Asymptotic behavior of stochastic algorithms with statistical applications Part 1

Bernard Bercu

University of Bordeaux, France

ETICS Annual Research School, Fréjus, 2019

Outline

1 Int

Introduction

- Sample mean and variance.
- Recursive estimation of mean and variance.
- Quantile of a continuous distribution.
- Recursive estimation of quantile.

Convergence of martingales

- Definition and Examples.
- On Doob's convergence theorem.
- Square integrable martingales.
- Robbins-Siegmund theorem.
- Strong law of large numbers for martingales.
- Central limit theorem for martingales.

Outline

• Sample mean and variance.

- Recursive estimation of mean and variance.
- Quantile of a continuous distribution.
- Recursive estimation of quantile.

Convergence of martingales

- Definition and Examples.
- On Doob's convergence theorem.
- Square integrable martingales.
- Robbins-Siegmund theorem.
- Strong law of large numbers for martingales.
- Central limit theorem for martingales.

4 3 > 4 3

Sample mean and variance.

Let (X_n, X) be a sequence of square integrable independent and identically distributed random variables with $\mathbb{E}[X] = m$, $Var(X) = \sigma^2$. The **sample mean** and the **sample variance** are defined by

and

$$\overline{X}_n = \frac{1}{n} \sum_{k=1}^n X_k,$$

$$S_n^2 = \frac{1}{n} \sum_{k=1}^n (X_k - \overline{X}_n)^2.$$

ĉ

Goal

Recursively estime the unknown mean and variance

$$\theta = \begin{pmatrix} \boldsymbol{m} \\ \sigma^2 \end{pmatrix}.$$

Outline

Introduction

- Sample mean and variance.
- Recursive estimation of mean and variance.
- Quantile of a continuous distribution.
- Recursive estimation of quantile.

Convergence of martingales

- Definition and Examples.
- On Doob's convergence theorem.
- Square integrable martingales.
- Robbins-Siegmund theorem.
- Strong law of large numbers for martingales.
- Central limit theorem for martingales.

4 3 > 4 3

Two recursive equations.

We have

$$(n+1)\overline{X}_{n+1}=\sum_{k=1}^n X_k+X_{n+1}.$$

Consequently,

$$(n+1)\overline{X}_{n+1} = n\overline{X}_n + X_{n+1} = (n+1)\overline{X}_n + X_{n+1} - \overline{X}_n$$

which implies that

$$\overline{X}_{n+1} = \overline{X}_n + \frac{1}{n+1} \Big(X_{n+1} - \overline{X}_n \Big).$$

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

A ►

We also have

$$S_n^2 = \frac{1}{n} \sum_{k=1}^n X_k^2 - \overline{X}_n^2.$$

Consequently,

$$(n+1)S_{n+1}^{2} = \sum_{k=1}^{n+1} X_{k}^{2} - (n+1)\overline{X}_{n+1}^{2},$$

$$= \sum_{k=1}^{n+1} X_{k}^{2} - (n+1)\left(\overline{X}_{n} + \frac{1}{n+1}\left(X_{n+1} - \overline{X}_{n}\right)\right)^{2},$$

$$= \sum_{k=1}^{n+1} X_{k}^{2} - (n+1)\overline{X}_{n}^{2} - 2\overline{X}_{n}\left(X_{n+1} - \overline{X}_{n}\right) - \xi_{n+1}$$

where

$$\xi_{n+1} = \frac{1}{n+1} \left(X_{n+1} - \overline{X}_n \right)^2.$$

Э.

We also have

$$S_n^2 = \frac{1}{n} \sum_{k=1}^n X_k^2 - \overline{X}_n^2.$$

Consequently,

$$(n+1)S_{n+1}^{2} = \sum_{k=1}^{n+1} X_{k}^{2} - (n+1)\overline{X}_{n+1}^{2},$$

$$= \sum_{k=1}^{n+1} X_{k}^{2} - (n+1)\left(\overline{X}_{n} + \frac{1}{n+1}\left(X_{n+1} - \overline{X}_{n}\right)\right)^{2},$$

$$= \sum_{k=1}^{n+1} X_{k}^{2} - (n+1)\overline{X}_{n}^{2} - 2\overline{X}_{n}\left(X_{n+1} - \overline{X}_{n}\right) - \xi_{n+1}$$

where

 $\xi_{n+1} = \frac{1}{n+1} \left(X_{n+1} - \overline{X}_n \right)^2.$

æ

・ロト ・四ト ・ヨト ・ヨト

We also have

$$S_n^2 = \frac{1}{n} \sum_{k=1}^n X_k^2 - \overline{X}_n^2.$$

Consequently,

$$(n+1)S_{n+1}^{2} = \sum_{k=1}^{n+1} X_{k}^{2} - (n+1)\overline{X}_{n+1}^{2},$$

$$= \sum_{k=1}^{n+1} X_{k}^{2} - (n+1)\left(\overline{X}_{n} + \frac{1}{n+1}\left(X_{n+1} - \overline{X}_{n}\right)\right)^{2},$$

$$= \sum_{k=1}^{n+1} X_{k}^{2} - (n+1)\overline{X}_{n}^{2} - 2\overline{X}_{n}\left(X_{n+1} - \overline{X}_{n}\right) - \xi_{n+1}$$

where

$$\xi_{n+1}=\frac{1}{n+1}\Big(X_{n+1}-\overline{X}_n\Big)^2.$$

2

▲□ ▶ ▲ □ ▶ ▲ □ ▶ ...

Two recursive equations.

Therefore,

$$(n+1)S_{n+1}^{2} = \sum_{k=1}^{n} X_{k}^{2} - n\overline{X}_{n}^{2} + X_{n+1}^{2} - 2\overline{X}_{n}X_{n+1} + \overline{X}_{n}^{2} - \xi_{n+1},$$

$$= nS_{n}^{2} + (X_{n+1} - \overline{X}_{n})^{2} - \xi_{n+1}.$$

Hence

$$(n+1)S_{n+1}^2 = (n+1)S_n^2 + (X_{n+1} - \overline{X}_n)^2 - S_n^2 - \xi_{n+1},$$

leading to

$$S_{n+1}^{2} = S_{n}^{2} + \frac{1}{n+1} \left(\left(X_{n+1} - \overline{X}_{n} \right)^{2} - S_{n}^{2} \right) - \frac{1}{(n+1)^{2}} \left(X_{n+1} - \overline{X}_{n} \right)^{2}.$$

æ

★個 ▶ ★ 国 ▶ ★ 国 ▶ →

Two recursive equations.

Therefore,

$$(n+1)S_{n+1}^{2} = \sum_{k=1}^{n} X_{k}^{2} - n\overline{X}_{n}^{2} + X_{n+1}^{2} - 2\overline{X}_{n}X_{n+1} + \overline{X}_{n}^{2} - \xi_{n+1},$$

$$= nS_{n}^{2} + (X_{n+1} - \overline{X}_{n})^{2} - \xi_{n+1}.$$

Hence

$$(n+1)S_{n+1}^2 = (n+1)S_n^2 + (X_{n+1} - \overline{X}_n)^2 - S_n^2 - \xi_{n+1},$$

leading to

$$S_{n+1}^2 = S_n^2 + \frac{1}{n+1} \left(\left(X_{n+1} - \overline{X}_n \right)^2 - S_n^2 \right) - \frac{1}{(n+1)^2} \left(X_{n+1} - \overline{X}_n \right)^2.$$

2

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

A recursive matrix equation.

Denote

$$\widehat{\theta}_n = \begin{pmatrix} \overline{\mathbf{X}}_n \\ \mathbf{S}_n^2 \end{pmatrix}.$$

It follows from the previous calculation that

$$\widehat{\theta}_{n+1} = \widehat{\theta}_n + \frac{1}{n+1}F(\widehat{\theta}_n, X_{n+1}) + \frac{1}{(n+1)}r_{n+1}$$

where

and

$$r_{n+1} = \begin{pmatrix} 0 \\ -\frac{1}{(n+1)} (X_{n+1} - \overline{X}_n)^2 \end{pmatrix}.$$

4 ≥ + < ≥ +</p>

A recursive matrix equation.

However,

$$\mathbb{E}[\boldsymbol{F}(\widehat{\theta}_n, \boldsymbol{X_{n+1}}) | \boldsymbol{\mathcal{F}_n}] = \boldsymbol{f}(\widehat{\theta}_n) + \boldsymbol{s_n}$$

where $f(\hat{\theta}_n) = \theta - \hat{\theta}_n$ and

$$s_n = \begin{pmatrix} 0 \\ \left(m - \overline{X}_n\right)^2 \end{pmatrix}$$

Consequently, we obtain the martingale decomposition

$$\hat{\theta}_{n+1} = \hat{\theta}_n + \frac{1}{n+1} \left(f(\hat{\theta}_n) + \varepsilon_{n+1} + R_{n+1} \right)$$

where (ε_n) is a martingale difference sequence, $\mathbb{E}[\varepsilon_{n+1}|\mathcal{F}_n] = 0$ and the remainder $R_{n+1} = r_{n+1} + s_n$ is negligeable.

向下 イヨト イヨト

A first warm-up result.

Theorem

Assume that (X_n, X) is a sequence of iid random variables such that $\mathbb{E}[X^4]$ is finite. Denote $\mathbb{E}[(X - m)^3] = \mu^3$ and $\mathbb{E}[(X - m)^4] = \tau^4$. Then, we have the almost sure convergence

$$\lim_{n\to\infty}\widehat{\theta}_n=\theta\qquad\text{a.s.}$$

In addition, we also have the asymptotic normality

$$\sqrt{n} \left(\widehat{\theta}_n - \theta \right) \stackrel{\mathcal{L}}{\longrightarrow} \mathcal{N}(\mathbf{0}, \Gamma)$$

where

$$\mathsf{\Gamma} = \begin{pmatrix} \sigma^2 & \mu^3 \\ \mu^3 & \tau^4 - \sigma^4 \end{pmatrix}.$$

Outline

- Sample mean and variance.
- Recursive estimation of mean and variance.

• Quantile of a continuous distribution.

Recursive estimation of quantile.

Convergence of martingales

- Definition and Examples.
- On Doob's convergence theorem.
- Square integrable martingales.
- Robbins-Siegmund theorem.
- Strong law of large numbers for martingales.
- Central limit theorem for martingales.

4 3 > 4 3

Quantile of a continuous distribution.

Let X be a **continuous** random variable with **unknown** distribution function F. Assume that F is **continuous and strictly increasing**.

Definition

For any α in]0, 1[, the quantile of order α of X is the unique solution θ_{α} of the equation $F(x) = \alpha$,

 $F(\theta_{\alpha}) = \alpha.$

For the Exponential $\mathcal{E}(\lambda)$ distribution with $\lambda > 0$,

$$\theta_{\alpha} = -\frac{1}{\lambda}\log(1-\alpha).$$

Goal

 \longrightarrow Recursively estime the unknown quantile θ_{α} .

Bernard Bercu

Stochastic algorithms with statistical applications

Outline

- Sample mean and variance.
- Recursive estimation of mean and variance.
- Quantile of a continuous distribution.
- Recursive estimation of quantile.

Convergence of martingales

- Definition and Examples.
- On Doob's convergence theorem.
- Square integrable martingales.
- Robbins-Siegmund theorem.
- Strong law of large numbers for martingales.
- Central limit theorem for martingales.

Let (X_n) be a sequence of **iid** random variables sharing the same distribution as *X*. We estimate θ_{α} by the recursive estimator

$$\widehat{\theta}_{n+1} = \widehat{\theta}_n - \frac{1}{n+1} \Big(Y_{n+1} - \alpha \Big)$$

where

$$\mathbf{Y}_{n+1} = \mathbf{F}(\widehat{\theta}_n, \mathbf{X}_{n+1}) = \mathbf{I}_{\{\mathbf{X}_{n+1} \leqslant \widehat{\theta}_n\}}.$$

We clearly have $\mathbb{E}[Y_{n+1}|\mathcal{F}_n] = F(\hat{\theta}_n)$ leading to the martingale decomposition

$$\hat{\theta}_{n+1} = \hat{\theta}_n - \frac{1}{n+1} \left(F(\hat{\theta}_n) + \varepsilon_{n+1} - \alpha \right)$$

where (ε_n) is a martingale difference sequence, $\mathbb{E}[\varepsilon_{n+1}|\mathcal{F}_n]=0$.

A second warm-up result.

Denote by f the probability density function of X.

Theorem

We have the almost sure convergence

$$\lim_{n\to\infty}\widehat{\theta}_n=\theta_\alpha\qquad\text{a.s.}$$

Moreover, as soon as $f(\theta_{\alpha}) > 1/2$, we have the asymptotic normality

$$\sqrt{n}\Big(\widehat{\theta}_n - \theta_{\alpha}\Big) \xrightarrow{\mathcal{L}} \mathcal{N}\Big(\mathbf{0}, \frac{\alpha(\mathbf{1} - \alpha)}{\mathbf{2f}(\theta_{\alpha}) - \mathbf{1}}\Big).$$

< 回 > < 回 > < 回 >

A second warm-up result.

Consider the slow down Robbins-Monro algorithm given by

$$\widehat{\theta}_{n+1} = \widehat{\theta}_n - \gamma_n \Big(Y_{n+1} - \alpha \Big)$$

where

$$\gamma_n = rac{1}{n^c}$$
 with $rac{1}{2} < c < 1.$

At time $n \ge 1$, compute de Cesaro mean

$$\overline{\theta}_n = \frac{1}{n} \sum_{k=1}^n \widehat{\theta}_k.$$

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Recursive estimation of quantile.

A second warm-up result.

We already saw that

$$\overline{\theta}_{n+1} = \overline{\theta}_n + \frac{1}{n+1} \Big(\widehat{\theta}_{n+1} - \overline{\theta}_n \Big).$$

Theorem

We have the almost sure convergence

$$\lim_{n\to\infty}\overline{\theta}_n=\theta_\alpha\qquad\text{a.s.}$$

Moreover, we also have the asymptotic normality

$$\sqrt{n}\Big(\overline{\theta}_n - \theta_\alpha\Big) \xrightarrow{\mathcal{L}} \mathcal{N}\Big(\mathbf{0}, \frac{\alpha(\mathbf{1} - \alpha)}{f^2(\theta_\alpha)}\Big).$$

Outline

Introduction

- Sample mean and variance.
- Recursive estimation of mean and variance.
- Quantile of a continuous distribution.
- Recursive estimation of quantile.

Convergence of martingales

- Definition and Examples.
- On Doob's convergence theorem.
- Square integrable martingales.
- Robbins-Siegmund theorem.
- Strong law of large numbers for martingales.
- Central limit theorem for martingales.

4 3 > 4 3

Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space with a filtration $\mathbb{F} = (\mathcal{F}_n)$ where \mathcal{F}_n is the σ -algebra of events occurring up to time *n*.

Definition

Let (M_n) be a sequence of integrable random variables defined on $(\Omega, \mathcal{A}, \mathbb{P})$ such that, for all $n \ge 0$, M_n is \mathcal{F}_n -measurable.

• (M_n) is a martingale **MG** if for all $n \ge 0$,

 $\mathbb{E}[M_{n+1} | \mathcal{F}_n] = M_n \qquad \text{a.s.}$

3 (M_n) is a submartingale **sMG** if for all $n \ge 0$,

 $\mathbb{E}[M_{n+1} \,|\, \mathcal{F}_n] \geqslant M_n \qquad \text{a.s.}$

 \bigcirc (*M_n*) is a supermartingale **SMG** if for all $n \ge 0$,

 $\mathbb{E}[M_{n+1} | \mathcal{F}_n] \leqslant M_n \qquad \text{a.s.}$

э

ヘロト 人間 ト イヨト イヨト

Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space with a filtration $\mathbb{F} = (\mathcal{F}_n)$ where \mathcal{F}_n is the σ -algebra of events occurring up to time *n*.

Definition

Let (M_n) be a sequence of integrable random variables defined on $(\Omega, \mathcal{A}, \mathbb{P})$ such that, for all $n \ge 0$, M_n is \mathcal{F}_n -measurable.

(M_n **)** is a martingale **MG** if for all $n \ge 0$,

$$\mathbb{E}[M_{n+1} | \mathcal{F}_n] = M_n \qquad \text{a.s.}$$

- (*M_n*) is a submartingale **sMG** if for all $n \ge 0$, $\mathbb{E}[M_{n+1} | \mathcal{F}_n] \ge M_n$ a.s.
- **3** (M_n) is a supermartingale **SMG** if for all $n \ge 0$,

 $\mathbb{E}[M_{n+1} | \mathcal{F}_n] \leqslant M_n \qquad \text{a.s.}$

э

ヘロト 人間 ト イヨト イヨト

Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space with a filtration $\mathbb{F} = (\mathcal{F}_n)$ where \mathcal{F}_n is the σ -algebra of events occurring up to time *n*.

Definition

Let (M_n) be a sequence of integrable random variables defined on $(\Omega, \mathcal{A}, \mathbb{P})$ such that, for all $n \ge 0$, M_n is \mathcal{F}_n -measurable.

(M_n **)** is a martingale **MG** if for all $n \ge 0$,

$$\mathbb{E}[M_{n+1} | \mathcal{F}_n] = M_n \qquad \text{a.s.}$$

2 (M_n) is a submartingale **sMG** if for all $n \ge 0$,

$$\mathbb{E}[M_{n+1} | \mathcal{F}_n] \ge M_n \qquad \text{a.s.}$$

(M_n) is a supermartingale **SMG** if for all $n \ge 0$,

$$\mathbb{E}[M_{n+1} | \mathcal{F}_n] \leqslant M_n \qquad \text{a.s.}$$

イロト 不得 トイヨト イヨト

Martingales with sums.

Example (Sums)

Let (X_n) be a sequence of integrable and independent random variables such that, for all $n \ge 1$, $\mathbb{E}[X_n] = m$. Denote

$$S_n = \sum_{k=1}^n X_k$$

We clearly have

$$S_{n+1}=S_n+X_{n+1}.$$

Consequently, (S_n) is a sequence of integrable random variables with

$$\mathbb{E}[S_{n+1} | \mathcal{F}_n] = S_n + \mathbb{E}[X_{n+1} | \mathcal{F}_n],$$

= $S_n + \mathbb{E}[X_{n+1}],$

Martingales with sums.

Example (Sums)

 $\mathbb{E}[\mathbf{S}_{n+1} \mid \mathcal{F}_n] = \mathbf{S}_n + \mathbf{m}.$

- (S_n) is a martingale if m = 0,
- (S_n) is a submartingale if $m \ge 0$,
- (S_n) is a supermartingale if $m \leq 0$.
- \rightarrow It holds for Rademacher $\mathcal{R}(p)$ distribution with 0 where

$$m = 2p - 1$$
.

A (10) A (10) A (10) A

Martingales with Rademacher sums.

э

(B)

Martingales with products.

Example (Products)

Let (X_n) be a sequence of positive, integrable and independent random variables such that, for all $n \ge 1$, $\mathbb{E}[X_n] = m$. Denote

$$\boldsymbol{P}_n = \prod_{k=1}^n \boldsymbol{X}_k$$

We clearly have

$$\boldsymbol{P}_{n+1} = \boldsymbol{P}_n \boldsymbol{X}_{n+1}.$$

Consequently, (P_n) is a sequence of integrable random variables with

$$\mathbb{E}[P_{n+1} | \mathcal{F}_n] = P_n \mathbb{E}[X_{n+1} | \mathcal{F}_n], \\ = P_n \mathbb{E}[X_{n+1}],$$

Definition and Examples.

Martingales with products.

Example (Products)

 $\mathbb{E}[\boldsymbol{P}_{n+1} \mid \mathcal{F}_n] = \boldsymbol{m} \boldsymbol{P}_n.$

- (P_n) is a martingale if m = 1,
- (P_n) is a submartingale if $m \ge 1$,
- (P_n) is a supermartingale if $m \leq 1$.

 \rightarrow It holds for Exponential $\mathcal{E}(\lambda)$ distribution with $\lambda > 0$ where

$$m=\frac{1}{\lambda}$$

э

イロト イポト イヨト イヨト

Outline

Introduction

- Sample mean and variance.
- Recursive estimation of mean and variance.
- Quantile of a continuous distribution.
- Recursive estimation of quantile.

Convergence of martingales

- Definition and Examples.
- On Doob's convergence theorem.
- Square integrable martingales.
- Robbins-Siegmund theorem.
- Strong law of large numbers for martingales.
- Central limit theorem for martingales.

4 3 > 4 3

Doob's convergence theorem.

Theorem (Doob)

Let (M_n) be a MG, sMG, or SMG bounded in \mathbb{L}^1 which means

$\sup_{n\geq 0}\mathbb{E}[|M_n|]<+\infty.$

Then, we have the almost sure convergence

 $\lim_{n\to\infty}M_n=M_\infty \qquad a.s.$

where M_{∞} is an integrable random variable.

・ 何 ト ・ ヨ ト ・ ヨ ト …

Joseph Leo Doob

э

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

Jacques Neveu

æ

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

Convergence of martingales.

Theorem

Let (M_n) be a MG bounded in \mathbb{L}^p with $p \ge 1$, which means that

 $\sup_{n\geq 0}\mathbb{E}[|M_n|^p]<+\infty.$

- If p > 1, (M_n) converges almost surely to an integrable random variable M_∞. The convergence is also true in L^p.
- If p = 1, (M_n) converges almost surely to an integrable random variable M_∞. The convergence holds in L¹ as soon as (M_n) is uniformly integrable that is

$$\lim_{a\to\infty}\sup_{n\geq 0}\mathbb{E}\big[|M_n|\mathbf{I}_{\{|M_n|\geq a\}}\big]=0.$$

Chow's Theorem.

Theorem (Chow)

Let (M_n) be a MG such that for $1 \leq a \leq 2$ and for all $n \geq 1$,

 $\mathbb{E}[|M_n|^a] < \infty.$

Denote, for all $n \ge 1$, $\Delta M_n = M_n - M_{n-1}$ and assume that

$$\sum_{n=1}^{\infty} \mathbb{E}[|\Delta M_n|^a | \mathcal{F}_{n-1}] < \infty \qquad a.s.$$

Then, we have the almost sure convergence

 $\lim_{n\to\infty}M_n=M_\infty \qquad a.s.$

where M_{∞} is an integrable random variable.

Bernard Bercu

Exponential Martingale.

Example (Exponential Martingale)

Let (X_n) be a sequence of independent random variable sharing the same $\mathcal{N}(0, 1)$ distribution. For all $t \in \mathbb{R}^*$, let $S_n = X_1 + \cdots + X_n$ and denote

$$M_n(t) = \exp\Big(tS_n - \frac{nt^2}{2}\Big).$$

It is clear that $(M_n(t))$ is a **MG** which converges a.s. to zero. However, $\mathbb{E}[M_n(t)] = \mathbb{E}[M_1(t)] = 1$. It means that $(M_n(t))$ does not converge in \mathbb{L}^1 .

< 回 > < 回 > < 回 > -

Autoregressive Martingale.

Example (Autoregressive Martingale)

Let (X_n) be the autoregressive process given for all $n \ge 0$ by

$$\boldsymbol{X}_{n+1} = \boldsymbol{\theta} \boldsymbol{X}_n + (1-\boldsymbol{\theta})\boldsymbol{\varepsilon}_{n+1}$$

where the initial state $X_0 = p$, $0 and the parameter <math>0 < \theta < 1$. Assume that $\mathcal{L}(\varepsilon_{n+1}|\mathcal{F}_n)$ is the Bernoulli $\mathcal{B}(X_n)$ distribution. We can show that $0 < X_n < 1$ and that (X_n) is a **MG** satisfying

$$\lim_{n\to\infty}X_n=X_\infty$$
 a.s.

The convergence also holds in \mathbb{L}^r for all $r \ge 1$. Finally, we can prove that X_{∞} has the Bernoulli $\mathcal{B}(p)$ distribution.

Introduction

- Sample mean and variance.
- Recursive estimation of mean and variance.
- Quantile of a continuous distribution.
- Recursive estimation of quantile.

Convergence of martingales

- Definition and Examples.
- On Doob's convergence theorem.
- Square integrable martingales.
- Robbins-Siegmund theorem.
- Strong law of large numbers for martingales.
- Central limit theorem for martingales.

Increasing process.

Definition

Let (M_n) be a square integrable **MG** that is for all $n \ge 1$,

 $\mathbb{E}[M_n^2] < \infty.$

The **increasing process** associated with (M_n) is given by $\langle M \rangle_0 = 0$ and, for all $n \ge 1$,

$$< M >_n = \sum_{k=1}^n \mathbb{E}[\Delta M_k^2 | \mathcal{F}_{k-1}]$$

where $\Delta M_k = M_k - M_{k-1}$.

35 / 47

3

イロト 不得 トイヨト イヨト

Example (Increasing Process)

Let (X_n) be a sequence of square integrable and independent random variables such that, for all $n \ge 1$, $\mathbb{E}[X_n] = m$ and $Var(X_n) = \sigma^2 > 0$. Denote

$$M_n=\sum_{k=1}^n(X_k-m).$$

Then, (M_n) is a martingale and its increasing process reduces to

$$< M >_n = \sigma^2 n.$$

Introduction

- Sample mean and variance.
- Recursive estimation of mean and variance.
- Quantile of a continuous distribution.
- Recursive estimation of quantile.

Convergence of martingales

- Definition and Examples.
- On Doob's convergence theorem.
- Square integrable martingales.
- Robbins-Siegmund theorem.
- Strong law of large numbers for martingales.
- Central limit theorem for martingales.

4 3 > 4 3

Theorem (Robbins-Siegmund)

Let (V_n) , (A_n) and (B_n) be three positive sequences adapted to $\mathbb{F} = (\mathcal{F}_n)$. Assume that V_0 is integrable and, for all $n \ge 0$,

 \sim

 $\mathbb{E}[V_{n+1}|\mathcal{F}_n] \leqslant V_n + A_n - B_n \qquad a.s.$

Assume also that

$$\sum_{n=0}^{\infty} A_n < +\infty \qquad a.s.$$

The sequence (V_n) converges a.s. to a random variable V_{∞} .

2 We also have

э

Corollary

Let (V_n) , (A_n) , (B_n) and (a_n) be four positive sequences adapted to $\mathbb{F} = (\mathcal{F}_n)$. Assume that V_0 is integrable and, for all $n \ge 0$,

> $\mathbb{E}[V_{n+1}|\mathcal{F}_n] \leq V_n(1+a_n) + A_n - B_n$ a.s.

Assume also that

$$\sum_{n=0}^{\infty} a_n < +\infty, \qquad \sum_{n=0}^{\infty} A_n < +\infty \qquad a.s.$$

The sequence (V_n) converges a.s. to a random variable V_{∞} . 2 We also have

$$\sum_{k=0}^{n} \boldsymbol{B}_{k} < +\infty \qquad a.s.$$

Introduction

- Sample mean and variance.
- Recursive estimation of mean and variance.
- Quantile of a continuous distribution.
- Recursive estimation of quantile.

Convergence of martingales

- Definition and Examples.
- On Doob's convergence theorem.
- Square integrable martingales.
- Robbins-Siegmund theorem.
- Strong law of large numbers for martingales.
- Central limit theorem for martingales.

A B > < B</p>

Convergence of martingales

Strong law of large numbers for martingales.

Strong law of large numbers for martingales.

Theorem (Strong Law of large numbers)

Let (M_n) be a square integrable MG and denote

$$< M >_{\infty} = \lim_{n \to \infty} < M >_n$$
.

1 Assume that $< M >_{\infty} < \infty$ a.s. Then, we have

 $\lim_{n\to\infty}M_n=M_\infty\qquad a.s.$

2 Assume that $< M >_{\infty} = \infty$ a.s. Then, we have

$$\lim_{n\to\infty}\frac{M_n}{_n}=0 \qquad a.s.$$

 \longrightarrow If it exists a positive sequence (a_n) increasing to infinity such that $< M >_n = 0(a_n)$ a.s., then we have $M_n = o(a_n)$ a.s.

Strong law of large numbers for martingales, continued

Theorem (Strong Law of large numbers)

Let (M_n) be a square integrable MG such that

$$\lim_{n\to\infty} < M >_n = \infty \qquad a.s.$$

• For any positive γ , we have

$$\frac{M_n^2}{<\boldsymbol{M}>_n} = \boldsymbol{o}\left(\left(\log <\boldsymbol{M}>_n\right)^{1+\gamma}\right) \qquad a.s$$

If the increments of (M_n) have conditional moments of order > 2,

$$\frac{M_n^2}{_n} = O\left(\log _n\right) \qquad a.s.$$

< 回 > < 回 > < 回

Example on sums.

Let (X_n) be a sequence of square integrable and independent random variables such that, for all $n \ge 1$, $\mathbb{E}[X_n] = m$ and $Var(X_n) = \sigma^2 > 0$. We already saw that

$$M_n = \sum_{k=1}^n (X_k - m)$$

is square integrable **MG** with $\langle M \rangle_n = \sigma^2 n$. It follows from the **SLLN** for martingales that $M_n = o(n)$ a.s. which means that

$$\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^n X_k = m \qquad \text{a.s.}$$

More precisely, for any positive γ ,

$$\left(\frac{M_n}{n}\right)^2 = \left(\frac{1}{n}\sum_{k=1}^n X_k - m\right)^2 = o\left(\frac{(\log n)^{1+\gamma}}{n}\right) \qquad \text{a.s.}$$

A B A A B A

Introduction

- Sample mean and variance.
- Recursive estimation of mean and variance.
- Quantile of a continuous distribution.
- Recursive estimation of quantile.

Convergence of martingales

- Definition and Examples.
- On Doob's convergence theorem.
- Square integrable martingales.
- Robbins-Siegmund theorem.
- Strong law of large numbers for martingales.
- Central limit theorem for martingales.

4 3 > 4 3

Central limit theorem for martingales.

Theorem (Central Limit Theorem)

Let (M_n) be a square integrable **MG** and let (a_n) be a sequence of positive real numbers increasing to infinity. Assume that

1 It exists a deterministic limit $L \ge 0$ such that

$$\frac{\langle M\rangle_n}{a_n} \xrightarrow{\mathcal{P}} L.$$

3 Lindeberg's condition. For all positive ε ,

$$\frac{1}{a_n}\sum_{k=1}^n \mathbb{E}[|\Delta M_k|^2 \mathrm{I}_{\{|\Delta M_k| \ge \varepsilon \sqrt{a_n}\}} | \mathcal{F}_{k-1}] \stackrel{\mathcal{P}}{\longrightarrow} 0$$

where $\Delta M_k = M_k - M_{k-1}$.

< 回 > < 回 > < 回 >

Central limit theorem for martingales.

Theorem (Central Limit Theorem)

Let (M_n) be a square integrable **MG** and let (a_n) be a sequence of positive real numbers increasing to infinity. Assume that

1 It exists a deterministic limit $L \ge 0$ such that

$$\frac{\langle M\rangle_n}{a_n} \xrightarrow{\mathcal{P}} L.$$

2 Lindeberg's condition. For all positive ε ,

$$\frac{1}{a_n}\sum_{k=1}^n \mathbb{E}[|\Delta M_k|^2 \mathrm{I}_{\{|\Delta M_k| \ge \varepsilon \sqrt{a_n}\}} | \mathcal{F}_{k-1}] \stackrel{\mathcal{P}}{\longrightarrow} 0$$

where $\Delta M_k = M_k - M_{k-1}$.

< 回 > < 回 > < 回 >

Convergence of martingales

Central limit theorem for martingales.

Central limit theorem fro martingales, continued.

Theorem (Central Limit Theorem)

Then, we have the asymptotic normality

$$\frac{1}{\sqrt{a_n}}M_n \stackrel{\mathcal{L}}{\longrightarrow} \mathcal{N}(0,L).$$

Moreover, if L > 0, we also have

$$\sqrt{a_n} \Big(\frac{M_n}{\langle M \rangle_n} \Big) \stackrel{\mathcal{L}}{\longrightarrow} \mathcal{N}(0, L^{-1}).$$

 \rightarrow Lyapunov's condition implies Lindeberg's condition : For **b > 2**,

$$\sum_{k=1}^{n} \mathbb{E}[|\Delta M_k|^b | \mathcal{F}_{k-1}] = O(a_n) \qquad \text{a.s.}$$

2