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Introduction

What is a Weather generator (WG)?

December 2003 Summer March 2010

@ Stochastic model for generating series of daily climatic variables
(here, P, Tn, Tx, R, W)

@ Calibrated on recorded series



Introduction

For what purpose?

@ Impact studies when climate is involved: e.g. crop models for
agriculture

@ Explore unmeasured climates

@ Disaggregating (downscaling) climatic variables, in particular for
GCM outputs (not yet done)



@ Resolution of GCM outputs is at best ~ at a 50 km scale

@ Butimpact studies need climatic variables at the appropriate
spatial resulation and time step

@ Some plant models need hourly rainfall, which are rarely
measured
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WACS-Gen

Some existing weather generators (WG)

Data-base oriented (non parametric)
@ Pros: compatibility between climatic variables is guaranteed
@ statistical features are reproduced

@ Cons: cannot create unobserved meteorological situations
(impact studies !)

Model based (parametric)
@ Pros: can create non recorded situations

@ Cons: existing WG are limited two a wet/dry classification; non
flexible classes of densities
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WACS-Gen

WACS-Gen

Weather-state Approach Conditionally Skewed- generator
@ Parametric, model-based approach
@ Accounts for seasonality and inter-annual trend
@ Several dry and wet states
@ Mixture of multivariate skew-normal densities
@ With temporal correlation

PhD Thesis of Cédric Flécher, (co-supervision with Philippe Naveau,
LSCE-CNRS, and Nadine Brisson, AgroClim, INRA)

CiNgR
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Removing the trend

@ For P, Tn, Tx, R, W: build standardized residuals using
smoothed median and absolute standard deviations

@ Create 4 seasons: MAM, JJA, SON, DJF
@ Apply Gamma transform on P for each season

Now work on residuals, for each season independently




WACS-Gen

Weather States

For each season

@ Model-based clustering (Mclust, Fraley & Raftery, 2002) for dry
and wet days

e estimate # states (using BIC)
e provides a soft classification of days

Weather states as Markov Chain with transition matrix estimated
from soft classification
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WACS-Gen

Multivariate density

For each seaon and each weather state, residuals (k = 4 or 5) are
distributed according to Complete Skew-Normal distribution

fe(y) = 275w (i 1, T)Ok(SZ V2 (y — p); 0, — S?)

@ . vector of location parameter
@ X is a matrix of co-variation
@ Sis a diagonal matrix of skewness
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(Some theory: the CSN distribution)

The Closed Skew-Normal (CSN) distribution

CSN pdf CSN;, m(w, X, D, v, A)

fly) = L
Y) = $.(0;v,A + D3 D)

On(Vi 11, Z)Om(D(y — 1) v, A)

@ If D=0: Ny, X)

@ If m = 1: skew-normal distribution [Azzalini, 2005; Arellano—Valle, and
Azzalini, 2008; Dominguez-Molina and gonzales-Farias, 2003]
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(Some theory: the CSN distribution)

m=n=1,4=0,02=1,d=1,vr=03,A=0.3




(Some theory: the CSN distribution)

Gaussian and CSN bivariate density
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(Some theory: the CSN distribution)

Some properties of CSN distributions

A x CSNy m(p, X, D, v, A) ~ CSN; m(Ap, X4, Da, v, Ap)

where

Ya=AXA", Dy=D3A'Y;', Ap=A+DID" — Dp¥ 4D}

19/36



(Some theory: the CSN distribution)

Some properties of CSN distributions

A x CSNy m(p, X, D, v, A) ~ CSN; m(Ap, X4, Da, v, Ap)

where

Ya=AXA", Dy=D3A'Y;', Ap=A+DID" — Dp¥ 4D}

Sum (particular case)

N(p, %) + CSNym(, 2, D, v, A) ~ CSNp m(¥ + 11, Q + X, D, v, A)
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(Some theory: the CSN distribution)

Some properties of CSN distributions

Conditioning

Consider Y = (Y3, Y2) ~ CSNy m(u, X, D, v, AA).
Then, Y2‘Y1 = W1 is

CSN(IUQ i 22121_11 (y1 — A ), Y00 — Yo 21_11 212, Dg7 vV — D1 Vi, A)

From the MGF one can derive first and second moments
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Some properties of CSN distributions

Consider Y = (Y3, Y2) ~ CSNy m(u, X, D, v, AA).
Then, Y2‘Y1 = W1 is
CSN(IUQ i 22121_11 (y1 — A ), Y00 — Yo 21_11 212, Dg, vV — D1 Vi, A)

v

Moment generating function

M(t) = Sn(D'Tt v, A+ DXDT)
~ ®,(0;v,A+ DEDT)

exp{u’t+ %(tTZt)}

From the MGF one can derive first and second moments
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(Some theory: the CSN distribution)

Hierarchical construction

(x)=mn((D)( 50 aZi0)):

/14 = (Y|X S O) = CSNn7m(ILL, Z, D, v, A)

v

Simulation algorithm

@ simulate a vector X ~ Ny (v, A + D':D), conditional on X < 0

@ simulate a vector Y conditionally on X, according to the bivariate
model above

Q returnpu+Y

\
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Back to WACS-gen

CSN for WACS-gen

To simplify the model, we set
em=n=k
eD=3":8
o A= Ik — Sz
e S =diag(é1,...,dx)".

CSN} (i, %, S):

fe(y) = 27 ox(y; 1, T)Ok(SZ V2 (y — u); 0, f — S?)

Hence ;
X =35 Y3(X — ) ~ CSN:(0, s, S)
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Back to WACS-gen

Estimation of the parameters

Maximum likelihood is known to be difficult and non-robust
Estimation is done by weighted moments

Using as third moment the quatity E[®«(Y, 0, /)] with

—mu Y 4+l AX1/2
E[m(v,o,/k)]:zk%k(o:[ 0 Hmé I

[Flecher, Allard and Naveau (2009) Stat. Prob. Letters]
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Back to WACS-gen

Estimation workflow

@ Remove inter-annual and seasonal trend for Tn, Tx, R, W
@ For each season {

@ Gamma transform P

© Mclust classification of weather states (WS)

@ Estimation of transition matrix

© For each WS, estimation of the CSN parameters

© Estimation of temporal correlation
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Back to WACS-gen

Simulation algorithm

@ Simulate the Markov Chain WS(t)
@ Fortt=1,...,T{

@ Conditionnally on WS simulate X(t) ~ CSN given X(t — 1)
@ Transform X(t) into X(t)

@ Add seasonal and interannual trend

26/36



lllustration

Outline

e lllustration



lllustration

lllustration

30 year series in Colmar, France

@ Well marked seasonal cycle: cold winters (Tn=2°CinJan.) and
warm summers (Tx = 25°C in Jul.)

@ ~ 1/4 wet days

@ Average P is 530 mm/year

@ 3 wet WS/ season (exc. JJA)
@ 3 dry WS/ season
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Classification of residuals

JJA dry days



lllustration

Marginal densities
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Marginal densities: pair (Tx, R)
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lllustration

More general picture: Tx and H
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lllustration

Precipitation
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lllustration

Persistence of Tn < 0
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lllustration

Variability
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lllustration

In conclusion

WACS-gen is a flexible weather generator which

@ overcomes existing limitations of previous WG
e beyond dry/wet days
e skewed densities able to capture natural asymetries of climatic
variables
@ good variability of monthly averages
@ But still problems
@ non robust estimators for skewness parameter
e too many free parameters?

[Flecher, Naveau, Allard, Brisson (2010) A stochastic daily weather generator for
skewed data, Water Resources Research, 46, W07519]
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