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Introduction

= Want to create chains of 0’s and 1’s that cluster or stick together

= Pyt structure into a Bernoulli distribution to make a correlated
Bernoulli process

= We do this using de Bruijn graphs
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= Need to include correlation between
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= Look for a clean boundary with no drop-
outs -




De Bruijn Graphs

= Directed graphs where nodes consist of all possible length m sequences (words)
given a set of symbols

= m is the word length which controls how spread the correlation is (how many
points the current point is dependent on)

= A probability is associated with each arc of the graph — gives the probability of
transitioning from word to word

PJ — probability of transitioning from word i to word j

= Use symbols 0 and 1 to correspond to regions
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Markov Properties

= Can write the transition probabilities
in matrix form

= Then can use this to generate chains of / 1 —pdd poy 0 0 \
Os and 1s - 0 0 1-—pil pil

= Can create stickiness in the chains by | 1—9% p% 0 0
choosing specific transition 0 0 11— pll 11 /
probabilities P11 P11

= Marginal probabilities stay the same
over time but Os and 1s are grouped
together
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Run Length Distribution

Word Length
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Run Length Distribution
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Transition Likelihood

p] — transition probability for the word ij nJ — number of words, ij, in the sequence
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Inference for word length m

The posterior is now a product of beta densities. With the conjugate relationship,
we can state the following:
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For m>3, this becomes:
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Bayes factors are calculated for each model with word lengths m=1,...,10, so that
the word length that best represents the given sequence is chosen



2d De Bruijn Graph

= Similar to the 1d version, but with a different
word structure

= Words are formed by including all points that
are a certain number of points away moving
only upwards and to the right

= Can find the 1d equivalence for each 2d
word so that we can apply the same theory

= Should be extendable to n dimensions







Non-directional de Bruijn process

= Direction does not make logical sense in a spatial grid
= Attempt to remove the direction, but keep the de Bruijn structure
= Change the form of the word, but inference remains the same
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Conclusion

" Create chains of 0’s and 1’s with correlation using de Bruijn graphs
= Developed a run length distribution and inference
= Working on the 2d version — with hope to eventually take out the directionality

= Apply the method to applications with classification problems



