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The Robbins-Monro algorithm Introduction.

Stochastic approximation.

Herbert Robbins
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The Robbins-Monro algorithm Introduction.

Stochastic approximation.

Let f be an unknown function from RY to RY.

— For a given vector « of RY, find a vector x* which satisfies

f(x*) = a.

We will assume in all the sequel that for all n > 1, we can compute
Xy, ..., X, of RY and we can find Y,,_1 of RY such that

E[Yn41|Fn] = f(Xn)

where Fj, = o(X1,..., Xp).
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The Robbins-Monro algorithm Introduction.

Stochastic approximation for d = 1.

— Find the value x* with very few knowledge on f.
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The Robbins-Monro algorithm Introduction.

Stochastic approximation.

Basic Idea
If you are able to say that f(X,) > «, then increase the value of Xj,.
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The Robbins-Monro algorithm Introduction.

Stochastic approximation.
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Basic Idea
If you are able to say that f(X,) < «, then decrease the value of X,.
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The Robbins-Monro algorithm Almost sure convergence.

The Robbins-Monro algorithm.

Let () be a sequence of positive real numbers decreasing to zero

Z Yn = 400 and Z ’7,2, < +o00.

n=1 n=1

For the sake of simplicity, we shall make use of

1

VnZE-

The Robbins-Monro algorithm

Xns1 = Xo+ vn(Yns1 — @)

where the initial state X; is a square integrable random vector of RY
which can be arbitrarily chosen.
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The Robbins-Monro algorithm Almost sure convergence.

Almost sure convergence.

Let g be the positive function defined on RY by
9(Xn) = E[[| Yn+1 Hzf}—n]-

Theorem (Robbins-Monro)

Assume that the function f is continuous from R? to R? such that
f(x*) = a, and for all x different from x*,

(x — x*,f(x) —a) <0.
Assume that for K > 0 and for all x € RY,

g(x) < K(1 +IxIP%).

Then, we have the almost sure convergence

lim X, =x* a.s.
n—-oo
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The Robbins-Monro algorithm Almost sure convergence.

Proof of the almost sure convergence.

First of all, denote

Vo = || X0 — x*| |2
For all n > 0, we clearly have

Vorr = [ Xns1 —X*Hza
1Xn + Y0 (Ynsr — @) — x*|,
= [|1Xn — X*|P + 2v0(Xn — X*, Yn1 — @) + 751 Yot — a3,

which leads to

Vo1 = Vo + ’7,21|| Yot1 — o[ + 2vn(Xn — X*, f(Xn) + eny1 — )

where e,11 = Yoi1 — f(Xp). O

v
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Almost sure convergence.

The Robbins-Monro algorithm

Proof of the almost sure convergence, continued

Proof.
Since E[Yp.1|Fn]=1(Xn), Elens1|Fn]=0. It means that (¢,) is a
martingale difference sequence. Consequently,

E[Vnt1|Fn] = Va + Y2E[|| Ya+1 — «||?|Fn] — Bn

where (B,) is the positive sequence given by

Bn = —2’7n<Xn — X*, f(Xn) — a)

Moreover,

E[|[Yn41121Fnl < K(1+[1X0][%) < L(1 + Vi)

where L = 2K (1 + [|x*||?).
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The Robbins-Monro algorithm Almost sure convergence.

Proof of the almost sure convergence, continued

Proof.
Therefore, we obtain that

E[Vn+1|Fn] < Va(1 + an) + An — Bn

where a, = 2Lv2 and A, = 2(L + ||a|[?)~2. The assumption

o
Z ’y,z, < 40
n=1
clearly implies that
oo oo
Z an < 400 and Z A, < 400 a.s.
n=1 n=1

Bernard Bercu Stochastic algorithms with statistical applications



Almost sure convergence.

The Robbins-Monro algorithm

Proof of the almost sure convergence, continued

Proof.
Hence, it follows from Robbins-Siegmund theorem that (V};) converges

a.s. to a random variable V,, and

o0
Z B, < 400 .3,

n=1
It remains to prove that V,,=0. Assume by contradiction that V., >0.
Then, we can find two finite constants 0 < a < b such that, for n large
enough, a < || X, — x*|| < b. Denote by A the annulus of RY,
A= {x e RY suchthat a< ||x — x*|| < b}.
Let F be the continuous negative function defined, for all x € RY, by

F(x) = (x — x*, f(x) — a).
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The Robbins-Monro algorithm Almost sure convergence.
Proof.

One can find ¢ > 0 such that, for all x € A,
F(x) < —c.

However, for n large enough X, € A, which implies that F(X,) < —c.
Consequently, for n large enough,

Bn = _Z’YnF(Xn) 2 20")’".
Finally, the assumption

o oo
Z Yn = +00 — Z B, = +o00
n=1 n=1

leading to a contradiction. It means that V., = 0so X, — x* a.s.

Ol

v
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The Robbins-Monro algorithm Asymptotic normality.
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The Robbins-Monro algorithm Asymptotic normality.

Asymptotic normality.

The aymptotic normality requires more assumption on the function f.
We now assume that f is twice differentiable. It follows from Taylor’s
formula that

f(x) = a+ H(x — x*) + O(||x — x*[|?)
where H is the Jacobian matrix of f at x*. We also assume that H is
an Hurwitz matrix. It means that the real parts of all the eigenvalues

of H are negative. Let \yax(H) be the eigenvalue of H with the largest
real part and denote

p = —Re(Amax(H)).

In dimension d = 1, we have f(x*) = o, H = f'(x*) and p = —f'(x*).
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The Robbins-Monro algorithm Asymptotic normality.

Asymptotic normality, continued.

Let (¢5) be the martingale difference sequence given by
En+1 = T4t _E[Yn+1|]:n] = yn-~-1 - f(Xn)-

Theorem (Robbins-Monro, continued)

Assume that the function f is twice differentiable from RY to R? such
that f(x*) = a. Suppose that f and g satisfy the same assumptions as
in Robbins-Monro Theorem. Moreover, assume that

: T
nll_tlgO ]E[E,H_‘] €n+1 |]:n] =TI a.s.

where I is a symmetric definite positive matrix and that (¢,) has a
conditional moment of order > 2. If p > 1/2, we have the aymptotic
normality

V(X — x*) £5 N (0,5).
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The Robbins-Monro algorithm Asymptotic normality.

Asymptotic normality for d = 1.

The limiting covariance matrix ¥ is the unique solution of the
Lyapunov equation

(H+ %Id>z + Z(HT + %Id> =T.

It is quite complicated to evaluate ~. However, in the special case
d=1andl =02, we have p = —H = —f'(x*),

o2

> = 5p— 1"
Consequently, as soon as p > 1/2, we have
o L o
Vi(Xn — x*) = N (0, 2/)_1)
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The Kiefer-Wolfowitz algorithm Introduction.
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The Kiefer-Wolfowitz algorithm Introduction.

Stochastic approximation.

Jack Kiefer Jacob Wolfowitz
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The Kiefer-Wolfowitz algorithm Introduction.

Stochastic approximation.

Let f be an unknown differentiable function from RY to R.

— Find a vector x* of RY which satisfies

VF(x*) = 0.

We will make use of the directional derivative of f at x € R? along
the vector y € R, given by

(9100, = tim f(x + ty) 2—tf(x ~ 1)
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The Kiefer-Wolfowitz algorithm Introduction.

Stochastic approximation.

We will assume in all the sequel that for all n > 1, we can compute
Xi,..., X, of RY and we can find Y,,, 1 and Z,,1 of RY such that

f(Xn + cneq)
E[Yn1|Fn] = : = ®(Xp)
f(Xn + cneq)

and
f(Xn — cney)
E[Zn41|Fn] = : = W(Xn)
f(Xn — cneq)
where (ey,.. ., e4) is the canonical basis of RY, (c,) is a sequence of
positive real numbers decreasing to zero, and F, = o(Xj,..., Xn). In

dimension d =1, E[Y,.1|Fn] = f(Xn + Cn), E[Zn11|Fn] = f(Xn — Cn).
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The Kiefer-Wolfowitz algorithm Almost sure convergence.
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The Kiefer-Wolfowitz algorithm Almost sure convergence.

The Kiefer-Wolfowitz algorithm.

Let () be a sequence of positive real numbers decreasing to zero

Z Yn = +00, Z (Z”)z < +o0, Z YnCn < +o00.

n=1 n=1 n n=1

For the sake of simplicity, we can choose 0 < ¢ < 1/2,
1 1

= — and Ch= —.
Yn n n nc

The Kiefer-Wolfowitz algorithm
Xn+1 - Xn + — 2¢c cn (Yn+1 zn+1>

where the initial state Xy is a square integrable random vector of RY
which can be arbitrarily chosen.
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The Kiefer-Wolfowitz algorithm Almost sure convergence.

Almost sure convergence.

Let g and h be the two positive functions defined on R? by

9(Xn) = E[|| Yps112[ Fn] and h(Xn) = E[[|Zp+1]%|Fa].

Theorem (Kiefer-Wolfowitz)

Assume that the function f is twice continuously differentiable from RY
fo R such that Vf(x*) = 0, and for all x different from x*,

(x — x*,VF(x)) <O0.
Assume that for L > 0 and for all x € R,

V2Ol < L(1+ x]]).-
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The Kiefer-Wolfowitz algorithm Almost sure convergence.

Almost sure convergence, continued

Theorem (Kiefer-Wolfowitz, continued)
Moreover, assume that for Ky > 0, K, > 0 and for all x € RY,

a(x) < Kg(1 + [1x]1?) and h(x) < Kn(1 + [|x][?).

Then, we have the almost sure convergence

lim X, =x" a.s.
n—-oo
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The Kiefer-Wolfowitz algorithm Asymptotic normality.
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The Kiefer-Wolfowitz algorithm Asymptotic normality.

Asymptotic normality.

The asymptotic normality requires more assumption on the function f.
We now assume that f € C3(RY) with Vf(x*) = 0. As Vf € C?(RY), it
follows from Taylor’s formula that

Vi(x) = H(x — x*) + O(||x — x*[|)
where H = V2f(x*) is the Hessian matrix of f at x*. We also assume
that H is a negative definite matrix. It means that all the eigenvalues

of H are negative. Denote

p = —Amax(H).

In dimension d = 1, we have f'(x*) =0, H = f’(x*) and p = —f"(x*).
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The Kiefer-Wolfowitz algorithm Asymptotic normality.

Asymptotic normality, continued

Let (¢5) and (&,) be the martingale difference sequences given by

ent1 = Yot — E[Ynia[Fn] = Yorq — ©(Xn),
Ent1 = Znt1 — E[Zny1| Fn) = Znpt — V(Xp).

Theorem (Kiefer-Wolfowitz, continued)

Assume that the function f € C3(RY) such that Vf(x*) = 0. Suppose

that f and g satisfy the same assumptions as in Kiefer-Wolfowitz
Theorem. Moreover, assume that

£ T
nlL)n;o]E[ngq En+1 |.Fn] = rg a.s.

: T
lim Elén 1041 Fal =T as.

where 'y and T, are symmetric definite positive matrices and that ()
and (&n) have conditional moments of order > 2.

v
Bernard Bercu
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The Kiefer-Wolfowitz algorithm Asymptotic normality.

Asymptotic normality, continued

Theorem (Kiefer-Wolfowitz, continued)
If p > 2c where 1/6 < ¢ < 1/2, we have the aymptotic normality

\/ne3(Xa — x*) £5 N (0, E).

— In the special case p > 2c¢ with ¢ = 1/6, we also have
1/3 o £
n'/>(Xp — x*) = N(m, X)

where the mean m can be explicitely calculated.
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The Kiefer-Wolfowitz algorithm Asymptotic normality.

Asymptotic normality for d = 1.

The limiting covariance matrix X is the unique solution of the
Lyapunov equation

1 1 1
(H+ (5 -c)l)T+X(H+ (5 - c)l) =T
It is quite complicated to evaluate >. However, in the special case
d=1and Tl = o2, we have

o2

8(p+c—1/2)

Consequently, as soon as p > 2c where 1/6 < ¢ < 1/2, we have

2

Ve —x) S N (05T
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Acceleration by averaging Introduction.

- Stochastic averaging.

?:i’\hi |

David Ruppert Boris Polyak
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Acceleration by averaging Introduction.

Stochastic averaging.

The idea of using averaging to accelerate stochastic algorithms in due
to Poliak and Ruppert. It consists in introducing a Cesaro mean over
the iterations of the original stochastic algorithm

— Improve the convergence properties of the stochastic algorithm by
minimizing its asymptotic variance.

—— Substantially weaken the conditions of the previous asymptotic
results on the stochastic algorithm.
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Acceleration by averaging Introduction.

Stochastic averaging on the Robbins-Monro algorithm.

Consider the slow down Robbins-Monro algorithm given by

Xn+1 = Xn+ "Yn(Yn+1 - a)

where the initial state Xj is a square integrable random vector of R?
which can be arbitrarily chosen and the step

1 , 1
’Yn=ﬁ with 5<c<1.

At time n > 1, compute de Cesaro mean
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Acceleration by averaging Introduction.

A second-order recursive equation.

We have

n
(n+ 1)Yn—H = Z Xk + Xpy1 = nXnp+ Xnt1,
k=1

which implies that

7n+1 = Yn + n-1|—1 (Xn+1 - Yn) .

However,

Xpir = Xo+7n(Yors — ).
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Acceleration by averaging Introduction.

A second-order recursive equation.

Consequently, as X, = nX, — (n — 1)X,_1 we obtain that

- 1
Xn+1 = Xp+

n-+1

(Xn —Yn‘f")/n(Yn-H _05>>a
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Acceleration by averaging Introduction.

A second-order recursive equation.

Consequently, as X, = nX, — (n — 1)X,_1 we obtain that

Xn+1 = Xn+

)}

= Xn+n—1|—1((n_ 1)(7,,—?,7,1) +’7n(Yn+1 _O‘>)’
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Acceleration by averaging Introduction.

A second-order recursive equation.

Consequently, as X, = nX, — (n — 1)X,_1 we obtain that

Xn+1 = Xn+

()
= Xp+ rl—‘ll—‘l((n_ 1)(7,,—?,7,1) +’7n(Yn+1 _O‘>)’

- o (2 (B (o 0),

leading to the second-order recursive equation

Xowr = (o)X= (g Xt 20 (Yo — ).
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Acceleration by averaging Almost sure convergence.
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Acceleration by averaging Almost sure convergence.

Almost sure convergence.

Theorem (Robbins-Monro averaging)

Assume that the function f is continuous from R9 to R? such that
f(x*) = «, and for all x different from x*,

(x — x*,f(x) —a) <0.
Assume that for K > 0 and for all x € RY,

g(x) < K(1+|Ix|[%).

Then, we have the almost sure convergence

lim X, = x* a.s.
n—-oo
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Acceleration by averaging Asymptotic normality.
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Acceleration by averaging Asymptotic normality.

Asymptotic normality.

Theorem (Robbins-Monro averaging)

Assume that the function f is twice differentiable from RY to RY such
that f(x*) = . Suppose that f and g satisfy the same assumptions as
in Robbins-Monro Theorem. Moreover, assume that

nli_>ngoIE[sn+15,{+1 |Fn] =T a.s.
where I is a symmetric definite positive matrix and that (¢,) has a

conditional moment of order > 2. Then, we have the asymptotic
normality

Vn(Xn— x*) L5 A(0, )

where the asymptotic matrix ¥ is given by

y=H'rH".
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Acceleration by averaging Asymptotic normality.

Asymptotic normality for d = 1.

It is not necessary to assume that
1
p = —Re(Amax(H)) > >

In the special case d = 1 and I' = 02, we have p = —H = —f'(x*),
which means that

oo
(F(x*)*
Consequently, the asymptotic normality reduces to
2
Vn(X, —x) Z (0,7 ).
(f"(x*))
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