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Introductive example

Problem:

A submarine cable has to be laid on the see floor between points a and b.
We want to predict its length

e—/ V14 [y (2)]2dx

starting from the sea-bed topography (y(z),a < z < b) along a trajectory
that has been sampled every 100m.

Submarine trajectory and samples



Introductive example (2)

A natural i1dea:

Predict the cable length as the length of the predicted trajectory (§(z),a <
x < b)

b
[ = / VIt @R d

Unfortunately, the predicted value / is much smaller than the actual one .

Predicted submarine trajectory and samples



Introductive example (3)

Comments:
The prediction algorithm proposed is inefficient because of
— the data: no local information available

— the predictor: not well adapted as ¢ does not depend linearly of y

Alternative approach:

The sea-bed topography (y(a:), a <x< b) is considered as a realization of
some stochastic process Y = (Y (z),a < z < b), whose statistical features
have to be chosen in full compatibility with the available data.

This makes it possible to predict ¢ by a Monte Carlo approach using
conditional simulations.



Simulation and conditional simulation

A simulation is a realization of the stochastic process.

A conditional simulation is a simulation that honors the available data.



Three examples of conditional simulations




Using conditional simulations

Suppose that a probabilistic model has been chosen. Given n conditional
simulations y1, ..., y,, we calculate

0(y;) = /ab \/1 + |yi(z)]? dx i=1,...n

from which we can
— predict the cable length (average of the £(y;)’s);
— assign a precision for the predicted length (e.g. variance of the £(y;)'s);

— give confidence limits for the predicted length (based on the histogram of
the (y;)'s);

— predict the probability that the length does not exceed a given critical
value.

The obtained results are totally tributary of the stochastic model that has been chosen.



An illustration (after Chiles, 1977)

Yeu island



Samples




Prediction by linear regression (kriging)




Conditional simulations

10



Simulated profiles
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Probability that a point belongs to the island
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Area (km?) 22.94 23.37 23.32
Volume (km?) 0.169 0.188
Height (m) 15.93 21.32 27.50
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Motivation in reservoir engineering

Case of a fluvial reservoir:
— the sandstone lenses or channels are porous and may contain oil;

— the facies acts as a barrier for the circulation of oil.

The geometry of the reservoir is required as an input of a fluid flow
simulation exercise. How to predict it starting from the available data?
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Data integration

— Diagraphic interpretation:
It provides facies information

all along each well

— Sismic interpretation:
It provides the facies proportion

within the reservoir

— Well tests:

They provide connectivity properties
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Outline

Introductive example

Gaussian random field
— definition

— conditional simulation algorithm

Excursion set of a gaussian random function
— definition

— conditional simulation algorithm

Boolean model
— definition
— Intersection property

— conditional simulation algorithm

Conclusions
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Gaussian random field
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Gaussian random field

Let Y = (Y (2),z € IR?) be a 2% order stationary random field with mean
m and covariance function C

Definition:

Y is said to be gaussian if any linear combination of its variables is gaussianly
distributed:

Zaz (x;)) ~ G mZCLZ,ZCLzag — ;)

=1 1,7=1

Fundamental property:

The spatial distribution of Y is totally characterized by its mean and its
covariance function.
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Examples (different covariance functions)

spherical exponential hyperbolic

stable gaussian cardinal sine
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Presentation of the problem

How can we produce a realisation y of a stationary gaussian random field
with mean 0, covariance function C, that satisfies

Y(To) = Yo ac A
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Principle

Write
Y(z) =Y4z) + Y(z) = Y4(x) r € IR*
where
YAz) =3 eara(@)Y (24) kriging estimator (known)
Y(z) - Y4(x) kriging residual (unknown)

Y4 and Y — Y4 are two independent gaussian random fields.

Accordingly, put
Y93 (x) =Y (x) + S(z) — S%(x) r € IR*
where S is an independent copy of Y. S—S4 is known insofar as realizations

of S can be produced (non conditional simulations).
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Conditional simulation
Algorithm and verifications

Algorithm:

(i) generate a simulation s. Put s, = s(x) for each a € A;

(ii) for each x € IR?, do

(ii.i) compute the kriging weights (Ao (), € A);

(i4.7) return y©° (x) = y2(z)+s(z) —s2(z) = s(2)+ >, Aa(®) (Yo — 50r)-

Verifications:
—if x = 2, then y°°(24) = Yo + 5(Ta) — Sa = Ya
(conditioning data are honored)
—if C(x — x4) = 0 for each o € A, then y°°(z) ~ 0 + s(z) — 0 = s(x)

(far from the data points, the conditional simulation is non conditional)
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lllustration

Model m = 0, C = sph(1, 20). Simulation field 300 x 200.
Simulation (TL), conditioning data points (TR), kriging estimate (BL) and conditionnal simulation (BR).



Four conditional simulations
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Excursion set
of a gaussian random field
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Excursion set of a gaussian random field

Basic ingredients:

— a 2™ order stationary, standardized gaussian random field Y with covari-
ance function C.

— a numerical value \.

Definition:

The excursion set of Y at level A is the set of points where Y takes values
greater or equal to A

1 ifY(x)> A
Xlz) = { 0 ifYV(z)< A
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Examples at various levels

Gaussian random field (gaussian covariance) and its excursion sets at levels
—1,-0.5,0,0.5 et 1.
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Examples for different covariance functions

Excursion sets at level 0 derived from gaussian random fields with spherical
(TL), exponential (TM), gaussian (TR), stable (BL), hyperbolic (BM) and
cardinal sine (BR) covariance functions.
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Conditional simulation
Presentation of the problem

How to produce realizations of the excursion set at level A of a standardized
gaussian random field with covariance function C, in such a way that each
facies contains a finite number of prespecified points?
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Conditional simulation algorithm

Conditioning data set (TL). Conditional simulation of Y at the data points only (Gibbs
sampler) (TR). Conditional simulation of Y (BL). Threshold at level A (BR).
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Four conditional simulations




Boolean model

33



Constructing a Boolean model
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Definition of a boolean model

Basic ingredients:
— a Poisson point process P with intensity function 6§ = (6(z),z € le);

— a family (A(x),x e ]Rd) of independent nonempty compact random
subsets (referred to as "objects”). The statistical properties of A(x) can be
specified by its distribution function

T.(K)=P{A(zx)NK # 0} K € K(R%

Definition:
A Boolean model is the union of the objects located at the Poisson points.
X = U A(x)
xEeP
X = foreground X ¢ = background
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Examples of boolean models

By

Boolean models of segments (TL), disks (TR), Poisson (BL) and Voronoi polygons (BR).
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Intersection of the model and a domain

If X is a Boolean model with parameters (6,7T') and D is a compact domain,
then X N D is also a boolean model with parameters (6(P), T(P)) given by

— Poisson intensity 0P)(z) = 0(x)T,(D) r € IR*

— distribution function T'P)(K) = (D) K € K(D)

X
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Typical objets

Assumption:
The Poisson intensity () has a finite integral ¥(D).

Consequences:
— X N D has a finite (Poisson) number of objects;
— 0(P)(.)/Y9(D) is a probability density function on IR?.

Definition:
The random compact set A(%) | A(2)ND # 0 with & ~ 0(P) /9¥(D) is called
a typical object (hitting D). Its distribution function is (for K C D)

opn [ OP@) TolK) | [pa0@) To(K) d
) = |50y 1) = Fea Dz

Property:
X N D is the union of a Poisson number (mean ¥(D)) of independent
typical objects.
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Conditional simulation
Presentation of the problem

How to produce realizations of X in the domain D subject to the conditions

that one finite set of points C)y must be contained in X and another set
Cl in X7
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Compatibility between model and data

In contrast to a gaussian random function, a boolean model may not be
compatible to a data set.

Example:

Objects are circular with fixed radius, and a foreground conditioning point
is closely surrounded by background conditioning points:

We have not succeeded in finding a "direct” algorithm for simulating a
boolean model conditionally.

In what follows, an iterative algorithm is presented.
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Initialization

|

Principle: independent typical objects are sequentially generated. Any object that covers a
conditioning point of the background is rejected. The initialisation procedure stops when
all foreground conditioning points have been covered by objects.
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One step of conditional simulation
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Example of conditional simulation

Stationary boolean model of disks (Poisson intensity 0.00766; radii are exponentially
distributed with mean 5). The simulation field is 100 x 100. Left, a non conditional
simulation and 100 conditioning data points. Middle and right, two conditional simulations.
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Display of the simulation at various steps
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Display of the conditional simulation at steps 0, 100, 200, 400, 800 and 1600.
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Conclusions

For a number of prediction problems, conditional simulations are an inter-
esting possibility in numerous fields of the earth sciences:

— They automatically provide fully compatible estimates for all features of
interest;

— They can also assign each of them a precision (variance or confidence
limits);
Numerous difficulties remain

— Model choice: The obtained results are totally dependent on the stochastic
model that has been chosen;

— Algorithm: design, rate of convergence (perfect simulations?)

— Data integration: accounting for complex data (non-linearity, different
supports...)
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