A weather generator for simulating multivariate climatic series

Denis Allard, with Nadine Brisson (AgroClim, INRA), Cédric Flecher (MetNext) and Philippe Naveau (LSCE, CNRS)

> Biostatistics and Spatial Processes (BioSP) INRA, Avignon

Modélisation pour l'environnement et expérimentation numérique, 21 Juin 2011, AgroParisTech, Paris

Outline

- Introduction
- WACS-Gen
- (Some theory: the CSN distribution)
- Back to WACS-gen
- 5 Illustration

Sur le Pont d'Avignon

December 2003

March 2010

December 2003

Summer

March 2010

- Stochastic model for generating series of daily climatic variables (here, P, Tn, Tx, R, W)
- Calibrated on recorded series

For what purpose?

- Impact studies when climate is involved: e.g. crop models for agriculture
- Explore unmeasured climates
- Disaggregating (downscaling) climatic variables, in particular for GCM outputs (not yet done)

Disaggregation of climatic variables

- ullet Resolution of GCM outputs is at best \sim at a 50 km scale
- But impact studies need climatic variables at the appropriate spatial resulation and time step
- Some plant models need hourly rainfall, which are rarely measured

Outline

- Introduction
- WACS-Gen
- (Some theory: the CSN distribution)
- Back to WACS-gen
- 6 Illustration

Some existing weather generators (WG)

Data-base oriented (non parametric)

- Pros: compatibility between climatic variables is guaranteed
- statistical features are reproduced
- Cons: cannot create unobserved meteorological situations (impact studies!)

Model based (parametric)

- Pros: can create non recorded situations
- Cons: existing WG are limited two a wet/dry classification; non flexible classes of densities

WACS-Gen

Weather-state Approach Conditionally Skewed-generator

- Parametric, model-based approach
- Accounts for seasonality and inter-annual trend
- Several dry and wet states
- Mixture of multivariate skew-normal densities
- With temporal correlation

PhD Thesis of Cédric Flécher, (co-supervision with Philippe Naveau, LSCE-CNRS, and Nadine Brisson, AgroClim, INRA)

Removing the trend

 For P, Tn, Tx, R, W: build standardized residuals using smoothed median and absolute standard deviations

- Create 4 seasons: MAM, JJA, SON, DJF
- Apply Gamma transform on P for each season

Now work on residuals, for each season independently

Weather States

For each season

- Model-based clustering (Mclust, Fraley & Raftery, 2002) for dry and wet days
 - estimate # states (using BIC)
 - provides a soft classification of days

Weather states as Markov Chain with transition matrix estimated from soft classification

Multivariate density

For each seaon and each weather state, residuals (k = 4 or 5) are distributed according to Complete Skew-Normal distribution

$$f_k(y) = 2^{-k} \phi_k(y; \mu, \Sigma) \Phi_k(S\Sigma^{-1/2}(y - \mu); 0, I_k - S^2)$$

- ullet μ vector of location parameter
- Σ is a matrix of co-variation
- S is a diagonal matrix of skewness

Outline

- Introduction
- WACS-Gen
- (Some theory: the CSN distribution)
- Back to WACS-gen
- 5 Illustration

The Closed Skew-Normal (CSN) distribution

CSN pdf $CSN_{n,m}(\mu, \Sigma, D, \nu, \Delta)$

$$f(y) = \frac{1}{\Phi_m(0; \nu, \Delta + D^t \Sigma D)} \phi_n(y; \mu, \Sigma) \Phi_m(D^t(y - \mu); \nu, \Delta)$$

- If D = 0: $N_n(\mu, \Sigma)$
- If m = 1: skew-normal distribution [Azzalini, 2005; Arellano–Valle, and Azzalini, 2008; Dominguez-Molina and gonzales-Farias, 2003]

Example

$$m = n = 1$$
; $\mu = 0$, $\sigma^2 = 1$, $d = 1$, $\nu = 0.3$, $\Delta = 0.3$

Gaussian and CSN bivariate density

Linearity

$$A \times CSN_{n,m}(\mu, \Sigma, D, \nu, \Delta) \sim CSN_{r,m}(A\mu, \Sigma_A, D_A, \nu, \Delta_A)$$

where

$$\Sigma_{\mathbf{A}} = \mathbf{A} \Sigma \mathbf{A}^{\mathsf{T}}, \quad D_{\mathbf{A}} = D \Sigma \mathbf{A}^{\mathsf{T}} \Sigma_{\mathbf{A}}^{-1}, \quad \Delta_{\mathbf{A}} = \Delta + D \Sigma D^{\mathsf{T}} - D_{\mathbf{A}} \Sigma_{\mathbf{A}} D_{\mathbf{A}}^{\mathsf{T}}$$

Sum (particular case)

$$N(\mu, \Sigma) + CSN_{n,m}(\psi, \Omega, D, \nu, \Delta) \sim CSN_{n,m}(\psi + \mu, \Omega + \Sigma, D, \nu, \Delta)$$

Linearity

$$A \times CSN_{n,m}(\mu, \Sigma, D, \nu, \Delta) \sim CSN_{r,m}(A\mu, \Sigma_A, D_A, \nu, \Delta_A)$$

where

$$\Sigma_{\mathbf{A}} = \mathbf{A} \Sigma \mathbf{A}^{T}, \quad D_{\mathbf{A}} = D \Sigma \mathbf{A}^{T} \Sigma_{\mathbf{A}}^{-1}, \quad \Delta_{\mathbf{A}} = \Delta + D \Sigma D^{T} - D_{\mathbf{A}} \Sigma_{\mathbf{A}} D_{\mathbf{A}}^{T}$$

Sum (particular case)

$$N(\mu, \Sigma) + CSN_{n,m}(\psi, \Omega, D, \nu, \Delta) \sim CSN_{n,m}(\psi + \mu, \Omega + \Sigma, D, \nu, \Delta)$$

Conditioning

Consider
$$Y = (Y_1, Y_2) \sim CSN_{n,m}(\mu, \Sigma, D, \nu, \Delta)$$
.
Then, $Y_2 | Y_1 = y_1$ is

$$\textit{CSN}(\mu_2 + \Sigma_{21}\Sigma_{11}^{-1}(\textit{y}_1 - \mu_1), \Sigma_{22} - \Sigma_{21}\Sigma_{11}^{-1}\Sigma_{12}, \textit{D}_2, \nu - \textit{D}_1\textit{y}_1, \Delta)$$

Moment generating function

$$M(t) = \frac{\Phi_m(D^t \Sigma t; \nu, \Delta + D \Sigma D^T)}{\Phi_m(0; \nu, \Delta + D \Sigma D^T)} \exp\{\mu^T t + \frac{1}{2}(t^T \Sigma t)\}$$

From the MGF one can derive first and second moments

Conditioning

Consider
$$Y = (Y_1, Y_2) \sim CSN_{n,m}(\mu, \Sigma, D, \nu, \Delta)$$
.
Then, $Y_2 | Y_1 = y_1$ is

$$CSN(\mu_2 + \Sigma_{21}\Sigma_{11}^{-1}(y_1 - \mu_1), \Sigma_{22} - \Sigma_{21}\Sigma_{11}^{-1}\Sigma_{12}, D_2, \nu - D_1y_1, \Delta)$$

Moment generating function

$$M(t) = \frac{\Phi_m(D^t \Sigma t; \nu, \Delta + D \Sigma D^T)}{\Phi_m(0; \nu, \Delta + D \Sigma D^T)} \exp\{\mu^T t + \frac{1}{2}(t^T \Sigma t)\}$$

From the MGF one can derive first and second moments

Hierarchical construction

$$\left(\begin{array}{c} Y \\ X \end{array}\right) \sim N_{n+m} \left(\left(\begin{array}{cc} 0 \\ \nu \end{array}\right), \left(\begin{array}{cc} \Sigma & -D^t \Sigma \\ -\Sigma D & \Delta + D^t \Sigma D \end{array}\right)\right),$$

Then

$$\mu + (Y|X \leq 0) = CSN_{n,m}(\mu, \Sigma, D, \nu, \Delta)$$

Simulation algorithm

- simulate a vector $X \sim N_m(\nu, \Delta + D^t \Sigma D)$, conditional on $X \leq 0$
- simulate a vector Y conditionally on X, according to the bivariate model above
- \odot return $\mu + Y$

Outline

- 1 Introduction
- WACS-Gen
- (Some theory: the CSN distribution)
- Back to WACS-gen
- Illustration

CSN for WACS-gen

To simplify the model, we set

- \bullet m = n = k
- $D = \Sigma^{-\frac{1}{2}} S$
- $\bullet \ \Delta = I_k S^2$
- $S = \operatorname{diag}(\delta_1, \ldots, \delta_K)^t$.

 $CSN_k^*(\mu, \Sigma, S)$:

$$f_k(y) = 2^{-k} \phi_k(y; \mu, \Sigma) \Phi_k(S\Sigma^{-1/2}(y - \mu); 0, I_k - S^2)$$

Hence

$$ilde{X} = \Sigma^{-1/2}(X-\mu) \sim \textit{CSN}_5^*(0,\textit{I}_5,\textit{S})$$

Estimation of the parameters

Maximum likelihood is known to be difficult and non-robust Estimation is done by weighted moments

Using as third moment the quatity $E[\Phi_k(Y, 0, I_k)]$ with

$$E[\Phi_k(Y,0,I_k)] = 2^k \Phi_{2k} \left(0; \begin{bmatrix} -mu \\ 0 \end{bmatrix}, \begin{bmatrix} \Sigma + I_k & \lambda \Sigma^{1/2} \\ \lambda \Sigma^{1/2} & I_k \end{bmatrix} \right)$$

[Flecher, Allard and Naveau (2009) Stat. Prob. Letters]

Estimation workflow

- Remove inter-annual and seasonal trend for Tn, Tx, R, W
- For each season {
 - Gamma transform P
 - Mclust classification of weather states (WS)
 - Estimation of transition matrix
 - For each WS, estimation of the CSN parameters
 - Estimation of temporal correlation

J

Simulation algorithm

- Simulate the Markov Chain WS(t)
- Fort t = 1, ..., T {
 - **①** Conditionnally on WS simulate $\tilde{X}(t) \sim \text{CSN}$ given $\tilde{X}(t-1)$
 - ② Transform $\tilde{X}(t)$ into X(t)
- Add seasonal and interannual trend

Outline

- 1 Introduction
- WACS-Gen
- (Some theory: the CSN distribution)
- Back to WACS-gen
- 6 Illustration

Illustration

30 year series in Colmar, France

- Well marked seasonal cycle: cold winters ($\bar{T}n = 2^{\circ}$ C in Jan.) and warm summers ($\bar{T}x = 25^{\circ}$ C in Jul.)
- $\bullet \approx 1/4$ wet days
- Average P is 530 mm/year
- 3 wet WS / season (exc. JJA)
- 3 dry WS / season

Classification of residuals

Marginal densities

JJA and SON, dry days

Marginal densities: pair (Tx, R)

JJA dry days

More general picture: Tx and H

Precipitation

Persistence of Tn < 0

Variability

35/36

In conclusion

WACS-gen is a flexible weather generator which

- overcomes existing limitations of previous WG
 - beyond dry/wet days
 - skewed densities able to capture natural asymetries of climatic variables
 - good variability of monthly averages
- But still problems
 - non robust estimators for skewness parameter
 - too many free parameters?

[Flecher, Naveau, Allard, Brisson (2010) A stochastic daily weather generator for skewed data, *Water Resources Research*, **46**, W07519]