

Functional error modeling for Bayesian inference in hydrogeology

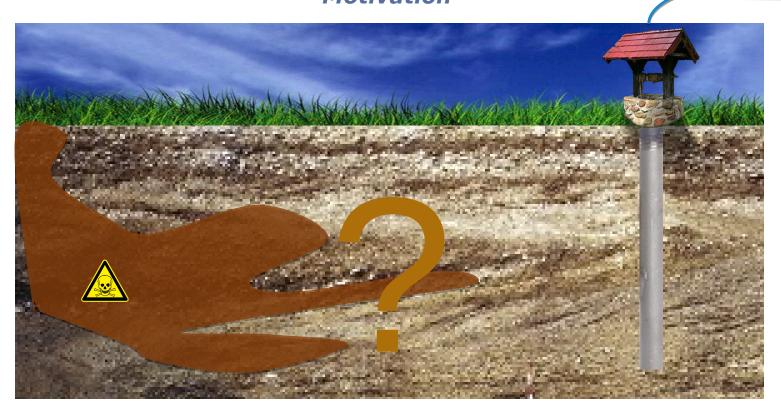
Laureline Josset

PhD supervisor Prof. Ivan Lunati

Institute of Earth Sciences University of Lausanne

Challenges in groundwater problems

Motivation



Typical question:

What is the concentration of contaminant in the drinking water?

Problem:

Many uncertainties in the aquifer properties

Solution: Monte Carlo approaches

Uncertainty quantification, inversion, history matching, ...

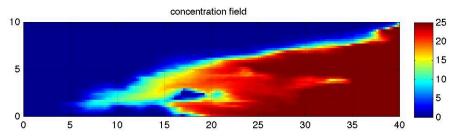
Challenges in groundwater problems Monte Carlo approaches

Description of the uncertainty on the permeability field

- Generate multiple geostatistical realizations
 - Based on prior knowledge
 - Methods: object-based, multipoint statistics, process-based, ...

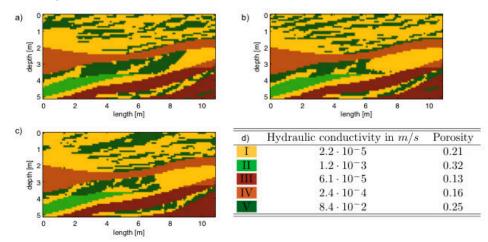
Issue

- · Not the quantity of interest!
- Flow simulation for each of the realizations
 - Typical order: 10³-10⁵ simulations
 - > Untractable computational cost



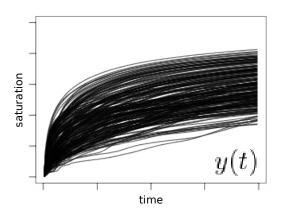
Simulation of saline intrusion

"Truth" inspired from the Herten test case (Bayer et al. 2011)



3 examples of geostatistical realizations generated using Direct Sampling (Mariethoz et al. 2010)

How to simulate flow?

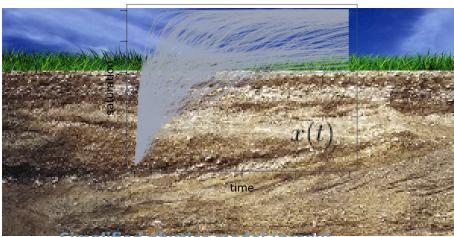


Exact model

- Full physics flow simulation
- Too costly
- Impossible to solve systematically for all geostatistical realizations
- Only for a few of them

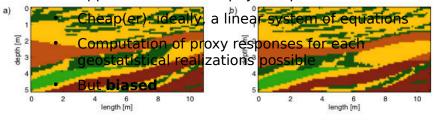
Example: two-phase problem

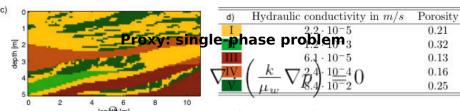
$$\nabla \cdot \left[\left(\frac{k_n(S)}{\mu_n} + \frac{k_w(1-S)}{\mu_w} \right) k \nabla p \right] = 0$$
$$\frac{\partial}{\partial t} (\phi S) - \nabla \cdot \left(\frac{k_n(S)}{\mu_n} k \nabla p \right) = 0$$



"Truth" Inspired from the Herten test case (Bayer et al. 2011).

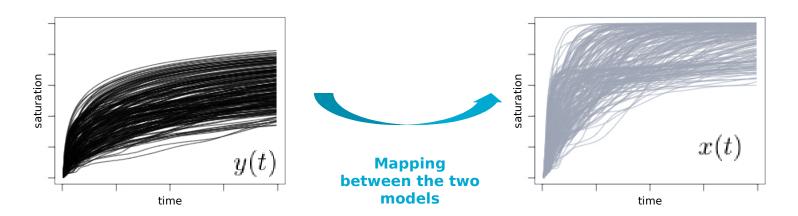
Approximation of the physical processes





3 examples of geostatistical reslitations generated using Direct Sampling (Mariethoz et al. 2010)

How to simulate flow?



Exact model

- Full physics flow simulation
- Too costly
- Impossible to solve systematically for all geostatistical realizations
- Only for a few of them

Error model

- To "recover" the missing physics
- Mapping between curves = regression model

Simplified physics model (proxy)

- Approximation of the physical processes
- Cheap(er): ideally, a linear system of equations
- Computation of proxy responses for each geostatistical realizations possible
- But biased

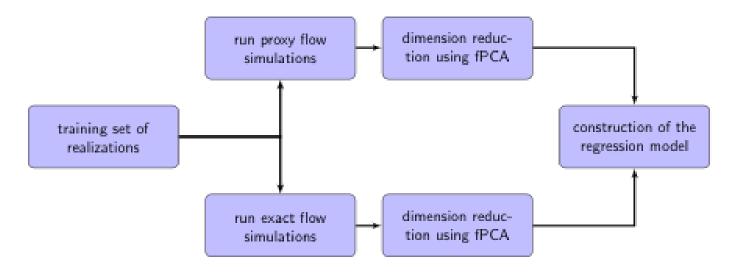
How? Existing solutions:

- → Oranacluerernthigneat onfordelizations
- ϑ_i (Using Funtotional (4) $x_i(t) + \epsilon_i(t)$
- Fully functional linear model

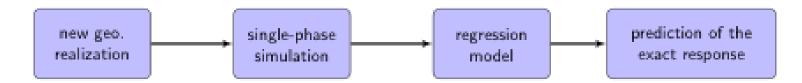
$$y_i(t) = \beta_0(t) + \int \beta_1(s,t)x_i(s)ds + \epsilon_i(t)$$

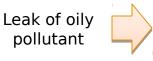
Workflow

Training phase of the error model



Prediction of the of the error model



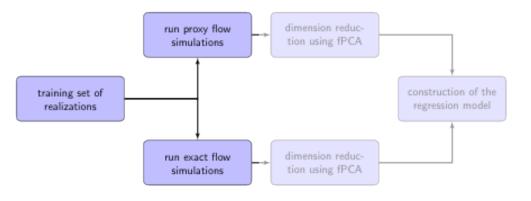


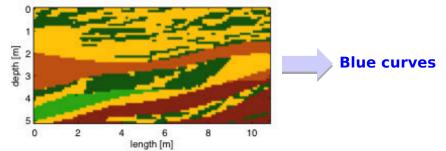
Description of the uncertainty: 1000 geostatistical realizations

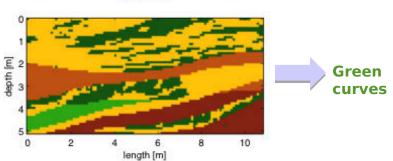
ILLUSTRATION 1

UNCERTAINTY QUANTIFICATION

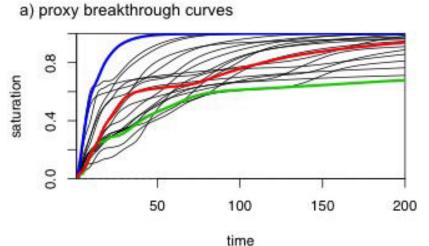
Workflow



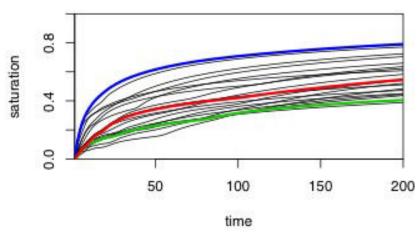




Training set of 20 realizations



b) exact breakthrough curves



training set of realizations run proxy flow simulations dimension reduction using fPCA construction of the regression model

tion using fPCA

FPCA $x_i(t) \approx \bar{x}(t) + \sum_{j=1}^{N} s_{ij} \zeta_j(t)$

simulations

Principal components (or harmonics) $\zeta_j(t)$ that maximises

$$d_i = \operatorname{var}\left(\int \zeta_i(t)[x_j(t) - \bar{x}(t)]dt\right)$$

Principal components scores

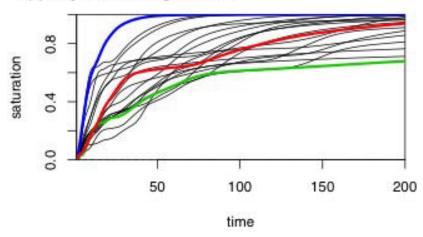
$$s_{ij} = \int [x_i(t) - \bar{x}(t)]\zeta_j(t)dt$$

Proportion of data explained by the ith harmonics

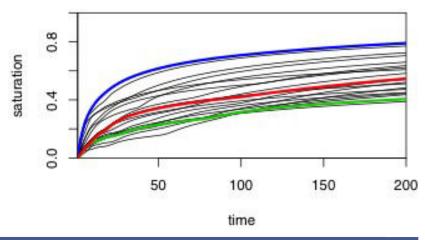
$$\frac{d_i}{\sum d_j}$$

Workflow

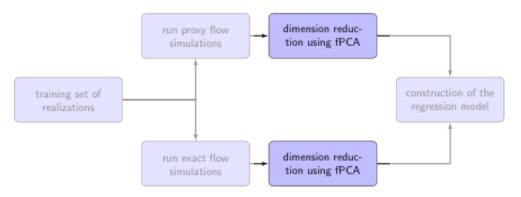
a) proxy breakthrough curves

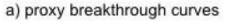


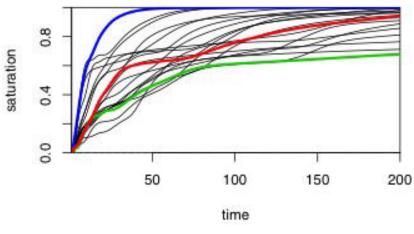
b) exact breakthrough curves

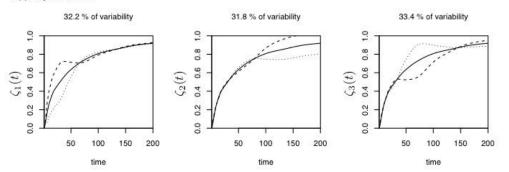


Workflow



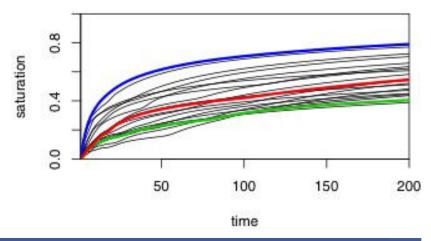




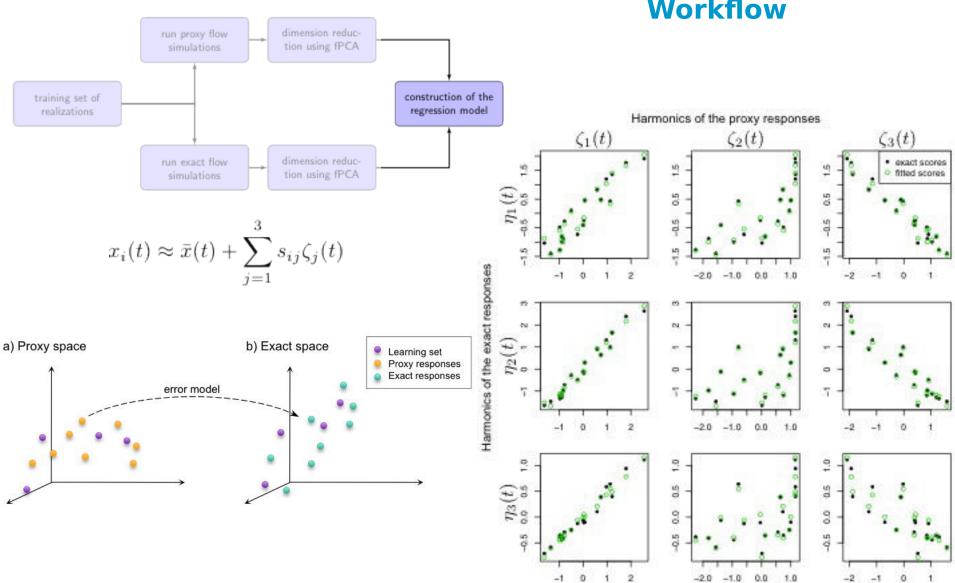


10

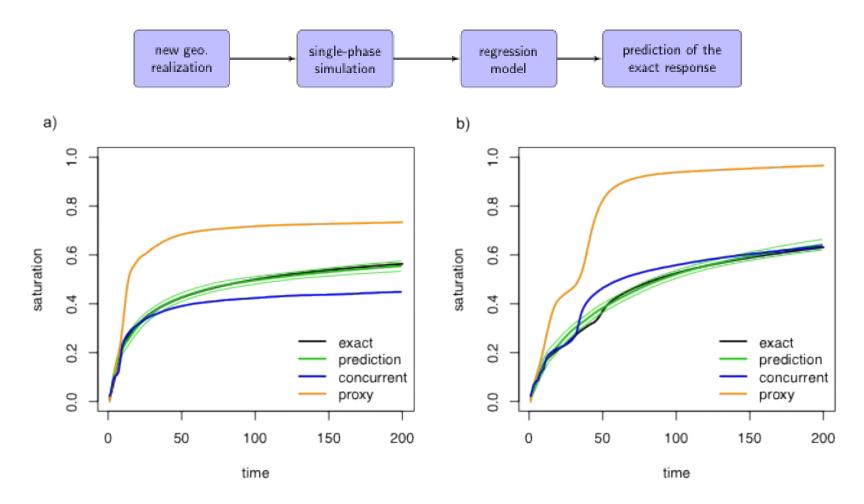
b) exact breakthrough curves



Workflow

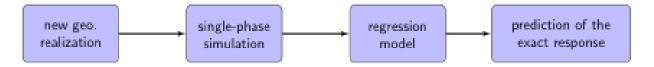


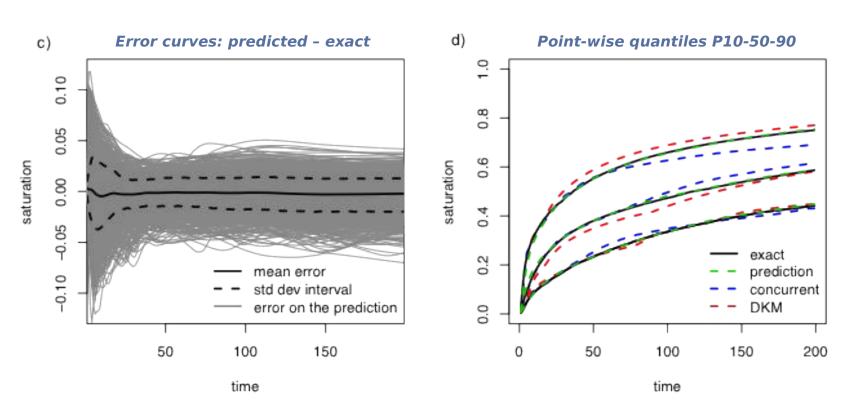
Two examples of predictions



12

Prediction of the ensemble 1000 realizations



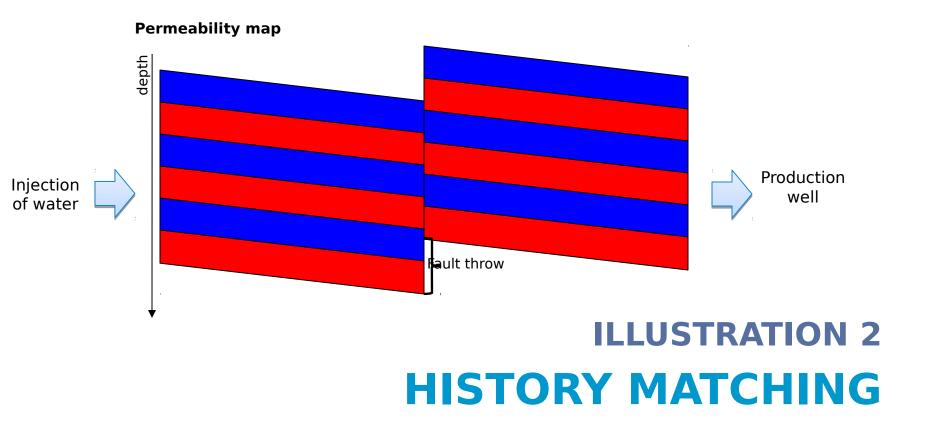


13

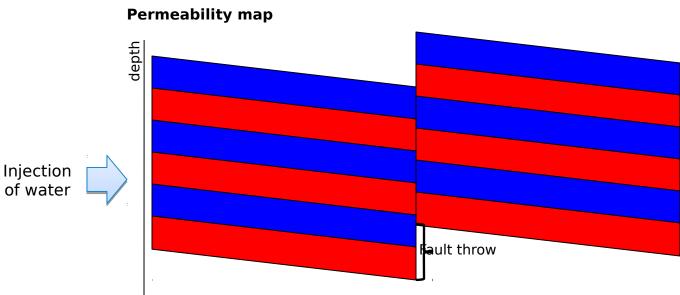
Good prediction of the point-wise quantiles

Prediction for each of the curves

■ useful beyond UQ



IC Fault test case



Imperial College Fault problem

Z Tavassoli, JN Carter, PR King (2004)

3 parameters:

- Fault throw = ?
- $K_{high} = ?$
- $K_{low} = ?$

Production well

Observed data:

- Oil production rate
- Water production rate

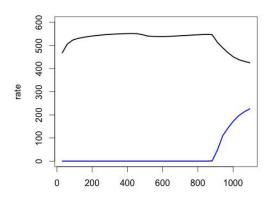
Goal:

Sample the parameters given the observed data

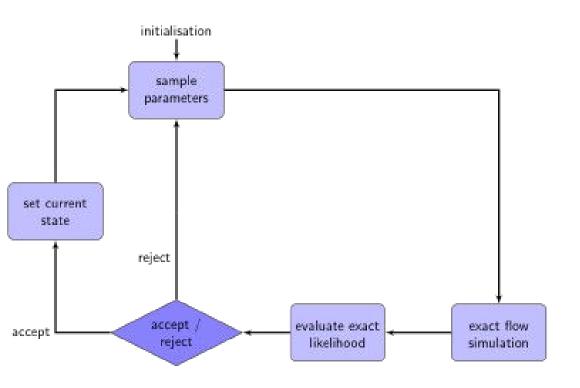
$$p(\theta|y) \propto \mathcal{L}(\theta;y)p(\theta)$$

Choice of simplified physics model: single-phase simulation

- → Provides information on the connectivity of the realizations
- → Cheap: pressure problem is solved only once



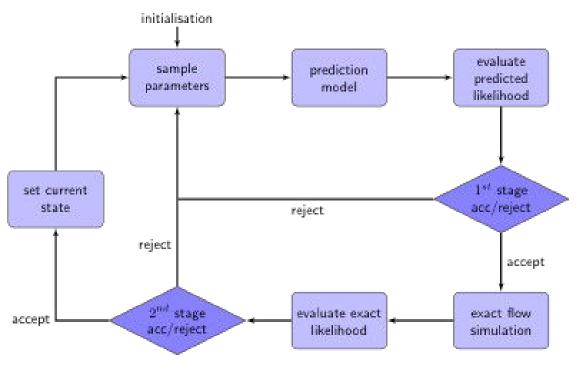
2-stage MCMC



Metropolis-Hastings

- To sample the posterior probability density function
- Typical application 10⁵ iterations
- finite length chains should be able to explore all areas of the prior space
- Increase the step length of the chains?
 - Drastic reduction of the acceptance rate
 - High number of wasted simulations

2-stage MCMC



Metropolis-Hastings

- To sample the posterior probability density function
- Typical application 10⁵ iterations
- finite length chains should be able to explore all areas of the prior space
- Increase the step length of the chains?
 - Drastic reduction of the acceptance rate
 - High number of wasted simulations

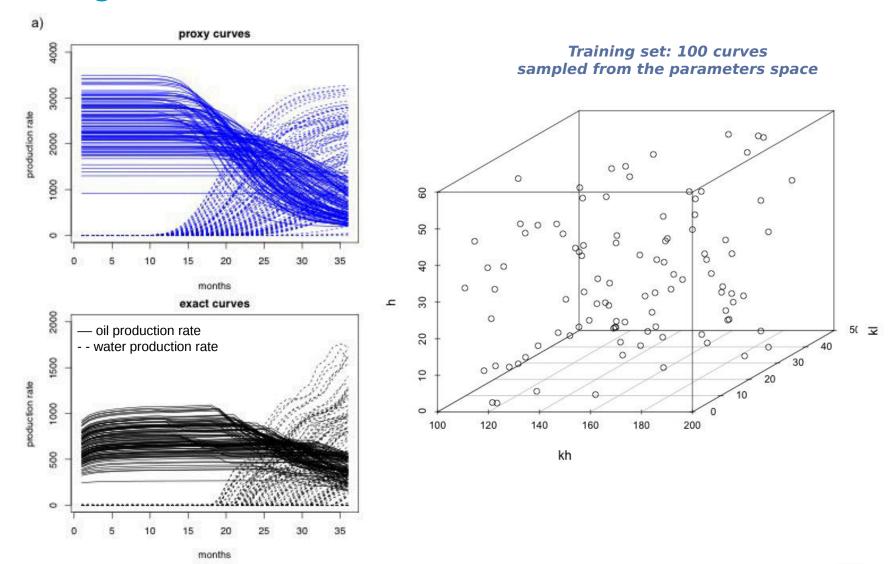
2-stage MCMC*

- · Avoid unnecessary run of the exact solver
- Reject samples based on the predicted response

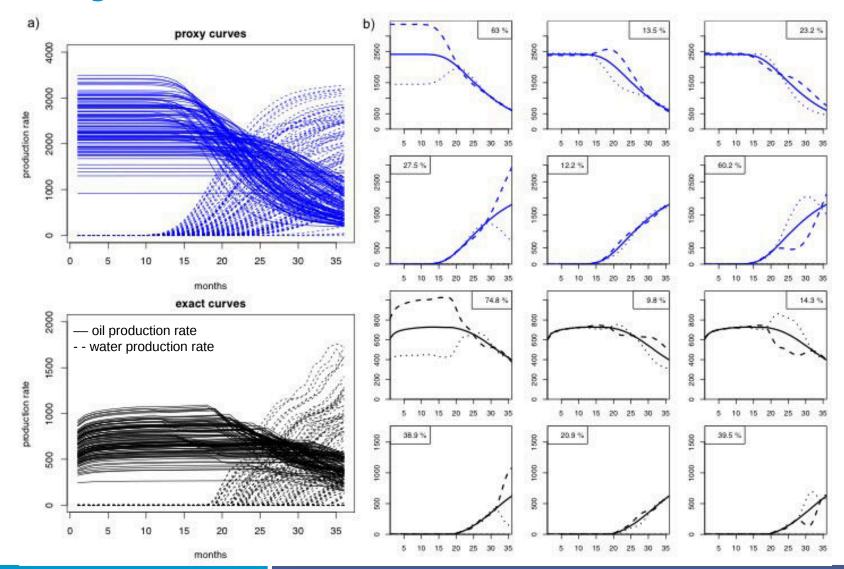
*Christen and Fox (2005), Efendiev et al. (2005, 2006)

Training set and dimension reduction

18

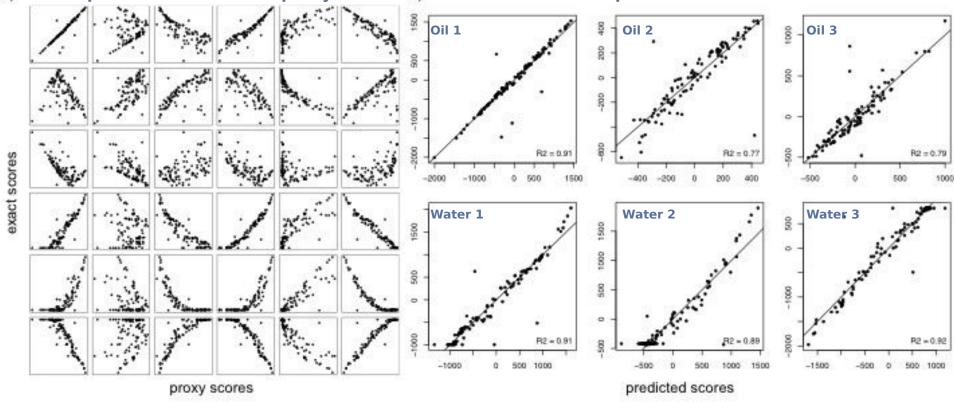


Training set and dimension reduction



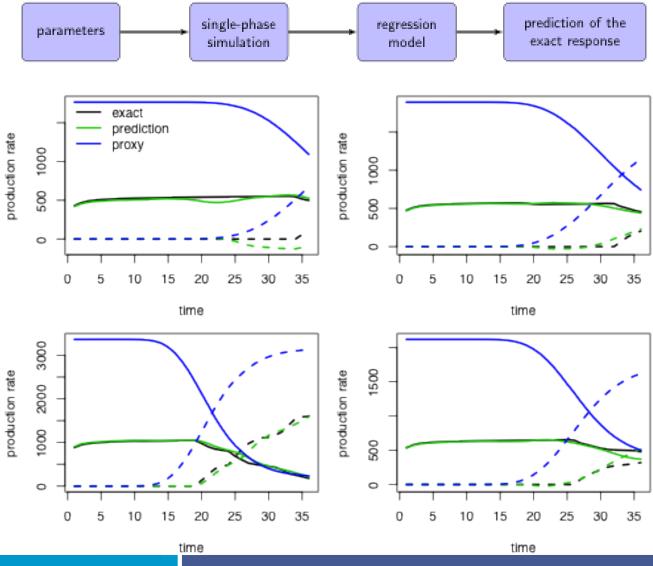
Construction of the regression model

a) Scatterplot of the exact and proxy scores b) Plot of the exact VS predicted scores



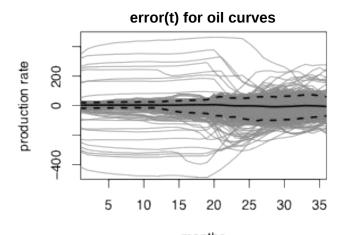
The proxy is useful to predict the exact response

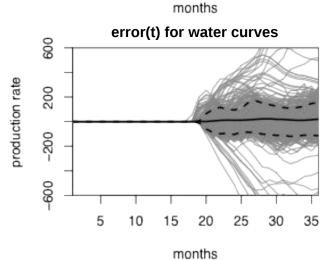
Four examples of predictions



Evaluation of the performance of the error model

Test set of 1000 realizations

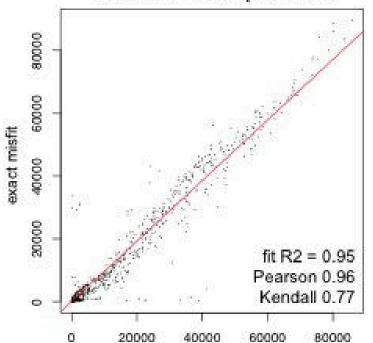




Predicted curves → **predict the misfit:**

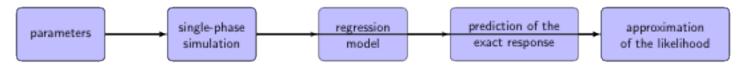
$$M = \frac{1}{36} \sum_{t=1}^{36} \frac{(C_{ref}^{oil}(t) - C^{oil}(t))^2}{2\sigma^2} + \frac{1}{7} \sum_{t=30}^{36} \frac{(C_{ref}^{water}(t) - C^{water}(t))^2}{2\sigma^2}$$

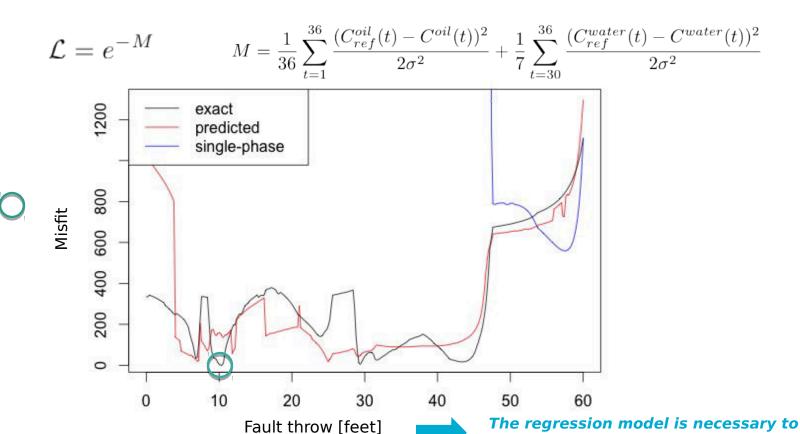
exact misfit = 0.964 * pred. misfit



predicted misfit

Is the error model necessary?



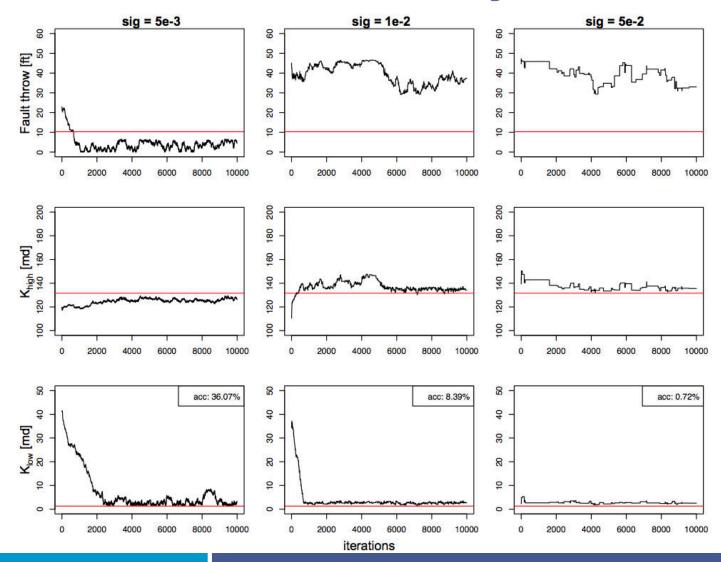


 $K_{high} = 131.6$ $K_{low} = 1.3$ true parameter

identify regions in the parameter

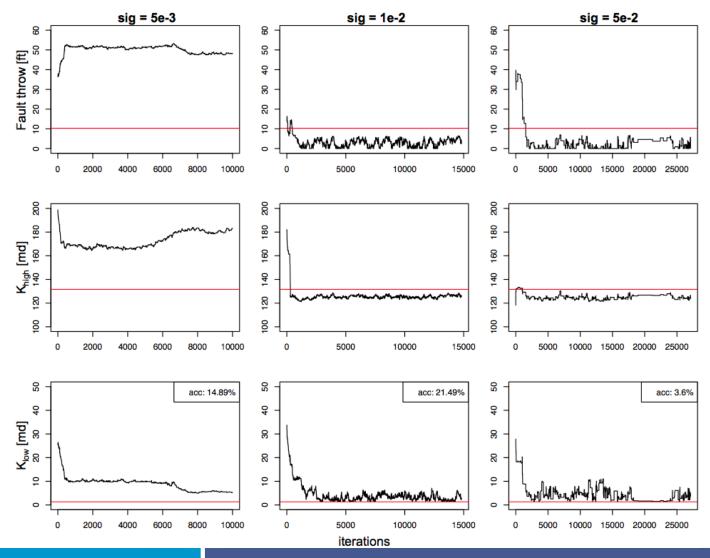
Metropolis-Hastings results

3 chains for different step size Length: 10'000 evaluations



2-stage MCMC results

3 chains for different step size Length: equivalent MH



Comparison of the results

random walk	nb of it.			nb of acc. 1stage sim			nb of acc. 2stage sim			acc. rate			
σ	C1	C2	C3	C1	C2	C3	C1	C2	C3	C1	C2	C3	mean
	Metropolis-Hasting												
$5 \cdot 10^{-3}$	10'000	10'000	10,000				1'631	$3^{\circ}247$	1,5291	18.1%	36.1%	14.3%	22.8%
$1 \cdot 10^{-2}$	10'000	10'000	10'000				1'683	755	628	18.7%	8.4%	7.0%	11.4%
$5 \cdot 10^{-2}$	10'000	10'000	10'000				179	65	48	2.0%	0.7%	0.5%	1.1%
	Two-stage MCMC												
$5 \cdot 10^{-3}$	10'000	10'000	10°000	4'760	5°299	9 176	367	789	41	7.7%	14.9%	23.3%	15.3%
$1 \cdot 10^{-2}$	14'372	14'815	$31^\circ\!738$	9'666	9'656	5 - 7'820	2'060	$2^{\circ}075$	331	23.3%	21.5%	4.2%	16.3%
$5 \cdot 10^{-2}$	28'337	31'777	$27^{\circ}108$	9'341	9°261	1 9'370	393	518	337	4.2%	5.6%	3.6%	4.5%

2-stage MCMC with the error model

- Higher acceptance rate
- Longer chains can be run for the same computational cost

However

- Nowhere near convergence
- ICF still a very challenging problem
- As the Swiss say: "ça va pas mieux mais plus longtemps!"

Conclusion *Key ideas*

Prediction model

- = proxy + error model
- = single-phase + FPCA regression

- Why single-phase flow simulations:
 - Connectivity is what varies between realisations
 - Cheap: pressure is solved only once
- Why error modelling:
 - Missing physics has to be taken in account

Advantages

- Strong reduction of computational costs
- Allows the evaluation of the relevance of the proxy for the specific problem

Outlook

- On going work: sensitivity analysis
- Application to seawater intrusion in coastal aguifer
- Evolve to more complex regression model-> Kernel methods

Acknowledgements

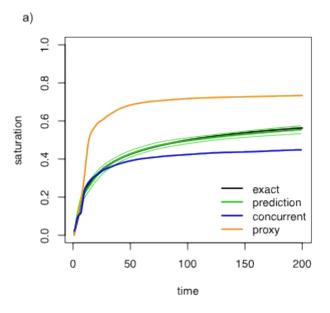
David Ginsbourger, University of Bern Ahmed H. Elsheikh and Vasily Demyanov, University of Heriot-Watt

References

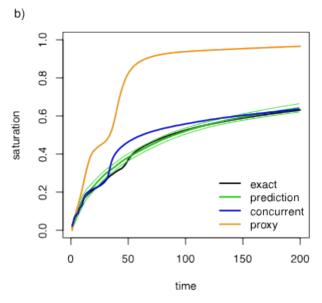
- L. Josset, D. Ginsbourger and I. Lunati, "Functional error modeling for uncertainty quantification in hydrogeology", Water Resources Research (2015)
- L. Josset, V. Demyanov, A.H. Elsheikh and I. Lunati, "Accelerating Monte Carlo Markov chains with proxy and error models", Computer and Geosciences (in revision)
- P. Bayer et al., "Three-dimensional high resolution fluvio-glacial aquifer analog", J. Hydro 405 (2011) 19
- G. Mariethoz, P. Renard, and J. Straubhaar "The Direct Sampling method to perform multiple-point geostatistical simulations", Water Resour. Res., 46 (2010)
- J. Ramsay, G. Hooker and S. Graves, "Functional data analysis with R and MATLAB", Springer (2009)
- P. Tavassoli et al., "Errors in history matching", SPE 86883 (2004)

THANK YOU FOR YOUR ATTENTION

Simultaneous confidence bands



29



$$Pr\Big(\tilde{y}(t) \in [\hat{y}(t) - w_{\alpha}(t), \hat{y}(t) + w_{\alpha}(t)] \text{ for all } t\Big) = 1 - \alpha$$

$$w_{\alpha}(t) = \sqrt{\left(\frac{D_{ex}(N_{l}-D_{app}-1)}{N_{l}-D_{ex}-D_{app}}\right)} F_{D_{ex},N_{l}-D_{ex}-D_{app}}(\alpha)}$$
$$\times \sqrt{(1+\mathbf{b}'(\mathbf{B}'\mathbf{B})^{-1}\mathbf{b})\left(\frac{N_{l}}{N_{l}-D_{app}-1}\right) \boldsymbol{\eta}'(t) \hat{\boldsymbol{\Sigma}} \boldsymbol{\eta}(\boldsymbol{t})},$$

with
$$\ensuremath{ \boldsymbol{\eta}(t) }$$
 the values of the exact harmonics

$$\hat{\Sigma}$$
 the covariance matrix of errors

$$F(lpha)$$
 Fisher's $lpha$ quantile