Asymptotic behavior of stochastic algorithms with statistical applications Part 1

Bernard Bercu

University of Bordeaux, France

ETICS Annual Research School, Fréjus, 2019

Outline

(1) Introduction

- Sample mean and variance.
- Recursive estimation of mean and variance.
- Quantile of a continuous distribution.
- Recursive estimation of quantile.
(2) Convergence of martingales
- Definition and Examples.
- On Doob's convergence theorem.
- Square integrable martingales.
- Robbins-Siegmund theorem.
- Strong law of large numbers for martingales.
- Central limit theorem for martingales.

Outline

(1) Introduction

- Sample mean and variance.
- Recursive estimation of mean and variance.
- Quantile of a continuous distribution.
- Recursive estimation of quantile.
(2) Convergence of martingales
- Definition and Examples.
- On Doob's convergence theorem.
- Square integrable martingales.
- Robbins-Siegmund theorem.
- Strong law of large numbers for martingales.
- Central limit theorem for martingales.

Sample mean and variance.

Let $\left(X_{n}, X\right)$ be a sequence of square integrable independent and identically distributed random variables with $\mathbb{E}[X]=m, \operatorname{Var}(X)=\sigma^{2}$. The sample mean and the sample variance are defined by

$$
\bar{X}_{n}=\frac{1}{n} \sum_{k=1}^{n} X_{k}
$$

and

$$
S_{n}^{2}=\frac{1}{n} \sum_{k=1}^{n}\left(X_{k}-\bar{X}_{n}\right)^{2}
$$

Goal

\longrightarrow Recursively estime the unknown mean and variance

$$
\theta=\binom{m}{\sigma^{2}}
$$

Outline

(1) Introduction

- Sample mean and variance.
- Recursive estimation of mean and variance.
- Quantile of a continuous distribution.
- Recursive estimation of quantile.
(2) Convergence of martingales
- Definition and Examples.
- On Doob's convergence theorem.
- Square integrable martingales.
- Robbins-Siegmund theorem.
- Strong law of large numbers for martingales.
- Central limit theorem for martingales.

Two recursive equations.

We have

$$
(n+1) \bar{X}_{n+1}=\sum_{k=1}^{n} X_{k}+X_{n+1}
$$

Consequently,

$$
(n+1) \bar{X}_{n+1}=n \bar{X}_{n}+X_{n+1}=(n+1) \bar{X}_{n}+X_{n+1}-\bar{X}_{n}
$$

which implies that

$$
\bar{X}_{n+1}=\bar{X}_{n}+\frac{1}{n+1}\left(x_{n+1}-\bar{X}_{n}\right)
$$

We also have

$$
S_{n}^{2}=\frac{1}{n} \sum_{k=1}^{n} x_{k}^{2}-\bar{X}_{n}^{2} .
$$

Consequently,

$$
(n+1) S_{n+1}^{2}=\sum_{k=1}^{n+1} X_{k}^{2}-(n+1) \bar{X}_{n+1}^{2},
$$

where

We also have

$$
S_{n}^{2}=\frac{1}{n} \sum_{k=1}^{n} x_{k}^{2}-\bar{X}_{n}^{2} .
$$

Consequently,

$$
\begin{aligned}
(n+1) S_{n+1}^{2} & =\sum_{k=1}^{n+1} X_{k}^{2}-(n+1) \bar{X}_{n+1}^{2}, \\
& =\sum_{k=1}^{n+1} x_{k}^{2}-(n+1)\left(\bar{X}_{n}+\frac{1}{n+1}\left(x_{n+1}-\bar{X}_{n}\right)\right)^{2},
\end{aligned}
$$

We also have

$$
S_{n}^{2}=\frac{1}{n} \sum_{k=1}^{n} x_{k}^{2}-\bar{X}_{n}^{2} .
$$

Consequently,

$$
\begin{aligned}
(n+1) S_{n+1}^{2} & =\sum_{k=1}^{n+1} x_{k}^{2}-(n+1) \bar{X}_{n+1}^{2}, \\
& =\sum_{k=1}^{n+1} x_{k}^{2}-(n+1)\left(\bar{X}_{n}+\frac{1}{n+1}\left(x_{n+1}-\bar{X}_{n}\right)\right)^{2}, \\
& =\sum_{k=1}^{n+1} x_{k}^{2}-(n+1) \bar{X}_{n}^{2}-2 \bar{X}_{n}\left(x_{n+1}-\bar{X}_{n}\right)-\xi_{n+1}
\end{aligned}
$$

where

$$
\xi_{n+1}=\frac{1}{n+1}\left(x_{n+1}-\bar{X}_{n}\right)^{2} .
$$

Two recursive equations.

Therefore,

$$
(n+1) S_{n+1}^{2}=\sum_{k=1}^{n} x_{k}^{2}-n \bar{X}_{n}^{2}+x_{n+1}^{2}-2 \bar{X}_{n} X_{n+1}+\bar{X}_{n}^{2}-\xi_{n+1},
$$

Hence

leading to

Two recursive equations.

Therefore,

$$
\begin{aligned}
(n+1) S_{n+1}^{2} & =\sum_{k=1}^{n} X_{k}^{2}-n \bar{X}_{n}^{2}+X_{n+1}^{2}-2 \bar{X}_{n} X_{n+1}+\bar{X}_{n}^{2}-\xi_{n+1} \\
& =n S_{n}^{2}+\left(X_{n+1}-\bar{X}_{n}\right)^{2}-\xi_{n+1}
\end{aligned}
$$

Hence

$$
(n+1) S_{n+1}^{2}=(n+1) S_{n}^{2}+\left(x_{n+1}-\bar{X}_{n}\right)^{2}-S_{n}^{2}-\xi_{n+1}
$$

leading to

$$
S_{n+1}^{2}=S_{n}^{2}+\frac{1}{n+1}\left(\left(x_{n+1}-\bar{X}_{n}\right)^{2}-S_{n}^{2}\right)-\frac{1}{(n+1)^{2}}\left(x_{n+1}-\bar{X}_{n}\right)^{2}
$$

A recursive matrix equation.

Denote

$$
\hat{\theta}_{n}=\binom{\bar{X}_{n}}{s_{n}^{2}} .
$$

It follows from the previous calculation that

$$
\hat{\theta}_{n+1}=\hat{\theta}_{n}+\frac{1}{n+1} F\left(\hat{\theta}_{n}, X_{n+1}\right)+\frac{1}{(n+1)} r_{n+1}
$$

where

$$
F\left(\hat{\theta}_{n}, X_{n+1}\right)=\binom{x_{n+1}-\bar{X}_{n}}{\left(X_{n+1}-\bar{X}_{n}\right)^{2}-S_{n}^{2}}
$$

and

$$
r_{n+1}=\binom{0}{-\frac{1}{(n+1)}\left(X_{n+1}-\bar{X}_{n}\right)^{2}} .
$$

A recursive matrix equation.

However,

$$
\mathbb{E}\left[F\left(\hat{\theta}_{n}, X_{n+1}\right) \mid \mathcal{F}_{n}\right]=\boldsymbol{f}\left(\hat{\theta}_{n}\right)+\boldsymbol{s}_{\boldsymbol{n}}
$$

where $\boldsymbol{f}\left(\widehat{\boldsymbol{\theta}}_{n}\right)=\theta-\hat{\theta}_{n}$ and

$$
s_{n}=\binom{0}{\left(m-\bar{X}_{n}\right)^{2}} .
$$

Consequently, we obtain the martingale decomposition

$$
\hat{\theta}_{n+1}=\hat{\theta}_{n}+\frac{1}{n+1}\left(f\left(\hat{\theta}_{n}\right)+\varepsilon_{n+1}+R_{n+1}\right)
$$

where $\left(\varepsilon_{n}\right)$ is a martingale difference sequence, $\mathbb{E}\left[\varepsilon_{n+1} \mid \mathcal{F}_{n}\right]=0$ and the remainder $R_{n+1}=r_{n+1}+s_{n}$ is negligeable.

A first warm-up result.

Theorem

Assume that $\left(X_{n}, X\right)$ is a sequence of iid random variables such that $\mathbb{E}\left[X^{4}\right]$ is finite. Denote $\mathbb{E}\left[(X-m)^{3}\right]=\mu^{3}$ and $\mathbb{E}\left[(X-m)^{4}\right]=\tau^{4}$. Then, we have the almost sure convergence

$$
\lim _{n \rightarrow \infty} \hat{\theta}_{n}=\theta \quad \text { a.s. }
$$

In addition, we also have the asymptotic normality

$$
\sqrt{n}\left(\hat{\theta}_{n}-\theta\right) \xrightarrow{\mathcal{L}} \mathcal{N}(0, \Gamma)
$$

where

$$
\Gamma=\left(\begin{array}{cc}
\sigma^{2} & \mu^{3} \\
\mu^{3} & \tau^{4}-\sigma^{4}
\end{array}\right)
$$

Outline

(1) Introduction

- Sample mean and variance.
- Recursive estimation of mean and variance.
- Quantile of a continuous distribution.
- Recursive estimation of quantile.
(2) Convergence of martingales
- Definition and Examples.
- On Doob's convergence theorem.
- Square integrable martingales.
- Robbins-Siegmund theorem.
- Strong law of large numbers for martingales.
- Central limit theorem for martingales.

Quantile of a continuous distribution.

Let X be a continuous random variable with unknown distribution function F. Assume that F is continuous and strictly increasing.

Definition

For any α in $] 0,1\left[\right.$, the quantile of order α of X is the unique solution θ_{α} of the equation $F(x)=\alpha$,

$$
F\left(\theta_{\alpha}\right)=\alpha
$$

For the Exponential $\mathcal{E}(\lambda)$ distribution with $\lambda>0$,

$$
\theta_{\alpha}=-\frac{1}{\lambda} \log (1-\alpha)
$$

Goal

\longrightarrow Recursively estime the unknown quantile θ_{α}.

Outline

(1) Introduction

- Sample mean and variance.
- Recursive estimation of mean and variance.
- Quantile of a continuous distribution.
- Recursive estimation of quantile.
(2) Convergence of martingales
- Definition and Examples.
- On Doob's convergence theorem.
- Square integrable martingales.
- Robbins-Siegmund theorem.
- Strong law of large numbers for martingales.
- Central limit theorem for martingales.

Let $\left(X_{n}\right)$ be a sequence of iid random variables sharing the same distribution as X. We estimate θ_{α} by the recursive estimator

$$
\hat{\theta}_{n+1}=\hat{\theta}_{n}-\frac{1}{n+1}\left(Y_{n+1}-\alpha\right)
$$

where

$$
Y_{n+1}=F\left(\hat{\theta}_{n}, X_{n+1}\right)=I_{\left\{X_{n+1} \leqslant \hat{\theta}_{n}\right\}}
$$

We clearly have $\mathbb{E}\left[Y_{n+1} \mid \mathcal{F}_{n}\right]=F\left(\hat{\theta}_{n}\right)$ leading to the martingale decomposition

$$
\hat{\theta}_{n+1}=\hat{\theta}_{n}-\frac{1}{n+1}\left(F\left(\hat{\theta}_{n}\right)+\varepsilon_{n+1}-\alpha\right)
$$

where $\left(\varepsilon_{n}\right)$ is a martingale difference sequence, $\mathbb{E}\left[\varepsilon_{n+1} \mid \mathcal{F}_{n}\right]=0$.

A second warm-up result.

Denote by f the probability density function of X.

Theorem

We have the almost sure convergence

$$
\lim _{n \rightarrow \infty} \hat{\theta}_{n}=\theta_{\alpha} \quad \text { a.s. }
$$

Moreover, as soon as $f\left(\theta_{\alpha}\right)>1 / 2$, we have the asymptotic normality

$$
\sqrt{n}\left(\hat{\theta}_{n}-\theta_{\alpha}\right) \xrightarrow{\mathcal{L}} \mathcal{N}\left(0, \frac{\alpha(1-\alpha)}{2 f\left(\theta_{\alpha}\right)-1}\right) .
$$

A second warm-up result.

Consider the slow down Robbins-Monro algorithm given by

$$
\hat{\theta}_{n+1}=\hat{\theta}_{n}-\gamma_{n}\left(Y_{n+1}-\alpha\right)
$$

where

$$
\gamma_{n}=\frac{1}{n^{c}} \quad \text { with } \quad \frac{1}{2}<c<1
$$

At time $n \geqslant 1$, compute de Cesaro mean

$$
\bar{\theta}_{n}=\frac{1}{n} \sum_{k=1}^{n} \hat{\theta}_{k}
$$

A second warm-up result.

We already saw that

$$
\bar{\theta}_{n+1}=\bar{\theta}_{n}+\frac{1}{n+1}\left(\hat{\theta}_{n+1}-\bar{\theta}_{n}\right)
$$

Theorem

We have the almost sure convergence

$$
\lim _{n \rightarrow \infty} \bar{\theta}_{n}=\theta_{\alpha} \quad \text { a.s. }
$$

Moreover, we also have the asymptotic normality

$$
\sqrt{n}\left(\bar{\theta}_{n}-\theta_{\alpha}\right) \xrightarrow{\mathcal{L}} \mathcal{N}\left(0, \frac{\alpha(1-\alpha)}{f^{2}\left(\theta_{\alpha}\right)}\right)
$$

Outline

1 Introduction

- Sample mean and variance.
- Recursive estimation of mean and variance.
- Quantile of a continuous distribution.
- Recursive estimation of quantile.
(2) Convergence of martingales
- Definition and Examples.
- On Doob's convergence theorem.
- Square integrable martingales.
- Robbins-Siegmund theorem.
- Strong law of large numbers for martingales.
- Central limit theorem for martingales.

Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space with a filtration $\mathbb{F}=\left(\mathcal{F}_{n}\right)$ where \mathcal{F}_{n} is the σ-algebra of events occurring up to time n.

Definition

Let $\left(M_{n}\right)$ be a sequence of integrable random variables defined on $(\Omega, \mathcal{A}, \mathbb{P})$ such that, for all $n \geqslant 0, M_{n}$ is \mathcal{F}_{n}-measurable.
(1) $\left(M_{n}\right)$ is a martingale MG if for all $n \geqslant 0$,

$$
\mathbb{E}\left[M_{n+1} \mid \mathcal{F}_{n}\right]=M_{n} \quad \text { a.s. }
$$

(2) $\left(M_{n}\right)$ is a submartingale sMG if for all $n \geqslant 0$,

$$
\mathbb{E}\left[M_{n+1} \mid F_{n}\right] \geqslant M_{n} \quad \text { a.s. }
$$

(3) $\left(M_{n}\right)$ is a supermartingale SMG if for all $n \geqslant 0$,

$$
\mathbb{E}\left[M_{n+1} \mid F_{n}\right] \leqslant M_{n} \quad \text { a.s. }
$$

Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space with a filtration $\mathbb{F}=\left(\mathcal{F}_{n}\right)$ where \mathcal{F}_{n} is the σ-algebra of events occurring up to time n.

Definition

Let $\left(M_{n}\right)$ be a sequence of integrable random variables defined on $(\Omega, \mathcal{A}, \mathbb{P})$ such that, for all $n \geqslant 0, M_{n}$ is \mathcal{F}_{n}-measurable.
(1) $\left(M_{n}\right)$ is a martingale MG if for all $n \geqslant 0$,

$$
\mathbb{E}\left[M_{n+1} \mid \mathcal{F}_{n}\right]=M_{n} \quad \text { a.s. }
$$

(2) $\left(M_{n}\right)$ is a submartingale sMG if for all $n \geqslant 0$,

$$
\mathbb{E}\left[M_{n+1} \mid \mathcal{F}_{n}\right] \geqslant M_{n} \quad \text { a.s. }
$$

(3) $\left(M_{n}\right)$ is a supermartingale SMG if for all $n \geqslant 0$,

$$
\mathbb{E}\left[M_{n+1} \mid F_{n}\right] \leqslant M_{n} \quad \text { a.s. }
$$

Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space with a filtration $\mathbb{F}=\left(\mathcal{F}_{n}\right)$ where \mathcal{F}_{n} is the σ-algebra of events occurring up to time n.

Definition

Let $\left(M_{n}\right)$ be a sequence of integrable random variables defined on $(\Omega, \mathcal{A}, \mathbb{P})$ such that, for all $n \geqslant 0, M_{n}$ is \mathcal{F}_{n}-measurable.
(1) $\left(M_{n}\right)$ is a martingale MG if for all $n \geqslant 0$,

$$
\mathbb{E}\left[M_{n+1} \mid \mathcal{F}_{n}\right]=M_{n} \quad \text { a.s. }
$$

(2) $\left(M_{n}\right)$ is a submartingale sMG if for all $n \geqslant 0$,

$$
\mathbb{E}\left[M_{n+1} \mid \mathcal{F}_{n}\right] \geqslant M_{n} \quad \text { a.s. }
$$

(3) $\left(M_{n}\right)$ is a supermartingale SMG if for all $n \geqslant 0$,

$$
\mathbb{E}\left[M_{n+1} \mid \mathcal{F}_{n}\right] \leqslant M_{n} \quad \text { a.s. }
$$

Martingales with sums.

Example (Sums)

Let $\left(X_{n}\right)$ be a sequence of integrable and independent random variables such that, for all $n \geqslant 1, \mathbb{E}\left[X_{n}\right]=m$. Denote

$$
S_{n}=\sum_{k=1}^{n} X_{k}
$$

We clearly have

$$
S_{n+1}=S_{n}+X_{n+1}
$$

Consequently, $\left(S_{n}\right)$ is a sequence of integrable random variables with

$$
\begin{aligned}
\mathbb{E}\left[S_{n+1} \mid \mathcal{F}_{n}\right] & =S_{n}+\mathbb{E}\left[X_{n+1} \mid \mathcal{F}_{n}\right] \\
& =S_{n}+\mathbb{E}\left[X_{n+1}\right]
\end{aligned}
$$

Martingales with sums.

Example (Sums)

$$
\mathbb{E}\left[S_{n+1} \mid \mathcal{F}_{n}\right]=S_{n}+m .
$$

- $\left(S_{n}\right)$ is a martingale if $m=0$,
- $\left(S_{n}\right)$ is a submartingale if $m \geqslant 0$,
- $\left(S_{n}\right)$ is a supermartingale if $m \leqslant 0$.
\longrightarrow It holds for Rademacher $\mathcal{R}(p)$ distribution with $0<p<1$ where

$$
m=2 p-1 .
$$

Martingales with Rademacher sums.

Martingales with products.

Example (Products)

Let $\left(X_{n}\right)$ be a sequence of positive, integrable and independent random variables such that, for all $n \geqslant 1, \mathbb{E}\left[X_{n}\right]=m$. Denote

$$
P_{n}=\prod_{k=1}^{n} x_{k}
$$

We clearly have

$$
P_{n+1}=P_{n} X_{n+1}
$$

Consequently, $\left(P_{n}\right)$ is a sequence of integrable random variables with

$$
\begin{aligned}
\mathbb{E}\left[P_{n+1} \mid \mathcal{F}_{n}\right] & =\boldsymbol{P}_{n} \mathbb{E}\left[X_{n+1} \mid \mathcal{F}_{n}\right] \\
& =P_{n} \mathbb{E}\left[X_{n+1}\right]
\end{aligned}
$$

Martingales with products.

Example (Products)

$$
\mathbb{E}\left[P_{n+1} \mid \mathcal{F}_{n}\right]=m P_{n}
$$

- $\left(P_{n}\right)$ is a martingale if $m=1$,
- $\left(P_{n}\right)$ is a submartingale if $m \geqslant 1$,
- $\left(P_{n}\right)$ is a supermartingale if $m \leqslant 1$.
\longrightarrow It holds for Exponential $\mathcal{E}(\lambda)$ distribution with $\lambda>0$ where

$$
m=\frac{1}{\lambda}
$$

Outline

(1) Introduction

- Sample mean and variance.
- Recursive estimation of mean and variance.
- Quantile of a continuous distribution.
- Recursive estimation of quantile.
(2) Convergence of martingales
- Definition and Examples.
- On Doob's convergence theorem.
- Square integrable martingales.
- Robbins-Siegmund theorem.
- Strong law of large numbers for martingales.
- Central limit theorem for martingales.

Doob's convergence theorem.

Theorem (Doob)

Let $\left(M_{n}\right)$ be a MG, sMG, or SMG bounded in \mathbb{L}^{1} which means

$$
\sup _{n \geqslant 0} \mathbb{E}\left[\left|M_{n}\right|\right]<+\infty .
$$

Then, we have the almost sure convergence

$$
\lim _{n \rightarrow \infty} M_{n}=M_{\infty} \quad \text { a.s. }
$$

where M_{∞} is an integrable random variable.

Convergence of martingales.

Theorem

Let $\left(M_{n}\right)$ be a MG bounded in \mathbb{L}^{p} with $p \geqslant 1$, which means that

$$
\sup _{n \geqslant 0} \mathbb{E}\left[\left|M_{n}\right|^{p}\right]<+\infty
$$

(1) If $p>1,\left(M_{n}\right)$ converges almost surely to an integrable random variable M_{∞}. The convergence is also true in \mathbb{L}^{p}.
(2) If $p=1,\left(M_{n}\right)$ converges almost surely to an integrable random variable M_{∞}. The convergence holds in \mathbb{L}^{1} as soon as $\left(M_{n}\right)$ is uniformly integrable that is

$$
\lim _{a \rightarrow \infty} \sup _{n \geqslant 0} \mathbb{E}\left[\left|M_{n}\right| I_{\left\{\left|M_{n}\right| \geqslant a\right\}}\right]=0
$$

Chow's Theorem.

Theorem (Chow)

Let $\left(M_{n}\right)$ be a MG such that for $1 \leqslant a \leqslant 2$ and for all $n \geqslant 1$,

$$
\mathbb{E}\left[\left|M_{n}\right|^{a}\right]<\infty .
$$

Denote, for all $n \geqslant 1, \Delta M_{n}=M_{n}-M_{n-1}$ and assume that

$$
\sum_{n=1}^{\infty} \mathbb{E}\left[\left|\Delta M_{n}\right|^{a} \mid \mathcal{F}_{n-1}\right]<\infty \quad \text { a.s. }
$$

Then, we have the almost sure convergence

$$
\lim _{n \rightarrow \infty} M_{n}=M_{\infty} \quad \text { a.s. }
$$

where M_{∞} is an integrable random variable.

Exponential Martingale.

Example (Exponential Martingale)

Let $\left(X_{n}\right)$ be a sequence of independent random variable sharing the same $\mathcal{N}(0,1)$ distribution. For all $t \in \mathbb{R}^{*}$, let $S_{n}=X_{1}+\cdots+X_{n}$ and denote

$$
M_{n}(t)=\exp \left(t S_{n}-\frac{n t^{2}}{2}\right)
$$

It is clear that $\left(M_{n}(t)\right)$ is a MG which converges a.s. to zero. However, $\mathbb{E}\left[M_{n}(t)\right]=\mathbb{E}\left[M_{1}(t)\right]=1$. It means that $\left(M_{n}(t)\right)$ does not converge in \mathbb{L}^{1}.

Autoregressive Martingale.

Example (Autoregressive Martingale)

Let $\left(X_{n}\right)$ be the autoregressive process given for all $n \geqslant 0$ by

$$
X_{n+1}=\theta X_{n}+(1-\theta) \varepsilon_{n+1}
$$

where the initial state $X_{0}=p, 0<p<1$ and the parameter $0<\theta<1$. Assume that $\mathcal{L}\left(\varepsilon_{n+1} \mid \mathcal{F}_{n}\right)$ is the Bernoulli $\mathcal{B}\left(X_{n}\right)$ distribution. We can show that $0<X_{n}<1$ and that $\left(X_{n}\right)$ is a MG satisfying

$$
\lim _{n \rightarrow \infty} X_{n}=X_{\infty}
$$

The convergence also holds in \mathbb{L}^{r} for all $r \geqslant 1$. Finally, we can prove that X_{∞} has the Bernoulli $\mathcal{B}(p)$ distribution.

Outline

(1) Introduction

- Sample mean and variance.
- Recursive estimation of mean and variance.
- Quantile of a continuous distribution.
- Recursive estimation of quantile.
(2) Convergence of martingales
- Definition and Examples.
- On Doob's convergence theorem.
- Square integrable martingales.
- Robbins-Siegmund theorem.
- Strong law of large numbers for martingales.
- Central limit theorem for martingales.

Increasing process.

Definition

Let $\left(M_{n}\right)$ be a square integrable MG that is for all $n \geqslant 1$,

$$
\mathbb{E}\left[M_{n}^{2}\right]<\infty
$$

The increasing process associated with $\left(M_{n}\right)$ is given by $<M>_{0}=0$ and, for all $n \geqslant 1$,

$$
<M>_{n}=\sum_{k=1}^{n} \mathbb{E}\left[\Delta M_{k}^{2} \mid \mathcal{F}_{k-1}\right]
$$

where $\Delta M_{k}=M_{k}-M_{k-1}$.

Example (Increasing Process)

Let $\left(X_{n}\right)$ be a sequence of square integrable and independent random variables such that, for all $n \geqslant 1, \mathbb{E}\left[X_{n}\right]=m$ and $\operatorname{Var}\left(X_{n}\right)=\sigma^{2}>0$. Denote

$$
M_{n}=\sum_{k=1}^{n}\left(X_{k}-m\right)
$$

Then, $\left(M_{n}\right)$ is a martingale and its increasing process reduces to

$$
<M>_{n}=\sigma^{2} n
$$

Outline

(1) Introduction

- Sample mean and variance.
- Recursive estimation of mean and variance.
- Quantile of a continuous distribution.
- Recursive estimation of quantile.
(2) Convergence of martingales
- Definition and Examples.
- On Doob's convergence theorem.
- Square integrable martingales.
- Robbins-Siegmund theorem.
- Strong law of large numbers for martingales.
- Central limit theorem for martingales.

Theorem (Robbins-Siegmund)

Let $\left(V_{n}\right),\left(A_{n}\right)$ and $\left(B_{n}\right)$ be three positive sequences adapted to $\mathbb{F}=\left(\mathcal{F}_{n}\right)$. Assume that V_{0} is integrable and, for all $n \geqslant 0$,

$$
\mathbb{E}\left[V_{n+1} \mid \mathcal{F}_{n}\right] \leqslant V_{n}+A_{n}-B_{n} \quad \text { a.s. }
$$

Assume also that

$$
\sum_{n=0}^{\infty} A_{n}<+\infty \quad \text { a.s. }
$$

(1) The sequence $\left(V_{n}\right)$ converges a.s. to a random variable V_{∞}.
(2) We also have

$$
\sum_{n=0}^{\infty} B_{n}<+\infty \quad \text { a.s. }
$$

Corollary

Let $\left(V_{n}\right),\left(A_{n}\right),\left(B_{n}\right)$ and $\left(a_{n}\right)$ be four positive sequences adapted to $\mathbb{F}=\left(\mathcal{F}_{n}\right)$. Assume that V_{0} is integrable and, for all $n \geqslant 0$,

$$
\mathbb{E}\left[V_{n+1} \mid \mathcal{F}_{n}\right] \leqslant V_{n}\left(1+a_{n}\right)+A_{n}-B_{n} \quad \text { a.s. }
$$

Assume also that

$$
\sum_{n=0}^{\infty} a_{n}<+\infty, \quad \sum_{n=0}^{\infty} A_{n}<+\infty \quad \text { a.s. }
$$

(1) The sequence $\left(V_{n}\right)$ converges a.s. to a random variable V_{∞}.
(2) We also have

$$
\sum_{k=0}^{n} B_{k}<+\infty \quad \text { a.s. }
$$

Outline

(1) Introduction

- Sample mean and variance.
- Recursive estimation of mean and variance.
- Quantile of a continuous distribution.
- Recursive estimation of quantile.
(2) Convergence of martingales
- Definition and Examples.
- On Doob's convergence theorem.
- Square integrable martingales.
- Robbins-Siegmund theorem.
- Strong law of large numbers for martingales.
- Central limit theorem for martingales.

Strong law of large numbers for martingales.

Theorem (Strong Law of large numbers)

Let $\left(M_{n}\right)$ be a square integrable MG and denote

$$
<M>_{\infty}=\lim _{n \rightarrow \infty}<M>_{n}
$$

(1) Assume that $<M>_{\infty}<\infty$ a.s. Then, we have

$$
\lim _{n \rightarrow \infty} M_{n}=M_{\infty} \quad \text { a.s. }
$$

(2) Assume that $<M>_{\infty}=\infty$ a.s. Then, we have

$$
\lim _{n \rightarrow \infty} \frac{M_{n}}{<M_{n}}=0 \quad \text { a.s. }
$$

\longrightarrow If it exists a positive sequence $\left(a_{n}\right)$ increasing to infinity such that $<M>_{n}=0\left(a_{n}\right)$ a.s., then we have $M_{n}=o\left(a_{n}\right)$ a.s.

Strong law of large numbers for martingales, continued

Theorem (Strong Law of large numbers)

Let $\left(M_{n}\right)$ be a square integrable MG such that

$$
\lim _{n \rightarrow \infty}<M>_{n}=\infty \quad \text { a.s. }
$$

(1) For any positive γ, we have

$$
\frac{M_{n}^{2}}{<M>_{n}}=o\left(\left(\log <M>_{n}\right)^{1+\gamma}\right) \quad \text { a.s. }
$$

(2) If the increments of $\left(M_{n}\right)$ have conditional moments of order >2,

$$
\frac{M_{n}^{2}}{<M>_{n}}=O\left(\log <M>_{n}\right) \quad \text { a.s. }
$$

Example on sums.

Let $\left(X_{n}\right)$ be a sequence of square integrable and independent random variables such that, for all $n \geqslant 1, \mathbb{E}\left[X_{n}\right]=m$ and $\operatorname{Var}\left(X_{n}\right)=\sigma^{2}>0$. We already saw that

$$
M_{n}=\sum_{k=1}^{n}\left(X_{k}-m\right)
$$

is square integrable MG with $<M>_{n}=\sigma^{2} n$. It follows from the SLLN for martingales that $M_{n}=O(n)$ a.s. which means that

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} x_{k}=m \quad \text { a.s. }
$$

More precisely, for any positive γ,

$$
\left(\frac{M_{n}}{n}\right)^{2}=\left(\frac{1}{n} \sum_{k=1}^{n} x_{k}-m\right)^{2}=o\left(\frac{(\log n)^{1+\gamma}}{n}\right) \quad \text { a.s. }
$$

Outline

(1) Introduction

- Sample mean and variance.
- Recursive estimation of mean and variance.
- Quantile of a continuous distribution.
- Recursive estimation of quantile.
(2) Convergence of martingales
- Definition and Examples.
- On Doob's convergence theorem.
- Square integrable martingales.
- Robbins-Siegmund theorem.
- Strong law of large numbers for martingales.
- Central limit theorem for martingales.

Central limit theorem for martingales.

Theorem (Central Limit Theorem)

Let $\left(M_{n}\right)$ be a square integrable MG and let $\left(a_{n}\right)$ be a sequence of positive real numbers increasing to infinity. Assume that
(1) It exists a deterministic limit $L \geqslant 0$ such that

$$
\frac{\left\langle M>_{n}\right.}{a_{n}} \xrightarrow{\mathcal{P}} L .
$$

(2) Lindeberg's condition. For all positive ε

where $\Delta M_{k}=M_{k}-M_{k-1}$.

Central limit theorem for martingales.

Theorem (Central Limit Theorem)

Let $\left(M_{n}\right)$ be a square integrable MG and let $\left(a_{n}\right)$ be a sequence of positive real numbers increasing to infinity. Assume that
(1) It exists a deterministic limit $L \geqslant 0$ such that

$$
\frac{\left\langle M>_{n}\right.}{a_{n}} \xrightarrow{\mathcal{P}} L .
$$

(2) Lindeberg's condition. For all positive ε,

$$
\frac{1}{a_{n}} \sum_{k=1}^{n} \mathbb{E}\left[\left|\Delta M_{k}\right|^{2} I_{\left\{\left|\Delta M_{k}\right| \geqslant \varepsilon \sqrt{a_{n}}\right\}} \mid \mathcal{F}_{k-1}\right] \xrightarrow{\mathcal{P}} 0
$$

where $\Delta M_{k}=M_{k}-M_{k-1}$.

Central limit theorem fro martingales, continued.

Theorem (Central Limit Theorem)

Then, we have the asymptotic normality

$$
\frac{1}{\sqrt{a_{n}}} M_{n} \xrightarrow{\mathcal{L}} \mathcal{N}(0, L) .
$$

Moreover, if $L>0$, we also have

$$
\sqrt{a_{n}}\left(\frac{M_{n}}{\left\langle M>_{n}\right.}\right) \xrightarrow{\mathcal{L}} \mathcal{N}\left(0, L^{-1}\right)
$$

\longrightarrow Lyapunov's condition implies Lindeberg's condition: For $\boldsymbol{b}>\mathbf{2}$,

$$
\sum_{k=1}^{n} \mathbb{E}\left[\left|\Delta M_{k}\right|^{b} \mid \mathcal{F}_{k-1}\right]=O\left(a_{n}\right) \quad \text { a.s. }
$$

