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Introduction

What this is about (disclaimer)

◮ An overview on ensemble Kalman filtering, and a little about particle
filtering,. . .

◮ . . . in the context of (very) high-dimensional geophysics (atmosphere &
ocean): n ∼ 102 −109.

◮ This talk is about filtering, not smoothing.

◮ Variational methods (4D-Var ≡ optimal control) are extremely successful in
(operational) meteorology. The use of ensemble filters is a long-term effort to
bypass the variational methods and to avoid its main disadvantages: the need of
an adjoint, and the difficulty to explicitly extract posterior errors.

◮ The second part of the talk is more focused on my own contribution.
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Particle filtering: introduction

Particle filtering: a natural approach

◮ The ultimate goal of (Bayesian) data assimilation:

Statistically describe the system state by its complete pdf p(x),

and assimilate observations through the Bayes formula

p(x|y) =
p(y|x)p(x)

p(y)
. (1)

◮ Given the system size, discretisation of the pdf is not affordable.

◮ The only feasible approach is Monte Carlo with N particles.
In the asymptotic limit (N −→ ∞), on should recover the exact Bayesian
inference.
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Particle filtering: introduction

The bootstrap filter

It’s simple!

Ensemble of particles:
{
x1
h,x2

h, . . . ,xN
h

}
at time th·

Sampling of the system’s pdf:

ph(xh) ≃
N

∑
n=1

ωn
h−1δ (xh −xn

h) . (2)

Analysis via a direct application of Eq.(1) :

ωn
h ∝ ωn

h−1 p(yh|xn
h) . (3)

Propagation:
xn
h+1 = Mh+1(x

n
h)+wh+1 . (4)

It’s beautiful!

No matrix inversion is necessary (6= EnKF),

Trivially parallelism (≃ EnKF),

The particles are actual solutions of the model (≥ EnKF).

M. Bocquet GDR MASCOT NUM, 21 June 2011, Paris, France 6 / 44



Particle filtering: introduction

The bootstrap filter

◮ Quite rapidly, the ensemble degenerates. It is necessary to re-sample the
ensemble from the weights of each member of the ensemble.

Probabilistic resampling [Metropolis et Ulam, 1944; Gordon, 1993]

One directly uses the weights ωn
h , n = 1, . . . ,N, as occurring probabilities.

−→ standard sampling.
−→ introduce a statistical sampling noise.

Residual resampling[Lui et Chen, 1998]

If the ensemble size is N, one makes E[N ωn
h ] copies of particle n.

Remains a residue of N ωn
h −E[N ωn

h ] for each of the particle.

One draws the rest of the particles up to N particles according to this
residual distribution.

−→ Improvement in the performance of the bootstrap filter, but not essential.

M. Bocquet GDR MASCOT NUM, 21 June 2011, Paris, France 7 / 44



Particle filtering: introduction

The bootstrap filter

h+2
p pp

h+1

observation

p +−+ −

+

resampling

h h+1
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Particle filtering: introduction

Examples in geophysics

Authors model var. obs./cycle ens. size

Zhou et al., 2006 land 684 1 800
Kivman, 2003 Lorenz 63 3 3 250−1000

Losa et al., 2003 ecosystem 24 - 1000
van Leeuwen, 2003 KdV 100 3 250
van Leeuwen, 2003 ocean QG model 2×105 O(100) 512
Nakano et al., 2007 Lorenz 95 40 20 ≥ 106

Bocquet et al., 2008 Lorenz 95 10 5 104 (≃ EnKF)

◮ It does work! occasionally...

◮ The performance is highly dependent on the dynamics of the model.
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Particle filtering: introduction

The Lorenz 95 model

◮ The toy-model:

Represents a mid-latitude zonal circle of the global atmosphere [Lorenz and Emmanuel

1998].

M = 40 variables {xm}m=1,...,M . For m = 1, . . . ,M:

dxm

dt
= (xm+1 −xm−2)xm−1 −xm +F ,

where F = 8, and the boundary is cyclic.

Conservative system except for a forcing term F and a dissipation term −xm.

Chaotic dynamics, topological dimension of 13, a doubling time of about 0.42 time
units, and a Kaplan-Yorke dimension of about 27.1.
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Particle filtering: introduction

Lorenz 95, 10 variables

◮ ∆t = 0.05 (6 hours
in real time).
◮ Standard deviation
of the obs. σ = 1.5.
◮ 1 site over 2 is
observed
◮ EnKF : diagonal er-
ror covariance matrix
of standard deviation
χ = 1.5.
◮ EnKF : localisation
(correlation length
c = 10).
◮ Skill of a filter
given by the rmse of
the analysis with the
truth.
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Particle filtering: introduction

Degeneracy of the particle filter

◮ Very rapidly, but on average, the weights go to 0 except for a few particles with large
weights.
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◮ Maximal weight for a bootstrap filter with N = 128 applied to Lorenz 95 for four
system’s sizes: M = 10, 20, 40, and 80.
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Particle filtering: introduction

Degeneracy of the particle filter

Divergence of the required particle number

[Snyder et al., 2008] have studied the statistics of the highest weight. They have shown
on a toy-model that the required size of the ensemble behaves like

M ∼ exp(τ2/2) , (5)

where τ is the variance of the log-likelihood of the observations.
◮ exponentially scales with the dimensions of the state space and observation space.

Damned !

◮ Related to the curse of dimensionality [Bellman, 1961].
◮ A typical symptom is the shrinking of the hypersphere of radius 1 in the hypercube
[−1,1]M . Indeed, the ratio of volume scales like

(π/2)M/2

Γ
(

M
2 +1

) −→ 0 . (6)

◮ In a high-dimensional analysis, the background prior and the observation prior overlap
less and less!
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Ensemble Kalman filtering

The extended Kalman filter (1/2)

◮ Kalman (i.e. Gaussian) filtering as an alternative to variational data
assimilation: less black box (access to errors), but less robust (a priori).

◮ High-dimensional dynamical system (say xh ∈ R
M , with M ∼ 102 −109):

{
xh+1 = Mh+1(xh)+wh+1

yh = Hh(xh)+vh

White noise conditions:

E[wh] = 0 E[wh wT
l ] = Qhδhl

E[vh] = 0 E
[
vh vT

l

]
= Rhδhl , E

[
vh wT

l

]
= 0 (7)

Core assumptions

Gaussian error statistics (or truncated to second-order moments)

Linearisation of operators: Mh → Mh and Hh → Hh.
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Ensemble Kalman filtering

The extended Kalman filter (2/2)

1 Initialisation: System state xf
0 and error covariance matrix Pf

0.

2 Analysis at th

Gain computation: Kh = Pf
hH

T
h

(
HhP

f
hH

T
h +Rh

)−1

Estimator
xa
h = xf

h +Kh

(
yh −Hh[x

f
h]
)

Error covariance matrix

Pa
h = (IM −KhHh)P

f
h

3 Forecast from th to th+1:

Forecast estimator xf
h+1 = Mh+1[x

a
h]

Forecast error covariance matrix

Pf
h+1 = Mh+1P

a
hM

T
h+1 +Qh+1
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Ensemble Kalman filtering

From the extended Kalman filter to the ensemble Kalman filter

◮ Inappropriate for high-dimensional geophysical systems (few exceptions though).

What is wrong with the extended Kalman filter?

Error covariance matrices too big to be stored

Propagation of errors much too costly

Linearisation induces errors in the error covariance matrix and in the estimator

Idea: represent uncertainty with an ensemble of N state vectors
[Evensen, 1994; Burgers et al., 1998]

First and second-order moments obtained from

x =
1

N

N

∑
k=1

xk , P =
1

N −1

N

∑
k=1

(xk −x)(xk −x)T .

Why is this Monte-Carlo approach a good one?

Low storage requirements: N state vectors.
Exact propagation of the ensemble through the nonlinear model.
Still has to compute N model trajectories (much better than 2M though!).
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Ensemble Kalman filtering

The (stochastic) ensemble Kalman filter

1 Initialisation: System state xf
0 and error covariance matrix Pf

0.

2 Analysis at th

Create stochastic observation set (k = 1, ..,N):

zk = z+uk

N

∑
k=1

uk = 0 , R =
1

N −1

N

∑
k=1

uku
T
k

Kalman gain K = PfHT
(
HPfHT +R

)−1

Computation of the analysis estimators k = 1, ..,N and their mean

xa
k = xf

k +K
(
zk −H(xf

k )
)

xa =
1

N

N

∑
j=1

xa
k

Error covariance matrix: Pa =
1

N −1

N

∑
k=1

(xa
k −xa)(xa

k −xa)T.

3 Forecast of
{
xf
k

}
k=1,...,N

, and Pf from th to th+1:

Forecast of xf
k = Mh+1(x

a
k ), for k = 1, ..,N, and of their mean xf =

1

N

N

∑
k=1

xf
k .

Error covariance matrix: Pf =
1

N −1

N

∑
k=1

(
xf
k −xf

)(
xf
k −xf

)T
.
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Ensemble Kalman filtering

The ensemble square root filter(s) (1/2)

◮ The deterministic variants of EnKF. [Anderson, 2001; Bishop et al., 2001; Whitaker and Hamill,

2002, Tippett et al., 2003]

◮ If Xk = (xk −x)/
√

N −1 are the scaled anomalies, define the scaled anomaly matrix
X = (X1, . . . ,XN). In an ensemble scheme, the background error covariance matrix Pb

is of the form
Pb = XbX

T
b . (8)

◮ Main idea: factorise the analysis error covariance matrix Pa.

Pa = Pb −PbH
T
(
R+HPbH

T
)−1

HPb

= Xb

(
I− (HXb)T

(
R+(HXb)(HXb)T

)−1
(HXb)

)
XT

b

≡ XbDXT
b . (9)

◮ One can choose a decomposition of D = (D1/2U)(D1/2U)T, where U is an arbitrary
orthogonal matrix in ensemble space, so that

Pa = XaX
T
a , with Xa = XbD

1/2U . (10)
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Ensemble Kalman filtering

The ensemble square root filter(s) (2/2)

◮ A particularly elegant class of square root EnKF is the ensemble transform Kalman
filter. Apply Sherman-Morrison-Woodbury formula to D:

D = I− (HXb)T
(
R+(HXb)(HXb)T

)−1
(HXb)

=
(
I+(HXb)TR−1(HXb)

)−1
(11)

This SREnKF is called ensemble transform Kalman filter (ETKF).

◮ Use a symmetric square root, such that Uu = u where u = (1, . . . ,1)T.

Xau = XbD
1
2 Uu = XbD

1
2 u = Xbu = 0 , (12)

because Xbu = 0 by construction. The performance of the symmetric SREnK filters is
better.
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Ensemble Kalman filtering

Traditional EnKF versus ETKF for the Lorenz 95 case

◮ Time-lag between
update: ∆t = 0.05 (6
hours real time).
◮ All variables ob-
served.
◮ Observations per-
turbed with a univari-
ate normal distribu-
tion of std.dev. 1.
◮ Skill of a filter
given by the rmse of
the analysis with the
truth.
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But stochastic EnKFs are known to be more robust . . .
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Ensemble Kalman filtering

The European contributions (and others)

◮ The Reduced Rank Square Root filter [RRSQRT]
[Heemink, Verlaan, Segers, van Loon, Hanea, since 1995]

More robust square root form of the Kalman filter

Reduced rank: affordable!

Propagation of the uncertainty main modes according to the tangent linear.

◮ The Singular Evolutive Interpolated Kalman filter [SEIK]
[Pham, 2001]

It is an ensemble square root Kalman filter.

It is symmetric too.

◮ Others filters: Ensemble Adjustment Kalman filter [Anderson, 2001], hybrid filters
[Hanea et al., 2007 ]
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Deficiencies and remedies of the EnKFs

Sources of error in the ensemble Kalman filter schemes

External sources of error

Model error.

Deviation from Gaussianity of the error pdf.

Internal source of errors

Sampling errors. First and second-order moments obtained from

x =
1

N

N

∑
k=1

xk , P =
1

N −1

N

∑
k=1

(xk −x)(xk −x)T .

Consequence: divergence of the filter [Houtekamer & Mitchell 1998; Whitaker & Hamill 2002]

The ensemble Kalman filter (EnKF)

1 is unstable because of the external errors,

2 and unstable at small and moderate ensemble size because of sampling errors
(internal errors).
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Deficiencies and remedies of the EnKFs

Consequence and remedies: inflation, localisation

Inflation [Anderson & Anderson 1999; Houtekamer & Mitchell 1999; Hamil et al. 2001]

Rescale the ensemble to balance the underestimation of errors:

xk −→ x+ r(xk −x) (implies Pf −→ r2Pf) .

Multi-ensemble configurations [Houtekamer & Mitchell 1998; Mitchell & Houtekamer 2009]

Compute the Kalman gain for one subensemble with the rest of the ensemble. Seems to
cure the need for inflation (perfect model context).

Localisation [Houtekamer & Mitchell 1998; Hamil et al. 2001; Ott et al. 2004]

Schur product of Pf (or related matrices) with a limited-range covariance matrix ρ:

Pf −→ ρ ◦Pf .

Assimilation of local observations within a given distance.

◮ But these are ad hoc remedies.
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Deficiencies and remedies of the EnKFs

Strategies

Strategies that make current EnKFs work

Context/model-dependent tuning of inflation, localisation scheme

Adaptive tuning of inflation, localisation scheme [Mitchell and Houtekamer 1999; Anderson

2001-2009; Brankart et al. 2010; Li et al. 2009; etc.]: state of the art EnKF, mostly inspired
by [Dee 1995], or cross-validation ideas [Silverman 1986].

Objective identification of errors [Furrer and Bengtsson 2007] or of their consequences
in the analysis [van Leeuwen 1999; Sacher and Bartello 2008]

Our strategy

Identify sampling errors,

and let the data assimilation system know about them.

Bayesian approach (information flow under control).

As a first step, rule out external sources of error.
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Accounting for sampling errors?

Getting more from the ensemble

◮ Compute the prior pdf p(x|x1, . . . ,xN), assuming that

Members of the ensemble are drawn from an unknown Gaussian distribution of pdf
n(xb,B) that may differ from n(x,P).

If one knew xb and B precisely, then the prior would be p(x|x1, . . . ,xN) = n(xb,B).

◮ Decomposing over all possible xb and B:

p(x|x1, . . . ,xN) =
∫

dxbdBp(x|x1, . . . ,xN ,xb,B)p(xb,B|x1, . . . ,xN)

=
∫

dxbdBp(x|xb,B)p(xb,B|x1, . . . ,xN)

∝

∫
dxbdBp(x|xb,B)p(x1, . . . ,xN |xb,B)p(xb,B) .

◮Using the Gaussianity assumption, we get

p(x|x1, . . . ,xN) ∝

∫
dxbdBp(xb,B)exp(−L (x,xb,B)) , with

L (x,xb,B) =
1

2
(x−xb)TB−1(x−xb)+

1

2
(N +1)ln |B|+ 1

2

N

∑
k=1

(xk −xb)TB−1(xk −xb) ,

where |B| is the determinant of B.
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Accounting for sampling errors?

Choosing priors for the background statistics

◮ To progress, we need to make assumptions on the background statistics p(xb,B) :
the statistics of the error statistics or hyperpriors.
A very simple choice is a weakly informative prior: the Jeffreys’ prior [Jeffreys 1961] with
an additional assumption of independence for xb and B:

p(xb,B) ≡ pJ(xb,B) = pJ(xb)pJ(B)

and
pJ(xb) = 1 , pJ(B) = |B|−M+1

2 .

◮ It has two desirable properties:

1 It is invariant by re-parametrisation of state vectors.

2 It leads to asymptotic Gaussianity: in the limit of a large ensemble, this choice
should lead to the usual Gaussian prior used in classical EnKF analysis.
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Accounting for sampling errors?

Effective priors

◮ After integration over xb and B, this leads to the Jb term

Jb(x) ≡− lnp(x|x1, · · · ,xN) =
N

2
ln

∣∣∣∣
N

N +1
(x−x)(x−x)T +(N −1)P

∣∣∣∣ .
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A new class of ensemble Kalman filters

Ensemble transform and gauge invariance

◮ Assume that the analysis is in the form x = x+∑N
k=1 wk (xk −x).

If Xk = xk −x are the anomalies, and X = (X1, . . . ,XN), then x = x+Xw. Hence

|A| ≡
∣∣∣∣

N

N +1
XwwTXT +XXT

∣∣∣∣=
∣∣∣XXT

∣∣∣
∣∣∣∣I+

N

N +1

(
XXT

)−1
XwwTXT

∣∣∣∣

∝ 1+
N

N +1
wTXT

(
XXT

)−1
Xw .

◮ Gauge-fixing term

Define the gauge-fixing term G (w) =
N

N +1
wT

(
IN −XT

(
XXT

)−1
X

)
w.

Insert it into the cost function

J̃a(w) = Jo(x+Xw)+
N

2
ln(|A|+G (w)) .

◮ Pivotal properties
The minima of J̃a(w) and Ja(x) are identical. Besides, one has G (wa) = 0.
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A new class of ensemble Kalman filters

Variational analysis and posterior ensemble

◮ Complete cost (non-convex) function:

J̃a(w) =
1

2
(y−H(x+Xw))T R−1 (y−H(x+Xw))+

N

2
ln

(
1+

1

N
+

N

∑
k=1

w2
k

)
.

Once wa is obtained, the posterior state estimator is given by xa = x+Xwa.

◮ Hessian of J̃b in ensemble space:

H̃b = ∇2
wJ̃b(w) = N

(
1+ 1

N +wTw
)
IN −2wwT

(
1+ 1

N +wTw
)2 .

Approximation: the analysis error cov. mat. is given by the inverse of the local Hessian

P̃a ≃ H̃ −1
a =

(
H̃b(wa)+H̃o(wa)

)−1
.

The posterior ensemble anomalies, in ensemble space, are given by the columns Wa
k of

Wa =
(
(N −1)P̃a

)1/2
, xa

k = xa +XWa
k .

◮ Property: the posterior ensemble is centred on xa. Important for the consistency and
the skills of the filter [Wang et al. 2004; Hunt et al. 2007; Livings et al. 2008; Sakov and Oke 2008].
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A new class of ensemble Kalman filters

Interpretation

Assume the analysis is distant from the ensemble mean:

N

∑
k=1

w2
k ≥ O(1) .

The ln function is barely constraining: priority given to observation.

On the contrary, the analysis is close to the ensemble mean

N

∑
k=1

w2
k ≪ 1 .

However, because of the 1/N offset in the ln function, the prior term cannot
vanish even when the ensemble mean is taken as the optimal state.

−→ Comes from the uncertainty of the ensemble mean at finite N. Same term
1+1/N as [Sacher and Bartello 2008].

Reminiscent of Huber norm (for the ln part).
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A new class of ensemble Kalman filters

Robust and alternate ETKF-N

◮ Assume one trusts the ensemble forecasted mean to be the ensemble mean xb = x.

◮ Alternate finite-size ensemble transform Kalman filter:

J̃ alt
b =

N

2
ln

(
1+

N

∑
k=1

w2
k

)
.

◮The only difference is in the 1/N (uncertainty of the empirical mean).
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A new class of ensemble Kalman filters

Local ETKF-N

◮ We call this new EnKF scheme, the ETKF-N.

◮ Unfortunately, localisation is still mandatory !

◮ Following [Hunt et al. 2007; Harlim and Hunt, 2007], it is easy to generalise ETKF-N to a
finite-size local ensemble transform Kalman filter, or LETKF-N (assimilation of
observation within a given range).
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Test and validation on the Lorenz 63 and 95 models

The Lorenz 63 model

◮ The toy-model:
dx

dt
= σ(y −x)

dy

dt
= ρx −y −xz

dz

dt
= xy −βz .

The parameters are set to the original values [Lorenz, 1963] (σ ,ρ,β ) = (10,28,8/3).
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Test and validation on the Lorenz 63 and 95 models

The Lorenz 95 model

◮ Same setup as before, ∆t = 0.05.
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Test and validation on the Lorenz 63 and 95 models

LETKF-N: ensemble size - inflation diagrams (∆t = 0.05)
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(b) LETKF-N
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Test and validation on the Lorenz 63 and 95 models

LETKF-N: Skills (∆t = 0.05)
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Test and validation on the Lorenz 63 and 95 models

LETKF-N: Skills (several ∆t and N = 10)
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Conclusion

Conclusions

1 A large collection of ensemble Kalman filtering algorithms (stochastic and
deterministic). Some of them are now operationally implemented and can
compete with 4D-Var (Environment Canada).

2 Even advanced EnKFs need solutions for their structural deficiencies (mostly
sampling errors).

3 ETKF-N seems to cure the need for inflation to a large extent, on
toy-models.

4 Localisation still a very difficult issue.

5 Model error treatment is especially interesting within the EnKF schemes
(inflation of external origin, calibration of the ensemble, adaptive schemes,
etc.). This was not discussed today!

6 Particle filters still in their infancy for high-dimensional geophysical systems.
But solutions are near?

Beyond Gaussian statistical modeling in geophysical data assimilation, Bocquet M., Pires C. A. and Wu L.,

Mon. Wea. Rev., 138, 2997-3023, 2010.

Ensemble Kalman Filtering without the intrinsic need for inflation. Bocquet M., Mon. Wea. Rev., in revision,

2011.
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