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◮ Examples of spatial climate data

◮ Uni-/Multivariate spatial models

◮ General approaches

◮ Markovian modeling

◮ Example: Regional temperature & precipitation change

◮ Outlook
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General circulation model data

Source: www.cisl.ucar.edu
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Regional climate model data



Spatial data
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Typical features

◮ Large datasets

◮ Complex nonstationarities

◮ Unknown dependencies

◮ Difficulty visualizing the results



Univariate modeling: setting
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Spatial, additive mixed effects model:

data = signal + noise

= fixed effects + trend + spatial term + noise
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Spatial, additive mixed effects model:

data = signal + noise

= fixed effects + trend + spatial term + noise

or

Y (s) = Xβ + α(s) + γ(s) + ε(s) s ∈ D ⊂ R
d, d ≥ 1

with

Y (s): observations

Xβ: fixed effects and trend

α(s): spline component (trend)

γ(s): zero mean spatial Gaussian process

ε(s): iid Gaussian noise, orthogonal to γ(s)
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Parameters θ =
(

βT, θα
T, λα, θγ

T, σ2
)

T:

Xβ: coefficients β

α(s): basis function coefficients θα; smoothing parameter λα

γ(s): parameters θγ decribing the covariance function

ε(s): variance σ2
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Parameters θ =
(

βT, θα
T, λα, θγ

T, σ2
)

T:

Xβ: coefficients β

α(s): basis function coefficients θα; smoothing parameter λα

γ(s): parameters θγ decribing the covariance function

ε(s): variance σ2

Statistical tasks:

◮ estimation of θ

◮ smoothing or prediction ◭

◮ uncertainty assessment

◮ model validation
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Spatial, additive mixed effects model:

Y1(s) = X1β1 + α1(s) + γ1(s) + ε1(s)
...

Yp(s) = Xpβp + αp(s) + γp(s) + εp(s) s ∈ D ⊂ R
d, d ≥ 1

with

Yi(s): observations

Xiβi: fixed effects and trends

αi(s): spline components (trends)

γi(s): zero mean spatial Gaussian processes

εi(s): iid Gaussian noises, orthogonal to γj(s)



Multivariate modeling: setting
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Modeling the spatial processes themselves:

Random field:

GRF GMRF

common process(es) ➀ ➁
Dependency:

cross-correlation model ➂ ➃



Inlet: dependency modeling

10

Common process(es):

X ∼ Nn(µX,ΣX)

Y ∼ Nn(µY,ΣY)
Z ∼ Nn(0,ΣZ)

 

(

X + Z

Y + Z

)

∼ N2n

((

µX

µY

)

,

(

ΣX + ΣZ ΣZ

ΣZ ΣY + ΣZ

))



Inlet: dependency modeling

10

Common process(es):

X ∼ Nn(µX,ΣX)

Y ∼ Nn(µY,ΣY)
Z ∼ Nn(0,ΣZ)

 

(

X + Z

Y + Z

)

∼ N2n

((

µX

µY

)

,

(

ΣX + ΣZ ΣZ

ΣZ ΣY + ΣZ

))

Cross-correlation model:

X ∼ Nn(µX,ΣX)

Y ∼ Nn(µY,ΣY)
Cov(X,Y) = ΣXY

 

(

X

Y

)

∼ N2n

((

µX

µY

)

,

(

ΣX ΣXY

ΣXY
T ΣY

))
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Spatial process (GRF):

s

s
s1 si

n

2

0.0 0.2 0.4 0.6 0.8

C
o
va
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n
c
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Distance, lag h

●

●

C(dist(s1, s2))

C(dist(s1, sn))

Covariance matrix: Σ
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Spatial process (GRF):

s

s
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●

C(dist(s1, s2))

C(dist(s1, sn))

Covariance matrix: Σ

Lattice data (GMRF):

E[yi|y−i] = β
∑

j neighbor of i

yj

Var[yi|y−i] = τ2

Gaussianity and

regularity conditions:

Σ = τ2(I−B)−1



Inlet: random field modeling
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Spatial process:

Σ

Σtapered

Lattice data:

Σ
−1

Σ



Multivariate modeling: approaches
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◮ Iterative approaches

+ Flexible, numerically feasible

– Uncertainties

◮ Maximum likelihood

+ Uncertainties, asymptotics

– Numerical issues

◮ Bayesian hierarchical models

+ Flexible, uncertainties

– MCMC
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◮ Iterative approaches

+ Flexible, numerically feasible

– Uncertainties Backfitting: ➀ ➁ ➂ ➃ ◭

◮ Maximum likelihood

+ Uncertainties, asymptotics

– Numerical issues Tapering: ➀ ➂; ➁ ➃ ◭

◮ Bayesian hierarchical models

+ Flexible, uncertainties

– MCMC Dimension-reduction: ➃ ◭
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Recall:

Y1(s) = X1β1 + α1(s) + γ1(s) + ε1(s)
...

Yp(s) = Xpβp + αp(s) + γp(s) + εp(s)



Multivariate modeling: backfitting
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Recall:

Y1(s) = X1β1 + α1(s) + γ1(s) + ε1(s)
...

Yp(s) = Xpβp + αp(s) + γp(s) + εp(s)

Extending the ‘classical’ backfitting approach to dependent data:

repeat until convergence

repeat until convergence

estimate fixed effects

for all ‘stochastic’ effects

estimate parameters

predict smooth field



Multivariate modeling: backfitting
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◮ Intuitive, stable.

◮ Computationally easy to implement, handles very large datasets.

Limitation of handling is one single αi(s) or γi(s) field.

◮ Known covariance structure:

Equivalence after convergence and convergence.

◮ Unknown covariance structure:

‘Nothing’ can be said.

◮ Uncertainties . . .

See Furrer, Sain (2009) StCo; Heersink, Furrer (subm.) LAA.
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16

Univariate case: tapering based on infill asymptotics

and equivalent Gaussian measures.
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Univariate case: tapering based on infill asymptotics

and equivalent Gaussian measures.

Idea:

choose an asymptotic framework such that original and tapered

covariance matrix are asymptotically equivalent.

Then the difference in the likelihoods tends to zero almost surely.
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Difficulty in modeling flexibly joint multivariate processes

Idea for lattice data:

For conditional autoregressive models (CARs),

consider one three-dimensional lattice instead

of several two-dimensional lattices.

See Sain, Furrer, Cressie (2011) AOAS.
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◮ Univariate CAR:

E[yi|y−i] = µi +
∑

j 6=i

βij(yj − µj) Var[yi|y−i] = τ2
i

+ regularity conditions

◮ Multivariate CAR:

E[yi|y−i] = µi +
∑

j 6=i

Bij(yj − µj) Var[yi|y−i] = Ti

+ regularity conditions

◮ Multivariate CAR, alternative formulation:

(following slide)



Multivariate modeling: dim-reduction

20

E[yij|y−{ij}] = µij +
∑

k 6=i

βijkj(ykj − µkj)

+
∑

ℓ 6=j

βijiℓ(yiℓ − µiℓ)

+
∑

k,ℓ 6=i,j

βijkℓ(ykℓ − µkℓ)

Var[yij|y−{ij}] = τ2
ij

+ regularity conditions



Multivariate modeling: dim-reduction
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Overparameterized! Simplify to:

◮ constant variance

◮ constant dependencies + symmetry
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Overparameterized! Simplify to:

◮ constant variance

◮ constant dependencies + symmetry

For example: bijiℓ = ρjℓτjτℓ bijkℓ = φjℓτjτℓ results in:

{φjj}: {ρjℓ}: {φjℓ}

plus p variance parameters: {τj}



Multivariate modeling: dim-reduction
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◮ Falls within the framework of a unidimensional lattice model

◮ Guarantees sparse precision matrices

◮ Flexibly modeling multivariate spatial dependencies

◮ MCMC is (often) required and may be difficult to tame

◮ Possibility to implement asymmetric cross-dependencies, . . .



Example: temp. & precip. change
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“Multivariate” RCM experiment:

◮ NCAR/DOE Parallel Climate Model to drive the

NCAR/Penn State Mesoscale Model (MM5)

◮ One control run from 1995–2015 and three future runs

(ensemble members) from 2040–2060

(1% annual increase in the amount of greenhouse gases)

◮ Difference between future and control twenty-year winter (DJF)

and summer (JJA) average temperature and average total

precipitation

◮ Spatial fields with 44 × 56 = 2464 grid boxes



Example: temp. & precip. change
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Differences in DJF temperature (◦K) and in total precipitation (in).



Example: temp. & precip. change
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Hierarchical model:

Data level

data var, run = fixed effects var + random effects var, run + error

Process level

fixed effects var = lat var + lon var + elevation var

random effects var, run = intercept var, run + MGMRF var, run

Prior level

conjugate or uniform over valid parameter range

 run MCMC beast



Example: temp. & precip. change
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Estimated pointwise

posterior probabilities

     winter 

precipitation

    winter

temperature



Example: temp. & precip. change
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Probability of large decrease in winter

precipitation conditional on increase

in temperature.

    winter

temperature

     winter precipitation



Example: temp. & precip. change
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Clustering based on the

posterior distribution



Example: temp. & precip. change
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Approximate 95% contours for the average change in temperature

and precipitation for five consolidated metropolitan areas.

Winter Summer



Example: temp. & precip. change
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◮ Iterative approaches

+ Flexible, numerically feasible

– Uncertainties Backfitting: ➀ ➁ ➂ ➃ ◭

◮ Maximum likelihood

+ Uncertainties, asymptotics

– Numerical issues Tapering: ➀ ➂; ➁ ➃ ◭

◮ Bayesian hierarchical models

+ Flexible, uncertainties

– MCMC Dimension-reduction: ➃ ◭
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Collaboration with:

Stephan Sain, NCAR

Noel Cressie, OSU

Reto Knutti, ETHZ

Simon Wood, Bath

. . .

URPP Systems Biology / Functional Genomics
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