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Introduction Sample mean and variance.

Sample mean and variance.

Let (Xn, X) be a sequence of square integrable independent and
identically distributed random variables with E[X] = m, Var(X) = ¢2.
The sample mean and the sample variance are defined by

— 12
Xn=— > X
nk=1

and 12 —
S2 = — Z (Xk — Xn)2.
n k=1

— Recursively estime the unknown mean and variance

o= ().
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Introduction Recursive estimation of mean and variance.
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Introduction Recursive estimation of mean and variance.

Two recursive equations.

We have

(n+1) n+1 = ZXk‘i‘Xn-H
k=1

Consequently,
(n+ D) Xpiq = nXn+ Xop1 = (0 + 1) X0 + X1 — Xn,

which implies that

7n+1 = Yn + n_1|_1 (Xn+1 - 7n) .
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Introduction Recursive estimation of mean and variance.

We also have
P B
Sn=- > XE - X,
k=1
Consequently,
n+1 —
(n‘|' 1)Sr27+1 = Z Xl? - (n+ 1)Xn+1a
k=1
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Introduction Recursive estimation of mean and variance.
We also have

1 & o2
sﬁzn;%x,,.

Consequently,
n+1 —
(n‘|' 1)Sr27+1 = Z Xl? - (n+ 1)Xn+1a
k=1
n+1

= N e 0 (Kot g (%))
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Introduction Recursive estimation of mean and variance.

We also have

1& o o2
=-— > XF-X,
N =
Consequently,

n+1

(n+1)S3,y = > Xi— ”+1)Xn+1,
k=1
n+1

= ZXk (Xn+ _1‘_1(Xn+1—Xn)>27

= Z Xk (n+ 1)X - ZYn(XnH _Yn> — &ntt

where
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Introduction Recursive estimation of mean and variance.

Two recursive equations.

Therefore,

n
-2 Ve 2
(n+ 1)S%+1 = Z Xl? - an + Xr%+1 - 2Xan—H + Xn —&nt1,
k=1
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Introduction Recursive estimation of mean and variance.

Two recursive equations.

Therefore,

n
-2 Ve 2
(n+ 1)S%+1 = Z Xl? - an + Xr%+1 - 2Xan—H + Xn —&nt1,
k=1

= nSi+ <Xn+1 - Yn>2 —&n-

Hence

—\2
(n+1)S3,1 = (n+ 1)S3 + (X1 = Xn) " = S5 = i,

leading to
$t1 = 8t o (Kowr = Xn)" = 82) = s (Ko = Xa)
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Introduction Recursive estimation of mean and variance.

A recursive matrix equation.

Denote

It follows from the previous calculation that

~ ~ 1 ~ 1
9n+1 =60h+ mF(Gn,Xn+1) + (n+ 1)rn+1
where
~ Xn+1 _Yn
F(enaxn—H) = < — )
(Xnp1 — Xn)® — S2
and

0
Int1 = ((nl 1)(Xn+1 Xn)z) .
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Introduction Recursive estimation of mean and variance.

A recursive matrix equation.

However, R R
E[F(an, Xn+1)|.7:-n] = f(en) + Sn

where f(é,,) =60 — 0, and

Sn= <(m —OX,,)2> :

Consequently, we obtain the martingale decomposition

~ ~ 1 ~
Ont1 = 6On + m (f(en) + eny1 + Rn+1>

where (ep) is a martingale difference sequence, E[z,, 1|F5]=0 and
the remainder R, 1 = r,1 + Sp is negligeable.
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Introduction Recursive estimation of mean and variance.

A first warm-up result.

Theorem

Assume that (X, X) is a sequence of iid random variables such that
E[X*] is finite. Denote E[(X — m)3] = u® and E[(X — m)*] = 7*. Then,
we have the almost sure convergence

lim 0, =0 a.s.
n—oo

In addition, we also have the asymptotic normality

ﬁ(é,, _ 9) £, no,T)

where
. o2 13
B oot
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Introduction Quantile of a continuous distribution.
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Introduction Quantile of a continuous distribution.

Quantile of a continuous distribution.

Let X be a continuous random variable with unknown distribution
function F. Assume that F is continuous and strictly increasing.

For any « in |0, 1], the quantile of order « of X is the unique solution 6,
of the equation F(x) = «,

F(6,) = a.

For the Exponential £(\) distribution with A > 0,

1
0o = 3 log(1 — ).

— Recursively estime the unknown quantile 6,,.
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Introduction Recursive estimation of quantile.
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Introduction Recursive estimation of quantile.

Let (X,) be a sequence of iid random variables sharing the same
distribution as X. We estimate 6,, by the recursive estimator

é\n+1 = én_ nl1 (Yn+1 - a)

where

Yn+1 = F(On, Xn+1) {X,,+1 éen}

We clearly have E[Y,,1|Fn] = F(65) leading to the martingale
decomposition
1

9n+1 = 9n - ?(F(é\n) + eny1 — a)

where (gp) is a martingale difference sequence, E[e1|F5]=0
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Introduction Recursive estimation of quantile.

A second warm-up result.

Denote by f the probability density function of X.

We have the almost sure convergence

lim 6, = 0, a.s.
n—-oo

Moreover, as soon as f(6,,) > 1/2, we have the asymptotic normality

~ a(l —a
V(B — 00) L A0, 37000,
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Introduction Recursive estimation of quantile.

A second warm-up result.

Consider the slow down Robbins-Monro algorithm given by
§n+1 = é\n - '7n(Yn+1 - Oé>
where

1 , 1
’ynzﬁ with §<C<1

At time n > 1, compute de Cesaro mean

3 \
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Introduction Recursive estimation of quantile.

A second warm-up result.

We already saw that

6n+1 = an + n-1|-1 (§n+1 - En) .

We have the almost sure convergence

lim 6, = 6, a.s.
n—-oo

Moreover, we also have the asymptotic normality

Vin(8n - 8) > (0, %52 ).
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Convergence of martingales Definition and Examples.

Outline

Q Convergence of martingales
@ Definition and Examples.

Bernard Bercu Stochastic algorithms with statistical applications



Convergence of martingales Definition and Examples.

Let (2, A, P) be a probability space with a filtration F = (F,) where F,
is the o-algebra of events occurring up to time n.

Definition

Let (M,) be a sequence of integrable random variables defined on
(2, A,P) such that, for all n > 0, M, is F,-measurable.

Q@ (M,) is a martingale MG if for all n > 0,
E[Mn+1 ‘fn] = Mn a.s.
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Convergence of martingales Definition and Examples.

Let (2, A, P) be a probability space with a filtration F = (F,) where F,
is the o-algebra of events occurring up to time n.

Definition
Let (M,) be a sequence of integrable random variables defined on
(2, A,P) such that, for all n > 0, M, is F,-measurable.
Q@ (M) is a martingale MG if for all n > 0,
E[Mn+1 ‘Fn] = Mn a.s.

© (M,) is a submartingale sMG if for all n > 0,
E[M,H_‘] ‘fn] 2 Mn CISE
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Convergence of martingales Definition and Examples.

Let (2, A, P) be a probability space with a filtration F = (F,) where F,
is the o-algebra of events occurring up to time n.

Definition
Let (M,) be a sequence of integrable random variables defined on
(2, A,P) such that, for all n > 0, M, is F,-measurable.
Q@ (M) is a martingale MG if for all n > 0,
E[Mn+1 ‘Fn] = Mn a.s.

Q (M,) is a submartingale sMG if for all n > 0,
]E[Mn+1 ‘fn] 2 Mn a.s.

© (M,) is a supermartingale SMG if for all n > 0,
E[Mn+1 ‘fn] g Mn CISE
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Convergence of martingales Definition and Examples.

Martingales with sums.

Example (Sums)

Let (X») be a sequence of integrable and independent random
variables such that, for all n > 1, E[X,] = m. Denote

n
Sn= ) Xk
k=1

We clearly have

Sn+1 =S5+ Xn+1-

Consequently, (Sy) is a sequence of integrable random variables with

E[Sn+1 |-'Fn] = Sn + IE[Xn+1 |:Fn]a
Sn + IE[/Yn+1]v
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Convergence of martingales Definition and Examples.

Martingales with sums.

Example (Sums)

]E[Sn+1 |fn] == Sn + m.

@ (Sp) is a martingale if m =0,
@ (S)) is a submartingale if m > 0,
@ (S)) is a supermartingale if m < 0.

— It holds for Rademacher R(p) distribution with 0 < p < 1 where

m=2p—1.
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Convergence of martingales Definition and Examples.

Martingales with Rademacher sums.

Bernard Bercu

Martingales with Rademacher sums
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Convergence of martingales Definition and Examples.

Martingales with products.

Example (Products)

Let (X») be a sequence of positive, integrable and independent
random variables such that, for all n > 1, E[X,;)] = m. Denote

n
P, = H X
k=1

We clearly have

Pn+1 = Pan+1-

Consequently, (Py) is a sequence of integrable random variables with

IE[Pn+1 |:Fn] = PnE[Xn+1 |:Fn]a
= PnE[Xn+1]v
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Convergence of martingales Definition and Examples.

Martingales with products.

Example (Products)

E[Pn+1 |.7:n] = mPn.

@ (Pp) is a martingale if m =1,
@ (Pp) is a submartingale if m > 1,
@ (Pp) is a supermartingale if m < 1.

— It holds for Exponential £()\) distribution with A > 0 where

m =

1
T
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Convergence of martingales On Doob’s convergence theorem.
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Convergence of martingales On Doob’s convergence theorem.

Doob’s convergence theorem.

Theorem (Doob)
Let (M) be a MG, sMG, or SMG bounded in." which means

sup E[|Mp]|] < +oo0.

n>0

Then, we have the almost sure convergence

lim M, = M, a.s.
n—oo

where M, is an integrable random variable.

Bernard Bercu

Stochastic algorithms with statistical applications



..-‘ A Vs

Joseph Leo Doob




Convergence of gales On Doob’s convergence theorem.
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Convergence of martingales On Doob’s convergence theorem.

Convergence of martingales.

Let (Mp) be a MG bounded inILP with p > 1, which means that

sup E[|Mp|P] < 4oo.

n=>0

Q@ /fp>1,(M,) converges almost surely to an integrable random
variable M.,. The convergence is also true inILP.

Q I/fp=1, (M,) converges almost surely to an integrable random
variable M,.. The convergence holds in." as soon as (M,) is
uniformly integrable that is

lim SupE[|Mn|I{|Mn|>a}] 0.

—)OO>
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Convergence of martingales On Doob’s convergence theorem.

Chow’s Theorem.

Theorem (Chow)
Let (My) be a MG such that for1 < a< 2 andforalln> 1,

E[|M;|?] < .

Denote, for alln > 1, AM, = M, — M,_1 and assume that

> E[|AMy|?| Fn_1] < oo a.s.

n=1

Then, we have the almost sure convergence

lim M, = M, a.s.
n—oo

where M, is an integrable random variable.
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Convergence of martingales On Doob’s convergence theorem.

Exponential Martingale.

Example (Exponential Martingale)

Let (X») be a sequence of independent random variable sharing the
same N(0, 1) distribution. For all f € R*, let S, = X; +--- + X, and
denote

Ma(t) = exp(ts,, - "ztz)

It is clear that (M,(t)) is a MG which converges a.s. to zero. However,
E[Mn(H)] =E[M;(t)]=1. It means that (M,(t)) does not converge in L.

v

Bernard Bercu Stochastic algorithms with statistical applications



Convergence of martingales On Doob’s convergence theorem.

Autoregressive Martingale.

Example (Autoregressive Martingale)

Let (X,) be the autoregressive process given for all n > 0 by
Xn+1 = 60Xn + (1 - 0)€n+1

where the initial state Xo = p, 0 < p < 1 and the parameter 0 < 6 < 1.
Assume that £(e,.1|Fn) is the Bernoulli B(Xj) distribution. We can
show that 0 < X, < 1 and that (Xj,) is a MG satisfying

lim X, = X a.s.
n—-oco

The convergence also holds in " for all r > 1. Finally, we can prove
that X, has the Bernoulli B(p) distribution.
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Convergence of martingales Square integrable martingales.
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Q Convergence of martingales

@ Square integrable martingales.
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Convergence of martingales Square integrable martingales.

Increasing process.

Let (M,) be a square integrable MG that is for all n > 1,

E[M?] < cc.

The increasing process associated with (M) is given by <M>y=0
and, forall n > 1,

n
<M>p= > E[AMZ|Fy]
k=1

where AMy = My — Mj_+.

Stochastic algorithms with statistical applications
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Convergence of martingales Square integrable martingales.

Example (Increasing Process)

Let (X») be a sequence of square integrable and independent random
variables such that, for all n > 1, E[X,] = m and Var(X,) = ¢ > 0.
Denote

M, = > (Xx — m).
k=1

Then, (M) is a martingale and its increasing process reduces to

<M >p= o2n.
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Convergence of martingales Robbins-Siegmund theorem.
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Q Convergence of martingales

@ Robbins-Siegmund theorem.
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Convergence of martingales Robbins-Siegmund theorem.

Theorem (Robbins-Siegmund)

Let (Vy), (An) and (By) be three positive sequences adapted to
F = (Fn). Assume that V, is integrable and, for all n > 0,

]E[Vn+1 |Tn] < Vn + An - Bn a.s.

Assume also that -
Z A, < +00 a.s.

n=0

@ The sequence (V,) converges a.s. to a random variable V..
© We also have

o0
2 B, < 400 a.s.

n=0
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Convergence of martingales Robbins-Siegmund theorem.
Corollary

Let (V), (An), (Bn) and (an) be four positive sequences adapted to
F = (Fp). Assume that V, is integrable and, for all n > 0,

E[ Vn+1 |fn] g Vn(1 + an) + An - Bn a.s.

Assume also that

(e o) o0
> an < +oo, D7 An < +o0 a.s.
n=0 n=0

@ The sequence (V) converges a.s. to a random variable V..
© We also have

n
Z By < 4+oc0 a.s.
k=0
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Convergence of martingales Strong law of large numbers for martingales.
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Convergence of martingales Strong law of large numbers for martingales.

Strong law of large numbers for martingales.

Theorem (Strong Law of large numbers)

Let (My) be a square integrable MG and denote
<M>,= lim <M>,.
n—oo
@ Assume that < M>.,< oo a.s. Then, we have

lim M, = M, a.s.
n—-oo

Q Assume that < M>.,= oo a.s. Then, we have

. M,
lim =0 a.s.
n—oo < M>n

v

— If it exists a positive sequence (ap) increasing to infinity such that
<M>p,=0(an) a.s., then we have M, = o(ap) a.s.
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Convergence of martingales Strong law of large numbers for martingales.

Strong law of large numbers for martingales, continued

Theorem (Strong Law of large numbers)

Let (Mp) be a square integrable MG such that

lim <M>p,= o0 a.s.

n—oo

@ For any positive v, we have

Mo —o((leg <m>n)"7)  as

© If the increments of (Mp) have conditional moments of order > 2,

- n"Z'; - o(log < M>,,) as.
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Convergence of martingales Strong law of large numbers for martingales.

Example on sums.

Let (Xn) be a sequence of square integrable and independent random
variables such that, for all n > 1, E[X,] = m and Var(X;,) = ¢ > 0. We
already saw that

M, = ) (Xk — m)
k=1

is square integrable MG with < M>,= o2n. It follows from the SLLN
for martingales that M, = o(n) a.s. which means that

1 n
lim — Z Xc=m a.s.
n—oo n k=1

More precisely, for any positive ~,

(Bny2- (2 Z X — m)” = o EMT) g
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Convergence of martingales Central limit theorem for martingales.
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Q Convergence of martingales

@ Central limit theorem for martingales.
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Central limit theorem for martingales.

Convergence of martingales

Central limit theorem for martingales.

Theorem (Central Limit Theorem)
Let (My) be a square integrable MG and let (an) be a sequence of
positive real numbers increasing to infinity. Assume that

@ It exists a deterministic limit L > 0 such that

<M>,
an

Py

where AMy = M — Mj_4.
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Central limit theorem for martingales.

Convergence of martingales

Central limit theorem for martingales.

Theorem (Central Limit Theorem)
Let (My) be a square integrable MG and let (an) be a sequence of
positive real numbers increasing to infinity. Assume that

© It exists a deterministic limit L > 0 such that

<M>n P,
an

© Lindeberg’s condition. For all positive ¢,

1 < P
E Z E[|AMy I amy|>eyany | Fi—1] — O
k=1

where AM = M — Mj_4.
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Convergence of martingales Central limit theorem for martingales.

Central limit theorem fro martingales, continued.

Theorem (Central Limit Theorem)
Then, we have the asymptotic normality

1
Van

Moreover, if L > 0, we also have

M, 5 N(0, L).

My,
<M>p

\/aT,( ) £, Mo, L.

—— Lyapunov’s condition implies Lindeberg’s condition : For b> 2,
n

> E[|AMK[®| Fk_1] = O(an) a.s.
k=1

Bernard Bercu
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