Data-driven approaches are inductive ⇒ the model is the output.

However...

...the efficiency of a data driven model is based on the (strong) assumption
that the future will resemble the past, that the set of possibilities is
included in the data.

⇒ towards hybrid models, combining data and expert models (in particular
for the study of physical phenomena / for configurations with limited data).

Learning : a paradigm shift
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One definition of intelligence is : intelligence =
skill

experience
.

AlphaZero needs 21 Million games of GO for training, but training takes only 24 hours using highly parallelized computers.

To maximize the predictive capabilities of your model (↔ its "skill") :

work on the data collection, from a quantitative and qualitative point
of view (to increase its "experience"),

think carefully about the model and the way it is optimized using the
available data (to increase its "intelligence").

Remark 1 : intelligence ≠ experience
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Data-driven techniques obey the Garbage In ⇒ Garbage Out
(GI-GO) rule : nonsense input data produces nonsense output.

Good inference from data requires :

→ having (enough) data of good quality,
→ experts with excellent understanding of this data to guide approaches.

Remark 2 : the GI-GO rule
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There is no universal learning technique : the choice of the method
must be adapted to the type of problem considered, as well as to the
information available !

Remark 3 : what is "enough" data ?
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No free-lunch Theorem (Wolpert, 1996)

For any two machine learning algorithms A and B, the average performance
of A and B will be the same across all possible problem instances drawn
from a uniform probability distribution.

↔ Every SL model is a simplification of reality, each simplification is based
on assumptions (model bias), assumptions fail in certain situations :

⇒ no one model works best for all possible situations.

⇒ the performance of a SL algorithm on any given problem depends on
how well the algorithm’s assumptions align with the problem’s reality.

Remark 4 : a hypothesis-dependent predictive quality
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Outline of the presentation
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Statistical learning falls into several categories, including :

supervised learning : the training data contains the prediction
objectives (annotations, labels),

unsupervised learning : the training data is raw,

semi-supervised learning : the training data are partially annotated,

transfer learning : the training data is close to the target problem

reinforcement learning : predictions are derived from a sequence of
actions and are characterised by a quality measure ("reward").

In this course, we will focus on supervised learning.

Several types of SL problems
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Objective 1 : accelerate parametric study ("surrogate modeling")

sensitivity analyses,

robust conception,

reliability analyses,...

Applications of SL for physical models
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Objective 2 : compensate model error ("data-assimilation")

forecast problems,

filtering problems,

smoothing problems,...

Applications of SL for physical models
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Supervised learning involves learning from a training set of data, noted

Dn = {(xi, yi), 1 ≤ i ≤ n} ,

xi is the input data to be interpreted (scalars, vectors, images,
texts,...),

yi is the output data of interest (value, decision, choice, action,
answer, group,...).

⇒ The learning problem consists in inferring the function f that maps
between the input and the output, such that the learned function can
be used to predict the output y from future input x :

Dn, x → f(x;Dn) ≈ y.

Notations
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Supervised learning

Data : Dn = {(xi, yi), 1 ≤ i ≤ n}.

Goal : learn a function f in a particular hypothesis space F defined
on the input space X (close to) optimal for some loss function L :

min
f∈F

L(f(x;Dn), y) for any new (x, y) ∈ X ×Y.

→ When y is assumed to belong to finite set, we face Classification.

→ When f depends on parameters to be adjusted, we face Regression.

Examples : estimate the price of an apartment, detection of spams...

Formalization of a SL problem
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To solve the former problem, SL theory takes the perspective that
there is some unknown probability distribution over the product
space X ×Y, and that the training set is made up of n samples from
this probability distribution.

In this formalism, the inference problem consists in finding the solution
of the following optimization problem :

min
f∈F
R(f) ∶= E [L(f(x;Dn), y) ∣ Dn] , R ↔ "Risk function".

SL idea

⇒ Learn a function on the Training Data such that the Risk is « small » on
average or with high probability.

Definition of a risk function
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Let us rewrite the risk as Euclidean projection :

R(f) = E [(f(x;Dn) − y)2 ∣ Dn]
= E [(f(x) −E [y∣x,Dn])2 ∣ Dn] + E [(E [y∣x,Dn] − y)2 ∣ Dn] .

⇒ For Euclidean-related risks, optimal solution is related to conditional
expectation.

Issue : We do not have access to the law of (x, y) neither to E [y∣x,Dn].
Strategy : build upon Dn to approximate it.

Best solution
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(a) x ∼ U(0, 1) � y ∼ U(0, 1)

0.0 0.2 0.4 0.6 0.8 1.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

Values of x

V
a
lu

e
s
 o

f 
y

(b) y = (x + 0.7)2 + ξ, x ∼ U(0, 1) � ξ ∼
N(0, 0.12)

Figure: Black dots ↔ (xi, yi) / Red line ↔ E [y∣x]

In 1D, the conditional average can be seen as a moving average...

Conditional expectation in graphs
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As y is unknown for a non-observed x, L(f(x;Dn), y) can not be
computed, and the former problem is ill-defined.

Assuming that the (xi, yi)i are independent and identically distributed
(iid) (or exchangeable), the former problem is generally replaced by :

min
f∈F
R̂n(f) ∶= 1

n

n

∑
i=1

[L(f(xi;Dn), yi)] , R̂n ↔ "Empirical Risk function".

Depending on the choice for F , explicit solutions can be derived.

In the general case, we will try as much as possible to propose loss
functions which are derivable and convex in order to more easily solve
this problem.

Minimization of the empirical risk
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min
f∈F
R̂n(f) ∶= 1

n

n

∑
i=1

[L(f(xi;Dn), yi)] , R̂n ↔ "Empirical Risk function".

Minimizing R̂n is generally an ill-posed problem, in the sense that it
does not admit a unique solution that depends continuously on the
initial conditions → there may exists an infinite number of solutions
making R be equal to 0.

The fact that R̂n tends to R a.s. when n tends to infinity is not
sufficient to make minf∈F R̂n(f) tend to minf∈F R(f) → additional
conditions on F are required.

Remarks on the minimization problem
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1. Choose F , L,R (Problem definition)

2. Observe Dn = {(xi, yi), 1 ≤ i ≤ n} (Data)

3. Build A ∶ Dn ↦ measurable function (Learning strategy)

4. Consider f̂ ∶= A(Dn) (Predictor learnt)

5. R(f̂) is the Score, the smaller the better.

Summary of the SL process
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Definition

Generalization is the ability of a model to make correct predictions on new
data, which have not been used to build it.

⇒ Generalization ≠ memorization !

For instance,

f̂(x;Dn) ∶= { yi if x = xi,

yJ with J picked at random in {1, . . . , n} otherwise,

allows to cancel the empirical risk, R̂(f̂) = 0, but it is clearly an example of
a model with weak generalization capacity (R(f̂) has no reason to be
small).

Generalization
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As we have seen, it is generally easy to make R̂(f̂) be equal to 0, and
that small values of R̂(f̂) do not necessarily imply low values of R(f̂).
In (most of) SL problems, the data is noisy (experimental errors,
labelling problems, parameters not taken into account...).

⇒ We say that a model is over-fitting when it also learns the noise of
the data, and is not able to generalize. An over-fitting model is
generally too "complex", which allows it to stick too much to the data.

⇒ On the contrary, we say that a model is under-fitting when it is too
simple to have good performances even on training data.

Take away message

R̂(f̂) ≈ 0 is a necessary but not sufficient condition for f̂ to be a
predictive model.

Over-fitting
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If R⋆ ∶=minf∈{measurable functions}R(f),
R(f̂) −R⋆ = [R(f̂) −min

f∈F
R(f)]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
variance

+[min
f∈F
R(f) −R⋆]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
bias

.

ev ∶=R(f̂) −minf∈F R(f) quantifies the distance between f̂ and the
best model in F ↔ estimation error (noise of Dn, optim. issues...).

eb ∶=minf∈F R(f) −R⋆ quantifies the quality of the optimal model in
F , and therefore the relevance of F ↔ approximation error.

"The price to pay for achieving low bias is high variance", Geman, 1992.

→ by increasing the complexity of F , we reduce eb, but ev is likely to
increase as the search in that space may be more difficult.

Bias-variance trade-off
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⇒ a trade-off between bias and variance is needed to adjust the
complexity of F to the available data in Dn.

Bias-variance trade-off
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To limit the effect of overfitting, we need to control the complexity of the
hypothesis space F ⇒ this is the objective of regularization :

f̂ = arg min
f∈F

R̂(f) + λΩ(f)´¹¹¹¹¹¹¸¹¹¹¹¹¹¶
Regularization

,

Ω(f) is a constraint on possible solution (it can be equal to the
number of non-zero parameters on which the function f depends),

λ ≥ 0 is a (hyper-)parameter introduced to balance the importance of
each term :

→ when λ→ 0, there is no regularization and the variance is likely to
dominate the bias,

→ when λ→ +∞, the regularization is dominating, and there is no more
learning, the variance tends to 0 and the bias is likely to be high.

The need for regularization
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By strongly increasing the complexity of the model, the need for the
bias-variance trade-off seems to disappear in some situations.

A conjecture to meditate on : "the more we increase the number of
model parameters, the more we reduce the number of local minima,
and the more likely we are to converge towards the global minimum".

The surprising case of neural networks

G. Perrin Juin 2021 30 / 49



Definition Formalization Generalization Model selection Gaussian regression Conclusions

1 What is statistical learning (SL) ?

2 Formalization of a SL problem

3 Generalization and over-fitting

4 Model selection

5 The particular case of Gaussian regression

6 Conclusions

Outline of the presentation

G. Perrin Juin 2021 31 / 49



Definition Formalization Generalization Model selection Gaussian regression Conclusions

As no method is a priori better than another in the general case (no
free-lunch Theorem), it is generally interesting to consider several
models, and select the most appropriate one for the considered
application.

In this presentation, a model f is better than a model h if
R(f) <R(h), but other criteria could be considered (computational
resources required, for example).

To estimate R(f), it is essential to have data that has not been used
to build model f .

The easiest way to do this is to split the available data into training
and test sets.

The empirical risk calculated with the test set is usually a good
estimator of the loss function.

Test sets to validate the model
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In the case where we want to choose between M models f1, . . . , fM , a
natural approach is to consider :

f̂ = arg min
1≤m≤M

∑
(x,y)∈Dtest

L(fm(x;Dn), y).
Nevertheless, the test set is now used to select the final model, and
does not represent an independent set of point composed of new data.

⇒ To correctly estimate the generalization error of f̂ , a possible solution
is to divide the available data in three sets :

the training set Dn allows the training of each model,
the validation set Dvalid allows comparing the different models,
the test set Dtest is used to estimate the generalization error.

Once a model selected, it can be trained again based on Dn and Dvalid.

Validation set
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The separation of training and test data is necessarily arbitrary and can
create unrepresentative data sets.

0.0 0.2 0.4 0.6 0.8 1.0

−
1
.0

−
0
.5

0
.0

0
.5

1
.0

x

y

Figure: Dn = {black dots}, Dtest = {red squares}

Cross-validation
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To avoid pathological configurations, cross-validation relies on :

1. the partition of the data in K subsets ("folds") of similar sizes,
D(1), . . . ,D(K),

2. for each 1 ≤ k ≤K :

train a model using ⋃l≠kD(l),
evaluate the model using D(k).
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(b) k = 2
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(c) k = 3

Cross-validation
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The more available data, the more trained the model.

To get as close as possible to the case where the model is trained by n

points, one is then encouraged to make K tend towards n. This is
known as Leave-one-out (LOO) validation.

+ particularly attractive for small-dimensional datasets,

− may involve large computation times,

− may strongly underestimate the generalization errors when the data
shows clusters.
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A limit case : the leave-one-out cross-validation
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Another approach to estimating the generalization error is the
bootstrap method.

It consists in building K ≫ 1 training sets D1, . . . ,DK gathering n

elements of Dn chosen at random with replacement.

The complementary sets Dn/Dk then define n test sets that can be
used to evaluate the generalization error.

Remark. The probability for a couple (xi, yi) to be in a set Dk is equal to
1 − (1 − 1/n)n, which tends to 1 − e−1

≈ 0.63 when n increases, such that
each set Dk gathers in average 2/3 of the elements of Dn.

An empirical approach : the bootstrap method
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From a slightly different perspective, the performance of an SL approach
can (should) also be measured through comparison with very simple or even
naive approach (which require little or no training), such as, for instance :

mean predictor : return the mean value of yi,

random predictor : return a value yi chosen at random in Dn,

nearest neighbor predictor : return yi such that
i = arg min1≤j≤n ∥x − xj∥ for a particular norm ∥⋅∥.

⇒ we can then measure the learning capacity of the model.

Comparison to naive techniques
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Finally, it is important to keep in mind that other criteria than the
generalization error can be considered to evaluate the performance of a SL
method, such as :

learning costs and time,

prediction costs and time (offline-inline distinction),

the number of hyperparameters,

the "effort" of familiarising oneself with an algorithm.

Choice of a model
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Let us assume that y∣x ∼ PG(µ(x), C(x, x)). It comes :

( y

y
) ∣ x, x1, . . . ,xn ∼ N (( µ(x)

µ
) ,[ C(x, x) C(x,Xn)

C(x,Xn)T C(Xn,Xn) ]) ,

µi ∶= µ(xi), (C(x,Xn))i ∶= C(x, xi), (C(Xn,Xn))ij = C(xi, xj).
By Gaussian conditioning, we deduce :

y ∣ x,Dn ∼ N (µc(x), Cc(x, x)),
E [y ∣ x,Dn] = µc(x) ∶= µ(x) +C(x,Xn)C(Xn,Xn)−1(y −µ),

Cc(x, x) ∶= C(x, x) −C(x,Xn)C(Xn,Xn)−1C(x,Xn)T .

The Gaussian case (with known mean and covariance)
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Assuming that y∣x is Gaussian leads to an affine expression for
E [y ∣ x,Dn] with respect to y.

→ the prediction is a weighted sum of the observations.

Reciprocally, if we assume that the conditional expectation of y given x

and Dn is a simple linear function of y, E [y ∣ x,Dn] =w(x)+A(x)y,
we can show that the expression for optimal (from the risk function
minimization point of view) w(x) and A(x) is given by :

A(x) = C(x,Xn)C(Xn,Xn)−1, w(x) = µ(x) −A(x)µ.

→ although it may be convenient to assume that y∣x is Gaussian, it is not
necessary to make this assumption, so long as the assumed distribution
has well defined first and second moments.

Gaussian regression interpolates the data → the empirical risk is
always zero.

Remarks on the Gaussian case

G. Perrin Juin 2021 42 / 49



Definition Formalization Generalization Model selection Gaussian regression Conclusions

0.0 0.2 0.4 0.6 0.8 1.0

−
3

−
2

−
1

0
1

2
3

y

0.1 0.2 0.3

The Gaussian prior consists in assuming that the function to predict (here
in red thick solid line) is one particular realization of the considered
Gaussian process (among an infinite number of possible realizations).

Graphical illustration (µ = 0, C ↔Matern52(θ = 0.1))
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Figure: Red continuous line ↔ function to predict / contour plots ↔ PDF of
y∣x,Dn / Vertical lines ↔ positions of xi / Black line ↔ E [y∣x,Dn]

Graphical illustration (µ = 0, C ↔Matern52(θ = 0.1))
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Figure: Red continuous line ↔ function to predict / contour plots ↔ PDF of
y∣x,Dn / Vertical lines ↔ positions of xi / Black line ↔ E [y∣x,Dn]

Graphical illustration (µ = 0, C ↔Matern52(θ = 0.1))
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Figure: Red continuous line ↔ function to predict / contour plots ↔ PDF of
y∣x,Dn / Vertical lines ↔ positions of xi / Black line ↔ E [y∣x,Dn]

Graphical illustration (µ = 0, C ↔Matern52(θ = 0.1))
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Graphical illustration (µ = 0, C ↔Matern52(θ = 0.1))
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y∣x,Dn / Vertical lines ↔ positions of xi / Black line ↔ E [y∣x,Dn]

Graphical illustration (µ = 0, C ↔Matern52(θ = 0.1))
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Problem : the mean and covariance functions of y∣x are generally
unknown but need to be estimated from the data.

→ a very popular choice for µ and C is :

µ(x) = f(x)T β, C(x, x′) = σ2R(x, x′; θ),
with f a chosen vector-valued function, R(⋅, ⋅; θ) a parametric
covariance function, and β, σ2, θ unknown parameters modeled by
random quantities.

For instance :

f(x) = (1, x1, . . . , xd), R(x, x′; θ) = exp(− d

∑
k=1

(xk − x′k)2
θ2

k

) .

The Gaussian case with unknown statistical moments

G. Perrin Juin 2021 45 / 49



Definition Formalization Generalization Model selection Gaussian regression Conclusions

y∣x, β, σ2, θ ∼ PG (f(x)T β, σ2R(x, x′; θ)) .

If parametric expressions are proposed for µ and C, the conditional
expectation can be rewritten :

E [y ∣ x,Dn] = E [E [y ∣ x,Dn, β, σ2, θ] ∣ x,Dn]
= Eβ,θ [r(x; θ)T y + (f(x) −F r(x; θ))T β ∣ x,Dn] ,

r(x; θ) ∶= R(Xn,Xn; θ)−1R(Xn, x; θ), (F )ji = fj(xi).
→ Taking into account the unknown character of the parameters results

in an average of the former expression of the posterior mean with
respect to the conditional distribution of (β, θ).

The Gaussian case with unknown statistical moments
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If fβ,σ2,θ is the prior distribution of (β, σ2, θ), the distribution of(β, σ2, θ) ∣ x,Dn is proportional to :

fβ,σ2,θ(β, σ2, θ)
(det(R(Xn,Xn; θ)))1/2 exp (−1

2
(F T β − y)T R(Xn,Xn; θ)−1(F T β − y)) .

→ Sampling techniques (such as Markov Chain Monte Carlo) can be used
to sample iid realizations of (β, σ2, θ) ∣ x,Dn to empirically estimate
the conditional expectation.

→ As the former expression does not depend on x, the same realizations
can be used for the prediction of the output in any x.

→ Simplified expressions can be obtained when considering additional
assumptions on the prior distribution (ex : β Gaussian).

The Gaussian case with unknown statistical moments
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(a) With known µ, C
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(b) fβ,θ∣y
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(c) With parametric µ, C
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(d) With known µ, C
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(e) fβ,θ ∣y
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(f) With parametric µ, C

Graphical illustration (µ = 0, C ↔Matern52(θ = 0.1))
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Statistical learning is associated with an increasing number of scientific
applications.

In this presentation, we introduced the standard formalism of
statistical learning (loss and risk functions, empirical risk, conditional
expectation...)

The links between generalization error and predictive capacity of
models were highlighted (bias-variance trade-off, over-fitting...).

When expert models exist, the role of SL is to enrich the information
that these models provide rather than to replace them ("data-driven
physical models"...).

There is no optimal SL model. Choosing a SL method requires to know
the data and to know the problem !

Conclusions
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Thank you for your attention.
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