

# INVERSE PROBLEM AND CALIBRATION OF PARAMETERS

energie atomique • energies atternatives

#### PART 1:

An example of inverse problem:

Quantification of the uncertainties of the physical models
of the CATHARE code with the CIRCÉ method

- 1. Introduction
- 2. Rapid description of CIRCÉ
- 3. Examples of CIRCÉ studies
- 4. Introduction to the algorithm used by CIRCÉ
- 5. Methodology for a proper use of CIRCÉ
- 6. Conclusion



Agnès de Crécy agnes.decrecy@cea.fr

#### 1. Introduction



energie atomique • energies alternatives

#### CATHARE and CIRCÉ in few words

#### **CATHARE:**

- French thermohydraulics code modeling the behaviour of nuclear power plants, especially for accidental transients (ex: break in the primary circuit).
- But, for its validation, CATHARE can also model simple experiments devoted to the study of some few physical phenomena.
- Developed by CEA and funded by AREVA-CEA-EDF-IRSN.
- Man-power: roughly 20 men×years per year since 1978.

#### CIRCÉ:

- CIRCÉ is aimed at quantifying the uncertainties of the non-measurable physical models of CATHARE.
- Developed by CEA. More than 15 studies corresponding to roughly a 15 men×year manpower.
- · Can be applied to any code.
- But needs the calculation of first order derivatives.
- For CATHARE, this calculation is performed by ASM (Adjoint Sensitivity Method) or finite differences with some precautions (exchoice of the increment).

#### 1. Introduction



#### 1. Introduction



Features of uncertainty analysis for CATHARE

#### The variables of interest (outputs):

Quantities important for safety:
 Ex: Maximum cladding temperatures

energie atomique • energies alternatives

#### The quantities of interest:

- Most general case: The output must not exceed a certain value, for example 1204℃ for the maximum cladding temperature.
  - ⇒ Estimation of high percentiles (ex: 95%) for the outputs.

#### The input variables (parameters):

- Boundary and initial conditions. Ex: initial power, containment pressure;
- Material properties. Ex: fuel thermal conductivity;
- Physical models. Ex: heat transfer coefficients;
- Numerical schemes;
- User's effect, etc.



A special attention is paid to the quantification of the uncertainty of the physical models because:

- They are often highly influential;
- Estimating their uncertainty is difficult because they are generally not measurable.

4/24



Non-observed data and observed data

#### Goal of CIRCÉ:

Quantification of the uncertainty of non measurable physical models.

energie atomique • energies alternatives

#### Examples of physical models:

- Friction coefficients, friction between liquid and vapour phases, transfer heat coefficients describing condensation or vaporization, etc.
- More precisely, in the most usual case, one multiplicative dimensionless parameter X is associated to each physical model PM, the nominal value of X being equal to 1:

$$PM = X \times PM_{nominal}$$

The X parameters are the <u>non-observed data</u> (one per physical model).

Rather simple (analytical) experiments exist, each of them being devoted to the study of few physical models (cf. slide 2).

#### Examples of measured data in these experiments:

• Fluid or wall temperatures, pressures, flow rates, proportion of vapour in a given section (void fractions), etc.

They are the observed data, also called responses and are denoted as Y.

#### 2. Rapid description of CIRCÉ



energie atomique • energies alternatives

Let us consider an analytical experiment. In this experiment let us denote as:

- $X_i$  the non-observed data. They are the dimensionless multiplicative parameters of the influential physical models (nominal value = 1). Typically 2 or 3 physical models.
- $\alpha_i$ : the parameters considered by CIRCÉ and related to  $X_i$  by :

$$X_i = 1 + \alpha_i \text{ or } X_i = exp(\alpha_i)$$

(nominal value of  $\alpha_i = 0$ , cf. slide 18 for more explanations about both changes of variables)

- Y<sub>j</sub> the observed data (or responses). They are the measured quantities of the experiment and are also denoted more precisely as Y<sub>j</sub><sup>meas</sup>. Typically several tens of responses (more precisely: several tens of realizations of one or two kinds of responses).
- Y<sup>code</sup><sub>i</sub> the corresponding code results.



Using  $m_i$  and  $\sigma_i$ , calculation, for example, of the 95% variation interval for the  $X_i$  parameters.

#### 2. Rapid description of CIRCÉ

With respect to the notations of inverse problems



- Y are the n observed data. n is equal to several tens.
- X are the q non-observed data. q is equal for example to 2 or 3.
- d are the control variables, i.e. the experimental conditions of the different tests of the considered experiment. They are known.
  - H is the code (also called model ≠ physical models): CATHARE in our case.
  - U are the experimental uncertainties of the observed data, denoted in the former slide as  $\delta Y_i^{meas}$ . Only their covariance matrix is known and denoted as R.

$$Y_j = H(X_{j,1}, \dots, X_{j,q}, d_j) + U_j$$

#### In the case of CIRCÉ:

- The observed data are scalar.
- H is the code and not a meta-model. Consequently,  $U_j$  represents only the experimental uncertainties of the observed data, i.e.  $Y_j Y_j^{real}$  and not the model error.
- H is supposed to be perfect. Consequently, if the exact values of  $X: X_{j,l}, ... X_{j,q}$  were known for each observed data  $Y_j$ ,  $H(X_{j,1}, ..., X_{j,q}, d_j)$  would be  $Y_j^{real}$ , the real value of  $Y_j$ .
- The code values of X are equal to 1. Therefore:  $H(X_{j,1} = 1, ..., X_{j,q} = 1, d_j) = Y_j^{code}$

# 3. Examples of CIRCÉ studies



Heat transfers between primary and secondary circuits of a nuclear power plant:

Condensation of the mixing "hot steam – nitrogen" in front of a cold wall



#### Two phenomena:

- The heat transfer through the liquid film described by the "Chen" heat transfer coefficient h<sub>Chen</sub>;
- The steam mass diffusion through the gas layer, rich in nitrogen, described by the Sherwood number Sh.

# ⇒ Two parameters for CIRCÉ:

- $-\alpha_1$  associated with  $h_{Chen}$ .
- $-\alpha_2$  associated with Sh.
- The analytical experiment: COTURNE
- The observed data: Temperature measurements. 164 responses (82 different tests, 2 measures per test).

# 3. Examples of CIRCÉ studies



| energie at | Results for α <sub>i</sub> CIRCÉ parameters |                    |               | Results for X <sub>i</sub> , the multiplicative dimensionless parameters |                        |                |                   |                           |
|------------|---------------------------------------------|--------------------|---------------|--------------------------------------------------------------------------|------------------------|----------------|-------------------|---------------------------|
|            | Physical<br>model                           | CIRCÉ<br>parameter | Mean<br>value | Standard deviation                                                       | Change of variable     | Type of law    | Bias              | 95% interval of variation |
|            | h <sub>Chen</sub>                           | $\alpha_1$         | -0.05         | 0.35                                                                     | $X_1 = 1 + \alpha_1$   | Normal         | 0.95 =<br>1-0.05  | [0.25 ; 1.65]             |
|            | Sh<br>number                                | $\alpha_2$         | -0.15         | 0.29                                                                     | $X_2 = \exp(\alpha_2)$ | Log-<br>normal | 0.86 = exp(-0.15) | [0.48 ; 1.53]             |

↑ ↑

Final results for the  $X_i$  non-observed data.

# 3. Examples of CIRCÉ studies



Injection of cold water in the primary circuit in case of accident: Condensation of the warm vapour in contact of the injected water





The condensation of the vapour warms up the cold water in the bottom of the pipe.

- Two phenomena due to two types of condensation:
  - Just below the jet: Condensation with turbulences
  - Far from the jet: Stratified flow
  - $\Rightarrow$  2 CIRCÉ parameters:  $\alpha_1$  and  $\alpha_2$
- The analytical experiment: COSI, 59 tests.
- The observed data: water temperatures and total condensation flow rates (118 responses).

Results: for  $X_1$  and  $X_2$ , multiplicative parameters associated with both modes of condensation: 95% variation intervals and type of law (log-normal). The results are not authorized to be published.



energie atomique · energies alternatives

- Algorithm used by CIRCÉ: the E-M algorithm, well known in statistics and based on:
  - The principle of maximum likelihood.
  - Bayes' theorem on conditional probabilities.
- Two main hypotheses:
  - Linear dependence between the code responses and the  $\alpha_i$  parameters

Since derivatives  $\frac{\partial Y_j^{code}}{\partial \alpha_i}$  are used by CIRCÉ.

CATHARE: These derivatives are calculated by ASM or by finite differences.

- Normality of the  $\alpha_i$  parameters considered by CIRCÉ: Consequence: the  $X_i$  multiplicative parameters obey a normal or a log-normal law, depending on the retained change of variable:

$$X_i = 1 + \alpha_i$$
 or  $X_i = exp(\alpha_i)$ 

The linearity hypothesis



energie atomique • energies alternatives

For each response  $Y_i$ , one writes:

$$Y_j^{meas} - Y_j^{code} = \left(Y_j^{meas} - Y_j^{real}\right) + \left(Y_j^{real} - Y_j^{code}\right)$$

Sum of 2 independent random variables

First random variable =  $(Y_i^{meas} - Y_i^{real}) = U_j$ : experimental uncertainty of  $Y_j^{meas}$ 

Obeys a normal law N(0,R), R being known

Second random variable = 
$$Y_j^{real} - Y_j^{code} = \sum_{i=1}^q \frac{\partial Y_j^{code}}{\partial \alpha_i} (\alpha_{j,i} - \alpha_i^{nominal})$$

**<u>First order development</u>** with respect to the q  $\alpha_i$  parameters, with:

 $\alpha_{i,i}$ : unknown value to be given to i<sup>th</sup> parameter so that:

$$Y_j^{code}(\alpha_{j,1},...,\alpha_{j,q}) = Y_j^{real}$$
  $\alpha_{j,i}$  is different for each  $Y_j$  observed data

 $\alpha_i^{nominal}$ : nominal value of the i<sup>th</sup> parameter, generally equal to 0.



energie atomique • energies alternatives

The normality hypothesis



- Unknown  $\Rightarrow$  The  $\alpha_{i,i}$  are known only via their statistical features:  $m_i$  and  $\sigma_i$
- Several solutions:
- ⇒ A criterion of choice among the different solutions is needed.
- ⇒ This criterion is the **maximum of likelihood**.

This criterion obliges to make an hypothesis on the form of the law followed by the  $\alpha_i$  parameters: that is the normal law.



energie atomique · energies alternatives

A necessary improvement of CIRCÉ: iterative CIRCÉ

Recall: CIRCÉ makes an hypothesis of linearity around the nominal value of the  $\alpha_i = 0$ , since it uses  $\frac{\partial Y_j^{code}(\alpha_i = 0)}{\partial \alpha_i}$ .

If the biases are high in absolute value, one can have the following situation:





energie atomique · energies alternatives

To this end, CIRCÉ is used with an iterative way, by considering:

$$Y_j^{code}$$
 and  $\frac{\partial Y_j^{code}}{\partial \alpha_i}$ 

At the point  $\vec{\alpha} = \vec{m}_1$  (vectorial notation for the biases found with nominal CIRCÉ for the q unknown parameters  $\alpha_i$ ) instead of  $\vec{\alpha} = \vec{\alpha}^{nominal}$ 

A new value of the bias vector is found:  $\delta \vec{m}_1$  which is used to increment the first estimation  $\vec{m}_1$ .

The process is performed until the bias increments are close to 0 and the standard deviations are stabilized.

3-4 iterations are generally sufficient.

Final bias = sum of the biases =  $\vec{m}_1 + \delta \vec{m}_1 + \delta \vec{m}_2 + ...$ Final standard deviations = those found at convergence

CIRCÉ is a statistical tool which must not be used as a black box.



In addition CIRCÉ relies on two hypotheses: linearity and normality (cf. slide 11) which must be checked.

energie atomique · energies alternatives Consequence: Some precautions must be taken when using CIRCÉ.

# ✓ Before using CIRCÉ:

Check the **relevance** of the used analytical experiment with respect to the reactor transient for which uncertainty analysis is planned.

In the case of the 1<sup>st</sup> example (slide 8): heat transfers between primary and secondary circuits:

# **Experimental database COTURNE**

- Pressure: [2; 70] bars
- Gas temperatures: [100; 400] ℃
- Thermal flux: [0.1; 6] W/cm<sup>2</sup>,
- Vapour flow rate: up to 4 g/s
- Etc.

#### **Reactor transient:**

- Pressure:
- Gas temperatures:
- Thermal flux:
- Vapour flow rate:
- Etc.



energie atomique • energies alternatives

✓ Before using CIRCÉ (cont'd):

Check that the problem is **identifiable**:

In CIRCÉ algorithm, a matrix cannot be inverted for some configurations of the derivative vectors, especially if they are collinear.

⇒ Check the distribution of these vectors:

*In the case of the 1st example* (two physical models):

The points 
$$\left(\frac{\partial Y_j^{code}}{\partial \alpha_1}, \frac{\partial Y_j^{code}}{\partial \alpha_2}\right)$$
 are distributed as follows:





energie atomique · energies alternatives

#### ✓ Checking the hypothesis of linearity

Thanks to the iterative use of CIRCÉ (slides 14 and 15), the hypothesis is made in the final range of variation of each  $\alpha_i$  parameter:  $[m_i-2\sigma_i; m_i+2\sigma_i]$ .

Each  $\alpha_i$  parameter is varied inside its range of variation.

For each  $Y_i$  response, the dependence  $Y_i^{code}$  with respect to  $\alpha_i$  is observed for both formulations:

$$X_i = 1 + \alpha_i$$
 or  $X_i = exp(\alpha_i)$ 

Considering all the  $Y_i$  responses, the formulation for which the linear dependence is the best verified is retained.

#### ✓ Checking the hypothesis of normality

Not possible with the individual realizations of  $\alpha_i$ , because CIRCÉ does not calculate them.

But if each  $\alpha$  obeys a normal law,

the residuals:  $r_{j} = \frac{Y_{j}^{meas} - Y_{j}^{code} - \sum_{i=1}^{q} \frac{\partial Y_{j}^{code}}{\partial \alpha_{i}} m_{i}}{\sum_{i=1}^{q} \left(\frac{\partial Y_{j}^{code}}{\partial \alpha_{i}}\right)^{2} \sigma_{i}^{2} + R}$ 

obey a standardized normal law.





energie atomique • energies alternatives

- Final check: The envelop calculations
- An uncertainty analysis is performed for the used experiment :
  - Outputs: the Y<sub>i</sub> responses considered by CIRCÉ.
  - Inputs: The  $X_i$  parameters with their statistical features deduced from CIRCE results.
  - Number of calculations: e.g. 100.
- The 100 values found for each response are sorted by increasing order:

$$Y_i(1) < Y_i(2) < \dots < Y_i(100)$$

- $Y_i(3)$ : estimation of the 2.5% percentile of  $Y_i$
- $Y_i$  (98): estimation of the 97.5% percentile of  $Y_i$
- If, in the ideal case,:
  - One had a very high number of responses,
  - Very numerous calculations of the experiment were performed, in order to have precise estimations of both percentiles,
  - One would check that 95% of the measured responses are included between estimations of the 2.5% and 97.5% percentiles.
- Practically, one will only check that this property is verified for *roughly* 95% of the responses.

Example of results: injection of cold water (example 2, slide 10):



energie atomique · energies alternatives

Two kinds of responses: 59 flow rates and 59 liquid temperatures.

#### For the 59 flow rates:

- 2 flow rates such as: Q<sub>meas</sub> < Q(3)
- 1 flow rate such as: Q<sub>meas</sub> > Q(98)

# débits COSI: calculs enveloppes



#### débits COSI: calculs enveloppes (zoom)





#### For the 59 liquid temperatures:

- 1 temperature such as T<sub>meas</sub> < T(3)</li>
- 0 temperature such as T<sub>meas</sub> > T(98)

Both kinds of responses (flow rates and temperatures) together:

- 3 responses such as  $Y_{meas} < Y(3)$  instead of  $118 \times 0.025 = 2.95$ . Perfect.
- Only 1 response such as  $Y_{meas} > Y(98)$ . A little bit too low.

Globally, the envelop calculations are considered as satisfactory.



energie atomique · energies alternatives

Having correct envelop calculations is not so obvious.

For example, a first estimation by expert judgment was given for the uncertainty of both considered condensation terms (the physical models).

Results of the envelop calculations with this estimation, for the temperatures:

températures COSI: calculs enveloppes avec JE



Among the 59 considered temperatures, 24 are such as:  $T_{\text{meas}} < T(3)$ !

#### 6. Conclusion



energie atomique · energies alternatives

1. CIRCÉ estimates the uncertainty of non-measurable physical models, which are the  $X_i$  non-observed data, thanks to the  $Y_j$  observed data: the responses.



CIRCÉ is a method of inverse quantification of uncertainties.

- 2. More precisely, CIRCÉ uses:
  - The measured data of simple experiments where the considered physical models are influential.
  - The corresponding code results.
  - The derivatives of the code results with respect to dimensionless parameters  $\alpha_i$  related to the physical models.

CIRCÉ can be applied to any code, if these derivatives are available. For their calculation, using finite differences is possible, with some precautions.

• CIRCÉ calculates the mean value and the standard deviation of the intermediate  $\alpha_i$  parameters, from which variation intervals of the  $X_i$  multiplicative dimensionless parameters of the physical models can be deduced.



energie atomique · energies alternatives

- 3. CIRCÉ is based on a very classical algorithm the EM algorithm using:
  - Bayes' theorem;
  - Maximum of likelihood.

Two main hypotheses are made in this algorithm:

- Linearity of the calculated responses with respect to the  $\alpha_i$  parameters;
- Normality of the  $\alpha_i$  parameters ( $\Rightarrow$  normality or log-normality for the final  $X_i$  multiplicative parameters of the physical models).

Thank to iterative CIRCÉ, the hypothesis of linearity is made only in the final range of variation of each  $\alpha_i$  parameter:  $[m_i-2\sigma_i; m_i+2\sigma_i]$ .

4. CIRCÉ must not be used as a black box:



Development of a methodology for a proper use of CIRCÉ

- Are the conditions of the simple considered experiment similar to those of the studied reactor transient?
- Check that the problem is identifiable (distribution of the derivatives);
- Checking the hypothesis of linearity. Generally well verified;
- Checking the hypothesis of normality;
- Performing envelop calculations.