Asymptotic behavior of stochastic algorithms with statistical applications Part 2

Bernard Bercu

University of Bordeaux, France

ETICS Annual Research School, Fréjus, 2019

1 The Robbins-Monro algorithm

- Introduction.
- Almost sure convergence.
- Asymptotic normality.

The Kiefer-Wolfowitz algorithm

- Introduction.
- Almost sure convergence.
- Asymptotic normality.

Acceleration by averaging

- Introduction.
- Almost sure convergence.
- Asymptotic normality.

The Robbins-Monro algorithm

- Introduction.
- Almost sure convergence.
- Asymptotic normality.

The Kiefer-Wolfowitz algorithm

- Introduction.
- Almost sure convergence.
- Asymptotic normality.

Acceleration by averaging

- Introduction.
- Almost sure convergence.
- Asymptotic normality.

Stochastic approximation.

Herbert Robbins

Bernard Bercu

Stochastic algorithms with statistical applications

э

・ロト ・四ト ・ヨト ・ヨト

Stochastic approximation.

Let *f* be an **unknown function** from \mathbb{R}^d to \mathbb{R}^d .

We will assume in all the sequel that for all $n \ge 1$, we can compute X_1, \ldots, X_n of \mathbb{R}^d and we can find Y_{n+1} of \mathbb{R}^d such that

 $\mathbb{E}[Y_{n+1}|\mathcal{F}_n] = f(X_n)$

where
$$\mathcal{F}_n = \sigma(X_1, \ldots, X_n)$$
.

伺い イヨト イヨト

The Robbins-Monro algorithm

Introduction.

Stochastic approximation for d = 1.

Goal

 \rightarrow Find the value x^* with very few knowledge on f.

< 17 ▶

Stochastic approximation.

Basic Idea

If you are able to say that $f(X_n) > \alpha$, then increase the value of X_n .

A.

Stochastic approximation.

Basic Idea

If you are able to say that $f(X_n) < \alpha$, then decrease the value of X_n .

(B)

The Robbins-Monro algorithm Almost sure convergence. Asymptotic normality. Almost sure convergence. Asymptotic normality. Almost sure convergence. Asymptotic normality.

4 3 > 4 3

The Robbins-Monro algorithm.

Let (γ_n) be a sequence of positive real numbers decreasing to zero

$$\sum_{n=1}^{\infty} \gamma_n = +\infty \qquad \text{and} \qquad \sum_{n=1}^{\infty} \gamma_n^2 < +\infty.$$

For the sake of simplicity, we shall make use of

$$\gamma_n = \frac{1}{n}$$

The Robbins-Monro algorithm

$$\boldsymbol{X}_{n+1} = \boldsymbol{X}_n + \gamma_n \Big(\boldsymbol{Y}_{n+1} - \alpha \Big)$$

where the initial state X_0 is a square integrable random vector of \mathbb{R}^d which can be arbitrarily chosen.

Bernard Bercu

Almost sure convergence.

Let *g* be the positive function defined on \mathbb{R}^d by $g(X_n) = \mathbb{E}[||Y_{n+1}||^2|\mathcal{F}_n].$

Theorem (Robbins-Monro)

Assume that the function f is continuous from \mathbb{R}^d to \mathbb{R}^d such that $f(x^*) = \alpha$, and for all x different from x^* ,

 $\langle \mathbf{x} - \mathbf{x}^*, \mathbf{f}(\mathbf{x}) - \alpha \rangle < \mathbf{0}.$

Assume that for K > 0 and for all $x \in \mathbb{R}^d$,

 $g(x) \leqslant K(1+||x||^2).$

Then, we have the almost sure convergence

$$\lim_{n\to\infty}X_n=x^*$$
 a.s.

Proof of the almost sure convergence.

Proof.

First of all, denote

$$V_n = ||X_n - x^*||^2.$$

For all $n \ge 0$, we clearly have

$$\begin{aligned} V_{n+1} &= ||X_{n+1} - x^*||^2, \\ &= ||X_n + \gamma_n (Y_{n+1} - \alpha) - x^*||^2, \\ &= ||X_n - x^*||^2 + 2\gamma_n \langle X_n - x^*, Y_{n+1} - \alpha \rangle + \gamma_n^2 ||Y_{n+1} - \alpha||^2, \end{aligned}$$

which leads to

$$V_{n+1} = V_n + \gamma_n^2 ||Y_{n+1} - \alpha||^2 + 2\gamma_n \langle X_n - X^*, f(X_n) + \varepsilon_{n+1} - \alpha \rangle$$

where $\varepsilon_{n+1} = Y_{n+1} - f(X_n)$.

Proof of the almost sure convergence, continued

Proof.

Since $\mathbb{E}[Y_{n+1}|\mathcal{F}_n] = f(X_n)$, $\mathbb{E}[\varepsilon_{n+1}|\mathcal{F}_n] = 0$. It means that (ε_n) is a **martingale difference sequence.** Consequently,

$$\mathbb{E}[V_{n+1}|\mathcal{F}_n] = V_n + \gamma_n^2 \mathbb{E}[||Y_{n+1} - \alpha||^2 |\mathcal{F}_n] - B_n$$

where (B_n) is the positive sequence given by

$$m{B}_{m{n}} = -2\gamma_{m{n}} \langle m{X}_{m{n}} - m{x}^*, m{f}(m{X}_{m{n}}) - lpha
angle$$

Moreover,

$$\mathbb{E}[||Y_{n+1}||^2|\mathcal{F}_n] \leqslant K(1+||X_n||^2) \leqslant L(1+V_n)$$

where $L = 2K(1 + ||x^*||^2)$.

Proof of the almost sure convergence, continued

Proof.

Therefore, we obtain that

$$\mathbb{E}[V_{n+1}|\mathcal{F}_n] \leqslant V_n(1+a_n) + A_n - B_n$$

where $a_n = 2L\gamma_n^2$ and $A_n = 2(L + ||\alpha||^2)\gamma_n^2$. The assumption

$$\sum_{n=1}^{\infty} \gamma_n^2 < +\infty$$

clearly implies that

$$\sum_{n=1}^{\infty} a_n < +\infty \qquad \text{and} \qquad \sum_{n=1}^{\infty} A_n < +\infty \qquad \text{a.s.}$$

Proof of the almost sure convergence, continued

Proof.

Hence, it follows from Robbins-Siegmund theorem that (V_n) converges a.s. to a random variable V_{∞} and

$$\sum_{n=1}^{\infty} \boldsymbol{B}_n < +\infty \qquad \text{a.s.}$$

It remains to prove that $V_{\infty} = 0$. Assume by contradiction that $V_{\infty} > 0$. Then, we can find two finite constants 0 < a < b such that, for *n* large enough, $a \leq ||X_n - x^*|| \leq b$. Denote by Δ the annulus of \mathbb{R}^d ,

$$\Delta = \Big\{ x \in \mathbb{R}^d \text{ such that } a \leqslant ||x - x^*|| \leqslant b \Big\}.$$

Let *F* be the continuous negative function defined, for all $x \in \mathbb{R}^d$, by

$$F(x) = \langle x - x^*, f(x) - \alpha \rangle.$$

Proof.

One can find c > 0 such that, for all $x \in \Delta$,

 $F(x) \leqslant -c.$

However, for *n* large enough $X_n \in \Delta$, which implies that $F(X_n) \leq -c$. Consequently, for *n* large enough,

 $B_n = -2\gamma_n F(X_n) \geqslant 2c\gamma_n.$

Finally, the assumption

$$\sum_{n=1}^{\infty} \gamma_n = +\infty \qquad \Longrightarrow \qquad \sum_{n=1}^{\infty} B_n = +\infty$$

leading to a contradiction. It means that $V_{\infty} = 0$ so $X_n \to x^*$ a.s.

The Robbins-Monro algorithm

- Introduction.
- Almost sure convergence.
- Asymptotic normality.
- The Kiefer-Wolfowitz algorithm
 - Introduction.
 - Almost sure convergence.
 - Asymptotic normality.

Acceleration by averaging

- Introduction.
- Almost sure convergence.
- Asymptotic normality.

Asymptotic normality.

The aymptotic normality requires more assumption on the function f. We now assume that f is twice differentiable. It follows from **Taylor's** formula that

$$f(x) = \alpha + H(x - x^*) + O(||x - x^*||^2)$$

where *H* is the **Jacobian matrix** of *f* at *x*^{*}. We also assume that *H* is an **Hurwitz matrix**. It means that the real parts of all the eigenvalues of *H* are negative. Let $\lambda_{max}(H)$ be the eigenvalue of *H* with the largest real part and denote

 $\rho = -\operatorname{Re}(\lambda_{max}(H)).$

In dimension d = 1, we have $f(x^*) = \alpha$, $H = f'(x^*)$ and $\rho = -f'(x^*)$.

Asymptotic normality.

Asymptotic normality, continued.

Let (ε_n) be the martingale difference sequence given by

$$\varepsilon_{n+1}=Y_{n+1}-\mathbb{E}[Y_{n+1}|\mathcal{F}_n]=Y_{n+1}-f(X_n).$$

Theorem (Robbins-Monro, continued)

Assume that the function f is twice differentiable from \mathbb{R}^d to \mathbb{R}^d such that $f(x^*) = \alpha$. Suppose that f and g satisfy the same assumptions as in Robbins-Monro Theorem. Moreover, assume that

$$\lim_{n\to\infty}\mathbb{E}[\varepsilon_{n+1}\varepsilon_{n+1}^{T}|\mathcal{F}_{n}]=\Gamma \qquad a.s.$$

where Γ is a symmetric definite positive matrix and that (ε_n) has a conditional moment of order > 2. If $\rho > 1/2$, we have the aymptotic normality

$$\sqrt{n}(X_n - x^*) \xrightarrow{\mathcal{L}} \mathcal{N}(\mathbf{0}, \mathbf{\Sigma}).$$

Asymptotic normality for d = 1.

The limiting covariance matrix Σ is the unique solution of the **Lyapunov equation**

$$\left(H+\frac{1}{2}I_{d}\right)\Sigma+\Sigma\left(H^{T}+\frac{1}{2}I_{d}\right)=-\Gamma.$$

It is quite complicated to evaluate Σ . However, in the special case d = 1 and $\Gamma = \sigma^2$, we have $\rho = -H = -f'(x^*)$,

$$\Sigma = \frac{\sigma^2}{2\rho - 1}.$$

Consequently, as soon as $\rho > 1/2$, we have

$$\sqrt{n}(\boldsymbol{X}_n - \boldsymbol{x}^*) \xrightarrow{\mathcal{L}} \mathcal{N}\Big(\mathbf{0}, \frac{\sigma^2}{\mathbf{2}\rho - \mathbf{1}}\Big).$$

<ロト < 回 > < 回 > < 三 > < 三 > 三 三

The Robbins-Monro algorithm

- Introduction.
- Almost sure convergence.
- Asymptotic normality.

The Kiefer-Wolfowitz algorithmIntroduction.

- Almost sure convergence.
- Asymptotic normality.

Acceleration by averaging

- Introduction.
- Almost sure convergence.
- Asymptotic normality.

Stochastic approximation.

Jack Kiefer

Jacob Wolfowitz

・ 回 ト ・ ヨ ト ・ ヨ ト

э

Stochastic approximation.

Let *f* be an **unknown differentiable function** from \mathbb{R}^d to \mathbb{R} .

We will make use of the **directional derivative** of *f* at $x \in \mathbb{R}^d$ along the vector $y \in \mathbb{R}^d$, given by

$$\langle \nabla f(\mathbf{x}), \mathbf{y} \rangle = \lim_{t \to 0} \frac{f(\mathbf{x} + t\mathbf{y}) - f(\mathbf{x} - t\mathbf{y})}{2t}.$$

Stochastic approximation.

We will assume in all the sequel that for all $n \ge 1$, we can compute X_1, \ldots, X_n of \mathbb{R}^d and we can find Y_{n+1} and Z_{n+1} of \mathbb{R}^d such that

$$\mathbb{E}[Y_{n+1}|\mathcal{F}_n] = \begin{pmatrix} f(X_n + c_n e_1) \\ \vdots \\ f(X_n + c_n e_d) \end{pmatrix} = \Phi(X_n)$$

and

$$\mathbb{E}[Z_{n+1}|\mathcal{F}_n] = \begin{pmatrix} f(X_n - c_n e_1) \\ \vdots \\ f(X_n - c_n e_d) \end{pmatrix} = \Psi(X_n)$$

where (e_1, \ldots, e_d) is the canonical basis of \mathbb{R}^d , (c_n) is a sequence of positive real numbers decreasing to zero, and $\mathcal{F}_n = \sigma(X_1, \ldots, X_n)$. In dimension d = 1, $\mathbb{E}[Y_{n+1}|\mathcal{F}_n] = f(X_n + c_n)$, $\mathbb{E}[Z_{n+1}|\mathcal{F}_n] = f(X_n - c_n)$.

The Robbins-Monro algorithm

- Introduction.
- Almost sure convergence.
- Asymptotic normality.
- The Kiefer-Wolfowitz algorithmIntroduction.
 - Almost sure convergence.
 - Asymptotic normality.

Acceleration by averaging

- Introduction.
- Almost sure convergence.
- Asymptotic normality.

The Kiefer-Wolfowitz algorithm.

Let (γ_n) be a sequence of positive real numbers decreasing to zero

$$\sum_{n=1}^{\infty} \gamma_n = +\infty, \qquad \sum_{n=1}^{\infty} \left(\frac{\gamma_n}{c_n}\right)^2 < +\infty, \qquad \sum_{n=1}^{\infty} \gamma_n c_n < +\infty.$$

For the sake of simplicity, we can choose 0 < c < 1/2,

$$\gamma_n = \frac{1}{n}$$
 and $c_n = \frac{1}{n^c}$.

The Kiefer-Wolfowitz algorithm

$$\boldsymbol{X}_{n+1} = \boldsymbol{X}_n + \frac{\gamma_n}{2\boldsymbol{c}_n} \big(\boldsymbol{Y}_{n+1} - \boldsymbol{Z}_{n+1} \big)$$

where the initial state X_0 is a square integrable random vector of \mathbb{R}^d which can be arbitrarily chosen.

Bernard Bercu

Almost sure convergence.

Let *g* and *h* be the two positive functions defined on \mathbb{R}^d by

 $g(X_n) = \mathbb{E}[||Y_{n+1}||^2 |\mathcal{F}_n]$ and $h(X_n) = \mathbb{E}[||Z_{n+1}||^2 |\mathcal{F}_n].$

Theorem (Kiefer-Wolfowitz)

Assume that the function f is twice continuously differentiable from \mathbb{R}^d to \mathbb{R} such that $\nabla f(x^*) = 0$, and for all x different from x^* ,

 $\langle \boldsymbol{x} - \boldsymbol{x}^*, \nabla \boldsymbol{f}(\boldsymbol{x}) \rangle < \mathbf{0}.$

Assume that for L > 0 and for all $x \in \mathbb{R}^d$,

 $||\nabla^2 f(x)|| \leq L(1+||x||).$

3

Almost sure convergence, continued

Theorem (Kiefer-Wolfowitz, continued)

Moreover, assume that for $K_g > 0$, $K_h > 0$ and for all $x \in \mathbb{R}^d$,

 $g(x)\leqslant \mathcal{K}_gig(1+||x||^2ig)$ and $h(x)\leqslant \mathcal{K}_hig(1+||x||^2ig).$

Then, we have the almost sure convergence

$$\lim_{n\to\infty}X_n=x^*\qquad\text{a.s.}$$

A (10) A (10)

The Robbins-Monro algorithm

- Introduction.
- Almost sure convergence.
- Asymptotic normality.

The Kiefer-Wolfowitz algorithm

- Introduction.
- Almost sure convergence.
- Asymptotic normality.

Acceleration by averaging

- Introduction.
- Almost sure convergence.
- Asymptotic normality.

Asymptotic normality.

The asymptotic normality requires more assumption on the function f. We now assume that $f \in C^3(\mathbb{R}^d)$ with $\nabla f(x^*) = 0$. As $\nabla f \in C^2(\mathbb{R}^d)$, it follows from **Taylor's formula** that

$$\nabla f(x) = H(x - x^*) + O(||x - x^*||^2)$$

where $H = \nabla^2 f(x^*)$ is the **Hessian matrix** of *f* at x^* . We also assume that *H* is a **negative definite matrix**. It means that all the eigenvalues of *H* are negative. Denote

 $\rho = -\lambda_{max}(H).$

In dimension d = 1, we have $f'(x^*) = 0$, $H = f''(x^*)$ and $\rho = -f''(x^*)$.

・ 何 ト ・ ヨ ト ・ ヨ ト … ヨ

Asymptotic normality, continued

Let (ε_n) and (ξ_n) be the martingale difference sequences given by

$$\varepsilon_{n+1} = Y_{n+1} - \mathbb{E}[Y_{n+1}|\mathcal{F}_n] = Y_{n+1} - \Phi(X_n), \xi_{n+1} = Z_{n+1} - \mathbb{E}[Z_{n+1}|\mathcal{F}_n] = Z_{n+1} - \Psi(X_n).$$

Theorem (Kiefer-Wolfowitz, continued)

Assume that the function $f \in C^3(\mathbb{R}^d)$ such that $\nabla f(x^*) = 0$. Suppose that f and g satisfy the same assumptions as in Kiefer-Wolfowitz Theorem. Moreover, assume that

$$\lim_{n \to \infty} \mathbb{E}[\varepsilon_{n+1}\varepsilon_{n+1}^{T} | \mathcal{F}_{n}] = \Gamma_{g} \qquad a.s.$$
$$\lim_{n \to \infty} \mathbb{E}[\xi_{n+1}\xi_{n+1}^{T} | \mathcal{F}_{n}] = \Gamma_{h} \qquad a.s.$$

where Γ_g and Γ_h are symmetric definite positive matrices and that (ε_n) and (ξ_n) have conditional moments of order > 2.

Asymptotic normality, continued

Theorem (Kiefer-Wolfowitz, continued)

If $\rho > 2c$ where 1/6 < c < 1/2, we have the aymptotic normality

$$\sqrt{\textit{nc}_n^2}(\textit{X}_n - \textit{x}^*) \stackrel{\mathcal{L}}{\longrightarrow} \mathcal{N}(0, \Sigma).$$

 \rightarrow In the special case $\rho > 2c$ with c = 1/6, we also have

$$n^{1/3}(X_n - x^*) \xrightarrow{\mathcal{L}} \mathcal{N}(m, \Sigma)$$

where the mean *m* can be explicitly calculated.

Asymptotic normality for d = 1.

The limiting covariance matrix Σ is the unique solution of the **Lyapunov equation**

$$\left(H+\left(\frac{1}{2}-c\right)I_{d}\right)\Sigma+\Sigma\left(H+\left(\frac{1}{2}-c\right)I_{d}\right)=-\frac{1}{4}\Gamma.$$

It is quite complicated to evaluate Σ . However, in the special case d = 1 and $\Gamma = \sigma^2$, we have

$$\overline{\Sigma} = rac{\sigma^2}{8(
ho + c - 1/2)}.$$

Consequently, as soon as $\rho > 2c$ where 1/6 < c < 1/2, we have

$$\sqrt{nc_n^2}(X_n - x^*) \xrightarrow{\mathcal{L}} \mathcal{N}\Big(0, \frac{\sigma^2}{8(\rho + c - 1/2)}\Big).$$

A (10) A (10)

The Robbins-Monro algorithm

- Introduction.
- Almost sure convergence.
- Asymptotic normality.
- The Kiefer-Wolfowitz algorithm
 - Introduction.
 - Almost sure convergence.
 - Asymptotic normality.

Acceleration by averaging

- Introduction.
- Almost sure convergence.
- Asymptotic normality.

Stochastic averaging.

David Ruppert

Boris Polyak

Stochastic averaging.

The idea of using averaging to accelerate stochastic algorithms in due to Poliak and Ruppert. It consists in introducing a Cesaro mean over the iterations of the original stochastic algorithm

$$\overline{X}_n = \frac{1}{n} \sum_{k=1}^n X_k.$$

Goal

 \longrightarrow Improve the convergence properties of the stochastic algorithm by minimizing its asymptotic variance.

 \longrightarrow Substantially weaken the conditions of the previous asymptotic results on the stochastic algorithm.

□ > < □ > < □ >

Stochastic averaging on the Robbins-Monro algorithm.

Consider the slow down Robbins-Monro algorithm given by

$$\boldsymbol{X}_{n+1} = \boldsymbol{X}_n + \gamma_n \Big(\boldsymbol{Y}_{n+1} - \alpha \Big)$$

where the initial state X_0 is a square integrable random vector of \mathbb{R}^d which can be arbitrarily chosen and the step

$$\gamma_n = \frac{1}{n^c}$$
 with $\frac{1}{2} < c < 1$.

At time $n \ge 1$, compute de Cesaro mean

$$\overline{X}_n = \frac{1}{n} \sum_{k=1}^n X_k.$$

A B A A B A

A second-order recursive equation.

We have

$$(n+1)\overline{X}_{n+1} = \sum_{k=1}^{n} X_k + X_{n+1} = n\overline{X}_n + X_{n+1},$$

which implies that

$$\overline{X}_{n+1} = \overline{X}_n + \frac{1}{n+1} \Big(X_{n+1} - \overline{X}_n \Big).$$

However,

$$X_{n+1} = X_n + \gamma_n \Big(Y_{n+1} - \alpha \Big).$$

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

A ►

A second-order recursive equation.

Consequently, as $X_n = n\overline{X}_n - (n-1)\overline{X}_{n-1}$ we obtain that

$$\overline{X}_{n+1} = \overline{X}_n + \frac{1}{n+1} \Big(X_n - \overline{X}_n + \gamma_n \Big(Y_{n+1} - \alpha \Big) \Big),$$

$$= \overline{X}_n + \frac{1}{n+1} \Big((n-1) \Big(\overline{X}_n - \overline{X}_{n-1} \Big) + \gamma_n \Big(Y_{n+1} - \alpha \Big) \Big),$$

$$= \overline{X}_n + \Big(\frac{n-1}{n+1} \Big) \overline{X}_n - \Big(\frac{n-1}{n+1} \Big) \overline{X}_{n-1} + \frac{\gamma_n}{n+1} \Big(Y_{n+1} - \alpha \Big),$$

leading to the second-order recursive equation

$$\overline{X}_{n+1} = \left(\frac{2n}{n+1}\right)\overline{X}_n - \left(\frac{n-1}{n+1}\right)\overline{X}_{n-1} + \frac{\gamma_n}{n+1}\left(Y_{n+1} - \alpha\right).$$

過き イヨト イヨト

A second-order recursive equation.

Consequently, as $X_n = n\overline{X}_n - (n-1)\overline{X}_{n-1}$ we obtain that

$$\overline{X}_{n+1} = \overline{X}_n + \frac{1}{n+1} \Big(X_n - \overline{X}_n + \gamma_n \Big(Y_{n+1} - \alpha \Big) \Big),$$

$$= \overline{X}_n + \frac{1}{n+1} \Big((n-1) \Big(\overline{X}_n - \overline{X}_{n-1} \Big) + \gamma_n \Big(Y_{n+1} - \alpha \Big) \Big),$$

$$= \overline{X}_n + \Big(\frac{n-1}{n+1} \Big) \overline{X}_n - \Big(\frac{n-1}{n+1} \Big) \overline{X}_{n-1} + \frac{\gamma_n}{n+1} \Big(Y_{n+1} - \alpha \Big),$$

leading to the second-order recursive equation

$$\overline{X}_{n+1} = \left(\frac{2n}{n+1}\right)\overline{X}_n - \left(\frac{n-1}{n+1}\right)\overline{X}_{n-1} + \frac{\gamma_n}{n+1}\left(Y_{n+1} - \alpha\right).$$

< 個 → < 回 → < 回 → … 回

A second-order recursive equation.

Consequently, as $X_n = n\overline{X}_n - (n-1)\overline{X}_{n-1}$ we obtain that

$$\begin{aligned} \overline{X}_{n+1} &= \overline{X}_n + \frac{1}{n+1} \Big(X_n - \overline{X}_n + \gamma_n \Big(Y_{n+1} - \alpha \Big) \Big), \\ &= \overline{X}_n + \frac{1}{n+1} \Big((n-1) \Big(\overline{X}_n - \overline{X}_{n-1} \Big) + \gamma_n \Big(Y_{n+1} - \alpha \Big) \Big), \\ &= \overline{X}_n + \Big(\frac{n-1}{n+1} \Big) \overline{X}_n - \Big(\frac{n-1}{n+1} \Big) \overline{X}_{n-1} + \frac{\gamma_n}{n+1} \Big(Y_{n+1} - \alpha \Big), \end{aligned}$$

leading to the second-order recursive equation

$$\overline{X}_{n+1} = \left(\frac{2n}{n+1}\right)\overline{X}_n - \left(\frac{n-1}{n+1}\right)\overline{X}_{n-1} + \frac{\gamma_n}{n+1}\left(Y_{n+1} - \alpha\right).$$

(日) (モン・モン・モ

The Robbins-Monro algorithm

- Introduction.
- Almost sure convergence.
- Asymptotic normality.
- The Kiefer-Wolfowitz algorithm
 - Introduction.
 - Almost sure convergence.
 - Asymptotic normality.

Acceleration by averaging

- Introduction.
- Almost sure convergence.
- Asymptotic normality.

4 3 > 4 3

Almost sure convergence.

Theorem (Robbins-Monro averaging)

Assume that the function f is continuous from \mathbb{R}^d to \mathbb{R}^d such that $f(x^*) = \alpha$, and for all x different from x^* ,

 $\langle \mathbf{x} - \mathbf{x}^*, \mathbf{f}(\mathbf{x}) - \alpha \rangle < \mathbf{0}.$

Assume that for K > 0 and for all $x \in \mathbb{R}^d$,

 $g(x) \leqslant K(1+||x||^2).$

Then, we have the almost sure convergence

$$\lim_{n\to\infty}\overline{X}_n=x^*\qquad\text{a.s.}$$

< 🗇 > < 🖻 > < 🖻 >

The Robbins-Monro algorithm

- Introduction.
- Almost sure convergence.
- Asymptotic normality.
- The Kiefer-Wolfowitz algorithm
 - Introduction.
 - Almost sure convergence.
 - Asymptotic normality.

Acceleration by averaging

- Introduction.
- Almost sure convergence.
- Asymptotic normality.

Asymptotic normality.

Theorem (Robbins-Monro averaging)

Assume that the function f is twice differentiable from \mathbb{R}^d to \mathbb{R}^d such that $f(x^*) = \alpha$. Suppose that f and g satisfy the same assumptions as in Robbins-Monro Theorem. Moreover, assume that

$$\lim_{n\to\infty}\mathbb{E}[\varepsilon_{n+1}\varepsilon_{n+1}^{T}|\mathcal{F}_{n}]=\Gamma \qquad a.s.$$

where Γ is a symmetric definite positive matrix and that (ε_n) has a conditional moment of order > 2. Then, we have the asymptotic normality

$$\sqrt{n}(\overline{X}_n - x^*) \xrightarrow{\mathcal{L}} \mathcal{N}(\mathbf{0}, \mathbf{\Sigma})$$

where the asymptotic matrix Σ is given by

$$\Sigma = H^{-1} \Gamma (H^{-1})^T.$$

Asymptotic normality for d = 1.

It is not necessary to assume that

$$ho = -\operatorname{Re}(\lambda_{max}(H)) > \frac{1}{2}.$$

In the special case d = 1 and $\Gamma = \sigma^2$, we have $\rho = -H = -f'(x^*)$, which means that

$$\Sigma = \frac{\sigma^2}{\left(f'(x^*)\right)^2}$$

Consequently, the asymptotic normality reduces to

$$\sqrt{n}(\overline{X}_n - x^*) \xrightarrow{\mathcal{L}} \mathcal{N}\Big(\mathbf{0}, \frac{\sigma^2}{(f'(x^*))^2}\Big).$$

A (1) > A (2) > A (2) > A

2