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Introduction Sample mean and variance.

Sample mean and variance.

Let (Xn,X ) be a sequence of square integrable independent and

identically distributed random variables with E[X ] = m, Var(X ) = σ2.

The sample mean and the sample variance are defined by

X n =
1

n

nÿ

k=1

Xk ,

and
S2

n =
1

n

nÿ

k=1

(Xk − X n)
2.

Goal

−→ Recursively estime the unknown mean and variance

θ =

(

m

σ2

)

.
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Introduction Recursive estimation of mean and variance.

Two recursive equations.

We have

(n + 1)X n+1 =
nÿ

k=1

Xk + Xn+1.

Consequently,

(n + 1)X n+1 = nX n + Xn+1 = (n + 1)X n + Xn+1 − X n,

which implies that

X n+1 = X n +
1

n + 1

(

Xn+1 − X n

)

.
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Introduction Recursive estimation of mean and variance.

We also have

S2
n =

1

n

nÿ

k=1

X 2
k − X

2
n.

Consequently,

(n + 1)S2
n+1 =

n+1ÿ

k=1

X 2
k − (n + 1)X

2
n+1,

=
n+1ÿ

k=1

X 2
k − (n + 1)

(

X n +
1

n + 1

(

Xn+1 − X n

))2
,

=
n+1ÿ

k=1

X 2
k − (n + 1)X

2
n − 2X n

(

Xn+1 − X n

)

− ξn+1

where

ξn+1 =
1

n + 1

(

Xn+1 − X n

)2
.
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Introduction Recursive estimation of mean and variance.

Two recursive equations.

Therefore,

(n + 1)S2
n+1 =

nÿ

k=1

X 2
k − nX

2
n + X 2

n+1 − 2X nXn+1 + X
2
n − ξn+1,

= nS2
n +

(

Xn+1 − X n

)2
− ξn+1.

Hence

(n + 1)S2
n+1 = (n + 1)S2

n +
(

Xn+1 − X n

)2
− S2

n − ξn+1,

leading to

S2
n+1 = S2

n +
1

n + 1

((

Xn+1 − X n

)2
−S2

n

)

−
1

(n + 1)2

(

Xn+1 − X n

)2
.
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Introduction Recursive estimation of mean and variance.

A recursive matrix equation.

Denote

pθn =

(

X n

S2
n

)

.

It follows from the previous calculation that

pθn+1 = pθn +
1

n + 1
F
(pθn,Xn+1

)

+
1

(n + 1)
rn+1

where

F
(pθn,Xn+1

)

=

(

Xn+1 − X n

(

Xn+1 − X n

)2
− S2

n

)

and

rn+1 =





0

−
1

(n + 1)

(

Xn+1 − X n

)2



 .
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Introduction Recursive estimation of mean and variance.

A recursive matrix equation.

However,

E
[

F
(pθn,Xn+1

)

|Fn

]

= f
(pθn

)

+ sn

where f
(pθn

)

= θ − pθn and

sn =

(

0
(

m − X n

)2

)

.

Consequently, we obtain the martingale decomposition

pθn+1 = pθn +
1

n + 1

(

f
(pθn

)

+ εn+1 + Rn+1

)

where (εn) is a martingale difference sequence, E[εn+1|Fn]=0 and

the remainder Rn+1 = rn+1 + sn is negligeable.
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Introduction Recursive estimation of mean and variance.

A first warm-up result.

Theorem

Assume that (Xn,X ) is a sequence of iid random variables such that

E[X 4] is finite. Denote E[(X − m)3] = µ3 and E[(X − m)4] = τ4. Then,

we have the almost sure convergence

lim
n→∞

pθn = θ a.s.

In addition, we also have the asymptotic normality

‘
n
(

pθn − θ
) L
−→ N (0, Γ)

where

Γ =

(

σ2 µ3

µ3 τ4 − σ4

)

.
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Introduction Quantile of a continuous distribution.

Quantile of a continuous distribution.

Let X be a continuous random variable with unknown distribution

function F . Assume that F is continuous and strictly increasing.

Definition

For any α in ]0, 1[, the quantile of order α of X is the unique solution θα
of the equation F (x) = α,

F (θα) = α.

For the Exponential E(λ) distribution with λ > 0,

θα = −
1

λ
log(1 − α).

Goal

−→ Recursively estime the unknown quantile θα.
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Introduction Recursive estimation of quantile.

Let (Xn) be a sequence of iid random variables sharing the same

distribution as X . We estimate θα by the recursive estimator

pθn+1 = pθn −
1

n + 1

(

Yn+1 − α
)

where

Yn+1 = F
(pθn,Xn+1

)

= I{Xn+16
pθn}

.

We clearly have E
[

Yn+1|Fn

]

= F
(pθn

)

leading to the martingale

decomposition

pθn+1 = pθn −
1

n + 1

(

F
(pθn

)

+ εn+1 − α
)

where (εn) is a martingale difference sequence, E[εn+1|Fn]=0.
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Introduction Recursive estimation of quantile.

A second warm-up result.

Denote by f the probability density function of X .

Theorem

We have the almost sure convergence

lim
n→∞

pθn = θα a.s.

Moreover, as soon as f (θα) > 1/2, we have the asymptotic normality

‘
n
(

pθn − θα

) L
−→ N

(

0,
α(1 − α)

2f (θα) − 1

)

.
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Introduction Recursive estimation of quantile.

A second warm-up result.

Consider the slow down Robbins-Monro algorithm given by

pθn+1 = pθn − γn

(

Yn+1 − α
)

where

γn =
1

nc
with

1

2
< c < 1.

At time n > 1, compute de Cesaro mean

θn =
1

n

nÿ

k=1

pθk .
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Introduction Recursive estimation of quantile.

A second warm-up result.

We already saw that

θn+1 = θn +
1

n + 1

(

pθn+1 − θn

)

.

Theorem

We have the almost sure convergence

lim
n→∞

θn = θα a.s.

Moreover, we also have the asymptotic normality

‘
n
(

θn − θα

) L
−→ N

(

0,
α(1 − α)

f 2(θα)

)

.
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Convergence of martingales Definition and Examples.
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Convergence of martingales Definition and Examples.

Let (Ω,A,P) be a probability space with a filtration F = (Fn) where Fn

is the σ-algebra of events occurring up to time n.

Definition

Let (Mn) be a sequence of integrable random variables defined on

(Ω,A,P) such that, for all n > 0, Mn is Fn-measurable.

1 (Mn) is a martingale MG if for all n > 0,

E[Mn+1 | Fn] = Mn a.s.

2 (Mn) is a submartingale sMG if for all n > 0,

E[Mn+1 | Fn] > Mn a.s.

3 (Mn) is a supermartingale SMG if for all n > 0,

E[Mn+1 | Fn] 6 Mn a.s.
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Convergence of martingales Definition and Examples.

Martingales with sums.

Example (Sums)

Let (Xn) be a sequence of integrable and independent random

variables such that, for all n > 1, E[Xn] = m. Denote

Sn =
nÿ

k=1

Xk .

We clearly have

Sn+1 = Sn + Xn+1.

Consequently, (Sn) is a sequence of integrable random variables with

E[Sn+1 | Fn] = Sn + E[Xn+1 | Fn],

= Sn + E[Xn+1],

= Sn + mBernard Bercu Stochastic algorithms with statistical applications 21 / 47



Convergence of martingales Definition and Examples.

Martingales with sums.

Example (Sums)

E[Sn+1 | Fn] = Sn + m.

(Sn) is a martingale if m = 0,

(Sn) is a submartingale if m > 0,

(Sn) is a supermartingale if m 6 0.

−→ It holds for Rademacher R(p) distribution with 0 < p < 1 where

m = 2p − 1.
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Convergence of martingales Definition and Examples.

Martingales with Rademacher sums.
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Martingale
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Convergence of martingales Definition and Examples.

Martingales with products.

Example (Products)

Let (Xn) be a sequence of positive, integrable and independent

random variables such that, for all n > 1, E[Xn] = m. Denote

Pn =
nź

k=1

Xk .

We clearly have

Pn+1 = PnXn+1.

Consequently, (Pn) is a sequence of integrable random variables with

E[Pn+1 | Fn] = PnE[Xn+1 | Fn],

= PnE[Xn+1],

= mPnBernard Bercu Stochastic algorithms with statistical applications 24 / 47



Convergence of martingales Definition and Examples.

Martingales with products.

Example (Products)

E[Pn+1 | Fn] = mPn.

(Pn) is a martingale if m = 1,

(Pn) is a submartingale if m > 1,

(Pn) is a supermartingale if m 6 1.

−→ It holds for Exponential E(λ) distribution with λ > 0 where

m =
1

λ
.
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Convergence of martingales On Doob’s convergence theorem.

Doob’s convergence theorem.

Theorem (Doob)

Let (Mn) be a MG, sMG, or SMG bounded in L
1 which means

sup
n>0

E[|Mn|] < +∞.

Then, we have the almost sure convergence

lim
n→∞

Mn = M∞ a.s.

where M∞ is an integrable random variable.
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Convergence of martingales On Doob’s convergence theorem.

Joseph Leo Doob
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Convergence of martingales On Doob’s convergence theorem.

Jacques Neveu
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Convergence of martingales On Doob’s convergence theorem.

Convergence of martingales.

Theorem

Let (Mn) be a MG bounded in L
p with p > 1, which means that

sup
n>0

E[|Mn|
p] < +∞.

1 If p > 1, (Mn) converges almost surely to an integrable random

variable M∞. The convergence is also true in L
p.

2 If p = 1, (Mn) converges almost surely to an integrable random

variable M∞. The convergence holds in L
1 as soon as (Mn) is

uniformly integrable that is

lim
a→∞

sup
n>0

E
[

|Mn|I{|Mn|>a}

]

= 0.

Bernard Bercu Stochastic algorithms with statistical applications 30 / 47



Convergence of martingales On Doob’s convergence theorem.

Chow’s Theorem.

Theorem (Chow)

Let (Mn) be a MG such that for 1 6 a 6 2 and for all n > 1,

E[|Mn|
a] < ∞.

Denote, for all n > 1, ∆Mn = Mn − Mn−1 and assume that

∞ÿ

n=1

E[|∆Mn|
a|Fn−1] < ∞ a.s.

Then, we have the almost sure convergence

lim
n→∞

Mn = M∞ a.s.

where M∞ is an integrable random variable.
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Convergence of martingales On Doob’s convergence theorem.

Exponential Martingale.

Example (Exponential Martingale)

Let (Xn) be a sequence of independent random variable sharing the

same N (0, 1) distribution. For all t ∈ R
∗, let Sn = X1 + · · ·+ Xn and

denote

Mn(t) = exp
(

tSn −
nt2

2

)

.

It is clear that (Mn(t)) is a MG which converges a.s. to zero. However,

E[Mn(t)]=E[M1(t)]=1. It means that (Mn(t)) does not converge in L
1.
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Convergence of martingales On Doob’s convergence theorem.

Autoregressive Martingale.

Example (Autoregressive Martingale)

Let (Xn) be the autoregressive process given for all n > 0 by

Xn+1 = θXn + (1 − θ)εn+1

where the initial state X0 = p, 0 < p < 1 and the parameter 0 < θ < 1.

Assume that L(εn+1|Fn) is the Bernoulli B(Xn) distribution. We can

show that 0 < Xn < 1 and that (Xn) is a MG satisfying

lim
n→∞

Xn = X∞ a.s.

The convergence also holds in L
r for all r > 1. Finally, we can prove

that X∞ has the Bernoulli B(p) distribution.
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Convergence of martingales Square integrable martingales.
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Convergence of martingales Square integrable martingales.

Increasing process.

Definition

Let (Mn) be a square integrable MG that is for all n > 1,

E[M2
n ] < ∞.

The increasing process associated with (Mn) is given by <M>0= 0

and, for all n > 1,

<M >n=
nÿ

k=1

E[∆M2
k |Fk−1]

where ∆Mk = Mk − Mk−1.
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Convergence of martingales Square integrable martingales.

Example (Increasing Process)

Let (Xn) be a sequence of square integrable and independent random

variables such that, for all n > 1, E[Xn] = m and Var(Xn) = σ2 > 0.

Denote

Mn =
nÿ

k=1

(Xk − m).

Then, (Mn) is a martingale and its increasing process reduces to

<M >n= σ2n.
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Convergence of martingales Robbins-Siegmund theorem.
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Convergence of martingales Robbins-Siegmund theorem.

Theorem (Robbins-Siegmund)

Let (Vn), (An) and (Bn) be three positive sequences adapted to

F = (Fn). Assume that V0 is integrable and, for all n > 0,

E[Vn+1|Fn] 6 Vn + An − Bn a.s.

Assume also that
∞ÿ

n=0

An < +∞ a.s.

1 The sequence (Vn) converges a.s. to a random variable V∞.

2 We also have

∞ÿ

n=0

Bn < +∞ a.s.
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Convergence of martingales Robbins-Siegmund theorem.

Corollary

Let (Vn), (An), (Bn) and (an) be four positive sequences adapted to

F = (Fn). Assume that V0 is integrable and, for all n > 0,

E[Vn+1|Fn] 6 Vn(1 + an) + An − Bn a.s.

Assume also that

∞ÿ

n=0

an < +∞,

∞ÿ

n=0

An < +∞ a.s.

1 The sequence (Vn) converges a.s. to a random variable V∞.

2 We also have

nÿ

k=0

Bk < +∞ a.s.
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Convergence of martingales Strong law of large numbers for martingales.
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Convergence of martingales Strong law of large numbers for martingales.

Strong law of large numbers for martingales.

Theorem (Strong Law of large numbers)

Let (Mn) be a square integrable MG and denote

<M>∞= lim
n→∞

<M>n .

1 Assume that <M>∞< ∞ a.s. Then, we have

lim
n→∞

Mn = M∞ a.s.

2 Assume that <M>∞= ∞ a.s. Then, we have

lim
n→∞

Mn

<M >n

= 0 a.s.

−→ If it exists a positive sequence (an) increasing to infinity such that

<M>n= 0(an) a.s., then we have Mn = o(an) a.s.

Bernard Bercu Stochastic algorithms with statistical applications 41 / 47



Convergence of martingales Strong law of large numbers for martingales.

Strong law of large numbers for martingales, continued

Theorem (Strong Law of large numbers)

Let (Mn) be a square integrable MG such that

lim
n→∞

<M>n= ∞ a.s.

1 For any positive γ, we have

M2
n

<M >n

= o
((

log <M >n

)1+γ)

a.s.

2 If the increments of (Mn) have conditional moments of order > 2,

M2
n

<M >n

= O
(

log <M >n

)

a.s.
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Convergence of martingales Strong law of large numbers for martingales.

Example on sums.

Let (Xn) be a sequence of square integrable and independent random

variables such that, for all n > 1, E[Xn] = m and Var(Xn) = σ2 > 0. We

already saw that

Mn =
nÿ

k=1

(Xk − m)

is square integrable MG with <M>n= σ2n. It follows from the SLLN

for martingales that Mn = o(n) a.s. which means that

lim
n→∞

1

n

nÿ

k=1

Xk = m a.s.

More precisely, for any positive γ,
(Mn

n

)2
=
(1

n

nÿ

k=1

Xk − m
)2

= o
((log n)1+γ

n

)

a.s.
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Convergence of martingales Central limit theorem for martingales.

Outline
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Sample mean and variance.
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Convergence of martingales Central limit theorem for martingales.

Central limit theorem for martingales.

Theorem (Central Limit Theorem)

Let (Mn) be a square integrable MG and let (an) be a sequence of

positive real numbers increasing to infinity. Assume that

1 It exists a deterministic limit L > 0 such that

<M>n

an

P
−→ L.

2 Lindeberg’s condition. For all positive ε,

1

an

nÿ

k=1

E[|∆Mk |
2
I{|∆Mk |>ε

‘
an}|Fk−1]

P
−→ 0

where ∆Mk = Mk − Mk−1.
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Convergence of martingales Central limit theorem for martingales.

Central limit theorem fro martingales, continued.

Theorem (Central Limit Theorem)

Then, we have the asymptotic normality

1
‘

an

Mn
L

−→ N (0, L).

Moreover, if L > 0, we also have

‘
an

( Mn

<M >n

) L
−→ N (0, L−1).

−→ Lyapunov’s condition implies Lindeberg’s condition : For b>2,

nÿ

k=1

E[|∆Mk |
b|Fk−1] = O(an) a.s.
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