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Topics

◮ Data

◮ Goals

◮ Models & Diagnostics

◮ Computation
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Data

I prefer to think about modeling processes rather than data.

Nevertheless, the nature of the data available can have a major impact on

◮ the questions we can address

◮ the models we might use

◮ appropriate model diagnostics

◮ computational methods

Important aspects of space-time data:

◮ nature of response(s), e.g., percentage (relative humidity), vector (wind)

◮ frequency/extent in space and time

◮ regularity in space and time

◮ relation of measurements to quantity of interest
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Irish Wind Data

“Famous” (to those statisticians working on space-time data) dataset of daily
wind speeds over 18 years at 12 sites in Ireland (Haslett and Raftery, 1989).

◮ No missing values!? Very convenient.

◮ One site doesn’t seem to fit, so everyone drops it.

◮ If remove seasonal pattern, first differences (in time) of square root wind
speed seem fairly close to stationary (in space-time) Gaussian process.

72;314 = 11� 6;574 observations no longer seems large and exact likelihood
calculations should now be feasible.

Goal in Haslett and Raftery: Wind power prediction.

◮ Nonlinear (nonmonotonic!) function of wind speed. Are daily winds
adequate?
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Empirical variograms of first differences (+ = coastal, o = inland)
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ARM SGP Data

Advanced Radiation Measurement (ARM) Southern Great Plains (SGP) site

◮ Established in 1992, “The SGP site is the largest and most extensive
climate research field site in the world.”

◮ Central Facility: many in situ and remote sensors as well as balloon-borne
atmospheric profiling.

◮ Other facilities take less extensive measurements, including (as of now) 14
that measure surface meteorology every minute.

◮ Short-term field campaigns taking large amounts of specialized data (can
produce over 2 gbytes/day).
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The surface meteorological measurements are

◮ Multivariate (temperature, humidity, pressure, winds)

◮ Regular and frequent in time (very low missing fraction)

◮ Sparse and irregular in space but at (largely) fixed sites

Over 3 million observations each year, so only moderately large by present
standards.

Goal: Highly resolved multivariate space-time conditional simulations of surface
meteorology. Way too ambitious.

Easier but still challenging: five-minute averages of pressure for October, 2005
at 11 sites (predict pressure at 2 other sites).

◮ Clearly not stationary (in time) Gaussian process.

Michael Stein Statistical Modeling of Large Space-Time Datasets



−99 −98 −97 −96

3
5

.0
3

5
.5

3
6

.0
3

6
.5

3
7

.0
3

7
.5

3
8

.0

Locations and elevations (m) of monitors

Prediction sites in large font

Longitude

L
a

ti
tu

d
e

632 338

409

283664

386

360

418

309

409

300

513

318

Michael Stein Statistical Modeling of Large Space-Time Datasets



Pressure differences at 11 sites, west to east
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Level-2 TOMS

Total Ozone Mapping Spectrometer, based on a sun-synchronous polar-orbiting
satellite.

◮ Daily measurements over 15 years with nearly global coverage (works on
reflected light, so no data for polar nights).

◮ About 180,000 observations (13.825 orbits/day � 378 swaths/orbit � 35
observations/swath) each day.

◮ Near equator, little overlap between scans on successive orbits, greater
overlap away from equator.

◮ High resolution in space, but not in time.

◮ Data not on a grid in either space or time.

Consider 38�–42� N, May 1990.

Spatial variogram shows interesting feature: longitudinal asymmetry.
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Goal: Long-term trends at regional and seasonal scales.

◮ If data were complete, I would aggregate it to scales of interest before
analyzing.

◮ Fair fraction missing; possible use for sophisticated statistical models?
◮ Statistical models (or statisticians) not used to produce Level-3 TOMS.

◮ For atmospheric processes on a global scale, one often finds:
◮ Process looks quite different at different latitudes.
◮ Seasonal patterns depend on latitude.
◮ Process behaves differently over land and water.

◮ Axially symmetric (Jones, 1963; Jun and Stein, 2007) a good place to
start for global processes?
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Aerosol optical depth

Marcin Hitczenko has analyzed 2 months of Level-2 aerosol optical depth
measurements taken by MODIS (Moderate Resolution Imaging
Spectroradiometer).

◮ 10 km spatial resolution but not quite global coverage on any one day.

◮ Generally no measurements over deserts or where there are clouds.

◮ About 600,000 observations a day.

◮ Data available on 1 km resolution as well.

Goals?

◮ Fill in gaps? But missingness not at random.

◮ Testbed for models and algorithms for statistical analysis of massive
datasets.
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Climate model output

RDCEP: A Center for Robust Decision Making on Climate and Energy Policy

◮ An NSF supported center for improving models used to forecast the
impact of policies on future economic and climatic conditions.

◮ Focus on economic models, but climate affects economies.
◮ Model for world economy generates emissions scenario as function of

policies.
◮ Climate forecasts for broad range of emissions scenarios must be quickly

computable to be usable within the economic models.
◮ Cannot run any nontrivial climate model for every emissions scenario of

interest.

Need fast “emulator” of climate model output (or better yet, of actual future
climates).
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For some moderate number of scenarios of CO2 trajectories (not emissions), we
can run CCSM3.0:

◮ NCAR climate model released in 2004, so sophisticated but not quite
cutting edge.

◮ Coupled atmosphere/ice/land/ocean model.
◮ Needs initial conditions and greenhouse gas concentrations as inputs.

◮ Because of sensitivity to initial conditions, unlike many computer models,
output is effectively stochastic.

Goal: Emulate CCSM3.0 output for any plausible future CO2 trajectory.

◮ C(x ; t; CO2; IC) is the temperature and precipitation from CCSM3.0 at
(x ; t) for some CO2 scenario and initial conditions IC.

◮ Have C(x ; t; CO2; IC) for some set of (CO2; IC) scenarios.

◮ Since IC “unknown,” forecast multivariate “distribution” of
C(x ; t; CO2; IC) over IC given CO2.
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Initial plan: view the multivariate climate output as a Gaussian process
depending on the annual CO2 levels.

Using entire CO2 trajectory as input is problematic:

◮ Uses CO2 after time t to forecast climate at time t.
◮ To get prediction at time t, could restrict to using trajectories only up to

time t for both “training” and “test” runs.
◮ Requires using different set of inputs for every t.
◮ Throws away relevant information from “training” runs.
◮ Tracking time by calendar year is just wrong.
◮ Ignores likely monotonic effect of past CO2 on temperature.

Alternative: Think of input as back trajectory of CO2.
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Regression model for, say, temperature:

T (x ; t; CO2; IC) =

p
X

j=1

fj(CO2(t); : : : ; CO2(t � T ); �j(x)) + e(x ; t; CO2; IC);

for e some space-time random field that is independent for different (CO2; IC).
◮ Possible fj(CO2(t); : : : ; CO2(t � T ); �j(x)):

◮ �(x) logfCO2(t)g
◮ �1(x)

PT
s=0 e��2(x)s logfCO2(t � s)g

◮ Makes explicit use of time order.

◮ Takes account of processes on different time scales.

Time scales (e.g., �2(x)) over land v. water quite different.

Example: use runs with quickly and slowly increasing CO2 to predict for
moderately increasing scenario.
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Fitted and five realized temperature series in South Pacific
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R2 values for average of five runs by region based on low and high runs
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R2 values for moving average fit
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Models & diagnostics

Diagnostics require at least an implicit model to diagnose (e.g., stationary).

Points in a diagnostic plot should have known simple structure when proposed
model is correct; e.g., independent and identically distributed.

◮ If not identically distributed, then at least nearby points should be close to
identically distributed.

◮ If not independent, then at least not too dependent.

The empirical variogram is a valuable diagnostic for spatial and
spatial-temporal data, but

◮ values at similar lags can be highly correlated

◮ space-time setting opens new issues beyond purely spatial setting

For Irish wind data, data structure suggests use of spectral methods.
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Diagnostics in space-time domain

Let

◮ Zt = n-vector of observations at time t

◮ b = n-vector of coefficients

For k = 1; 2; : : : define

Z̄j;k =
1

k

j+k�1
X

`=j

Z`

and

Dk(b) =
1

T � 2k + 1

T�2k+1
X

j=1

n

b
0(Z̄j;k � Z̄j+k;k)

o2

for b = 11�1=2
1 (spatial average) and

b = contrast eliminating linear polynomials for 4 nearby sites

= 0:40 BIR + 0:15 DUB � 0:85 MUL + 0:40 CLO
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Spatial average

1 2 5 10 20 50 100

10
20

30
40

k

D
k(

b)

Gray = Empirical

Solid = ML/Gn

Dot−Dash = ML/Ma

Short Dash = WLS/Gn

Long Dash = WLS/Ma

2Dash−2Dot = NP

Michael Stein Statistical Modeling of Large Space-Time Datasets



Contrast eliminating linear polynomials
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Diagnostics for TOMS data

TOMS data close to axially symmetric: spatial variation nearly invariant to
rotations about Earth’s axis.

Consequence: For H a rotation matrix,

var
 n

X

j=1

�jZ(Hxj)

ff

depends on H, but not so much if H is a rotation about Earth’s axis.

Example: For each of 82 orbits in March 1–6, 1990, consider the first swath
with first observation above latitude 40�N.
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Yields 82 sets of 35 observations whose locations from one orbit to the next are
nearly rotations about Earth’s axis of each other.
If x1; : : : ; x35 are locations of swath in first orbit, have 82 not quite identically
distributed and (not too?) dependent estimates of

var
 35

X

j=1

�jZ(xj)

ff

:

Choosing �j ’s: Orthogonal polynomials of degrees 1–34 (treat observations as
if evenly spaced on a line).

◮ Like spectral analysis.

◮ If truth is white noise, variances of all 34 contrasts the same.

Observed versus fitted (mle) values for these 34 variances.

◮ Red model uses nugget + reduced rank covariance function.

◮ Green model adds a compactly supported component.
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Spectral in time modeling approach

Parametric v. nonparametric approaches to modeling.

◮ Want greater flexibility for those aspects of model about which have most
information.

◮ For Irish wind and ARM data, have lots of replication in time.

Example (Stein, 2005):

K(x; t) =

Z �

��
S(!)C

`jxj=�(!)
´

e
i�(!)u0

x+it!
d!

is positive definite and real on R
d � Z if

◮ S is even and integrable

◮ � is even and � is odd

◮ C is a valid isotropic spatial correlation function
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Interpretation of
Z �

��
S(!)C

`jxj=�(!)
´

e
i�(!)u0

x+it!
d!:

◮ S is spectral density in time at any site

◮ � controls coherence

◮ � controls phase

Irish wind data:
◮ “NP” model in diagnostic plots.

◮ Fit by approximate likelihood in spectral domain.

◮ Other models are elaborate parametric models.
◮ Fits via (approximate) mle or wls fits to various empirical variograms.
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Computation

Exact computations (kriging, Gaussian likelihoods) for large, irregularly sited
datasets generally requires O(n3) computation and O(n2) memory.

Options for large n:

◮ Use model that reduces computation and/or storage.

◮ Use approximate methods.

◮ Both.

Now working on project with “petascale” (n � 1015) in title.

◮ Even for terascale (n � 1012) data, probably need single-pass methods if
want to fit global model.
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Models that reduce computation

Compactly supported covariance functions

◮ Spherical, models in Gaspari and Cohn (1999).
◮ Produces sparse matrices, which reduces storage and computations.

◮ Sparseness easily exploitable for solving linear systems.
◮ Not so easy to exploit for log determinants (location of zeroes matters).

◮ Can cause problems:
◮ Lack of screening effect.
◮ Lack of differentiability of likelihood with respect to range.

◮ Despite their benefits, I don’t think they are the best approach.
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Reduced rank covariance functions (Cressie and collaborators):

covfZ(x); Z(y)g = nugget +

m
X

j=1

ajbj(x)bj(y)

for aj ’s nonnegative.
If m is much smaller than sample size, great (and easy) reduction in storage
and computation (including log determinant).

◮ Problems modeling local behavior, especially when nugget is modest
compared to variation between neighboring observations (TOMS,
MODIS).

◮ Likelihood estimates may give terrible match for empirical variogram.

Stein (2007) added a covariance function with quite narrow support to address
this problem for TOMS data (+’s).

◮ Helped quite a bit, but still some clear misfit.

Markov models (MRFs, Kalman filter for space-time setting).
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Approximate computation

For massive, irregularly sited datasets, approximate computation is unavoidable
(although see Katzfuss and Cressie, 2011).

◮ Just fit models locally.
◮ Spectral methods (Whittle likelihood).

◮ Best for gridded data from stationary processes.

◮ Various forms of composite likelihood:
◮ Write joint density as product using successive conditioning; condition on

only part of “past” (Vecchia 1988; Stein, Chi and Welty 2004).
◮ Combine local and sparse subsets of data (Carragea and Smith).

◮ Covariance tapering (Furrer, Genton and Nychka, 2006; Kaufman,
Schervish and Nychka, 2008; Loh and Wang, 2009).
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Covariance tapering straddles change the model/change the computation
divide:

◮ Multiply (elementwise) covariance matrix of interest by sparse covariance
matrix.

◮ If matrices K ; T � 0 then K � T = (kij tij) � 0.
◮ For a dense matrix K , try to find sparse T so that K � T gives similar

inferences as K .
◮ Example: K and T have spectral densities f and � with �=f sufficiently

small at high frequencies.

◮ Either act as if K � T is truth (change the model) or use estimating
equations approach (change the computation).

Interesting application of theory (equivalence of Gaussian measures) to
computational problem.
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For massive datasets with strong correlations, need something more?

Covariance tapering can be applied to any positive definite matrix.
◮ So first filter the data to reduce the correlations and then taper?

◮ Not so clear how to do this with irregularly sited observations.

Convergence of iterative methods for solving linear equations related to
condition number �(K) of covariance matrix K .

Result from Stein, Chen and Anitescu (unpublished):
Z on real line with spectral density f satisfying

f (!)!4 bounded away from 0 and 1 as ! !1:

Let L be filter matrix for normalized second differences.

There exists Cf <1 such that, for any set of observations of Z in [0; 1],

�(LKL
T ) � Cf :
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Maximum likelihood estimates

Optimization methods such as conjugate gradient require derivatives.

◮ If having numerical problems, compute first derivatives analytically.

Hessian useful to scale components of parameter vector.

◮ In high dimensions, this scaling sometimes essential.

◮ Even crude approximations to Hessian may be adequate.

Hitczenko developed methods to do this with processed MODIS data to fit
axially symmetric models with many parameters.

◮ Even so, required parallel computation to be feasible.

◮ Despite huge effort, still had poor fit to local variation.
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Maybe we don’t need to compute likelihoods to find mle?

◮ Solve score equations instead?

For covariance matrix K(�), requires

◮ Quadratic forms (relatively easy)

◮ For each component of �,

tr



K(�)�1 @
@�i

K(�)
ff

� 1

N

N
X

j=1

u
T
j K(�)�1 @

@�i

K(�)uj ;

where uj ’s have components �1, each with probability 1
2
.

◮ If pick uj ’s well, can get away with N quite small (at least much smaller
than sample size)?

Uniqueness of solution?
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One-pass methods

Look at data block by block and summarize the information about K(�) from
that block so that don’t have to go back to again.

Simple example:

◮ Divide data into B blocks.
◮ Within each block, find mle of � and observed information matrix.

◮ Gives a quadratic approximation to loglikelihood within each block.

◮ Also save “corner” observations from each block.

◮ Add within block approximate loglikelihoods to loglikelihood of all corner
observations.

When might this procedure do asymptotically as well as full likelihood?
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Other critical topics

◮ Nonstationary models. Axially symmetric model an example?

◮ Models for measurement processes (remote sensing).

◮ Space is three-dimenional, not two. Atmospheric processes change
character with altitude.

◮ Simultaneous modeling of physically linked quantities like wind and
pressure or temperature and relative humidity.

◮ Getting more (but not too much?) science into statistical models (Cressie
and Wikle, 2011).
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Some observations:

◮ We live in a world indexed by space and time.

◮ The biggest scientific and policy questions increasingly involve issues of
difficult to characterize uncertainty and variability.

◮ Statistical methods for space-time data are in their infancy.

Conclusion: We have a lot of work to do!
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