Asymptotic behavior of stochastic algorithms with statistical applications Part 2

Bernard Bercu

University of Bordeaux, France

ETICS Annual Research School, Fréjus, 2019

Outline

(1) The Robbins-Monro algorithm

- Introduction.
- Almost sure convergence.
- Asymptotic normality.
(2) The Kiefer-Wolfowitz algorithm
- Introduction.
- Almost sure convergence.
- Asymptotic normality.
(3) Acceleration by averaging
- Introduction.
- Almost sure convergence.
- Asymptotic normality.

Outline

(1) The Robbins-Monro algorithm

- Introduction.
- Almost sure convergence.
- Asymptotic normality.
(2) The Kiefer-Wolfowitz algorithm
- Introduction.
- Almost sure convergence.
- Asymptotic normality.
(3) Acceleration by averaging
- Introduction.
- Almost sure convergence.
- Asymptotic normality.

Stochastic approximation.

Herbert Robbins

Stochastic approximation.

Let f be an unknown function from \mathbb{R}^{d} to \mathbb{R}^{d}.

Goal

\longrightarrow For a given vector α of \mathbb{R}^{d}, find a vector \boldsymbol{x}^{*} which satisfies

$$
f\left(x^{*}\right)=\alpha
$$

We will assume in all the sequel that for all $n \geqslant 1$, we can compute X_{1}, \ldots, X_{n} of \mathbb{R}^{d} and we can find Y_{n+1} of \mathbb{R}^{d} such that

$$
\mathbb{E}\left[Y_{n+1} \mid \mathcal{F}_{n}\right]=f\left(X_{n}\right)
$$

where $\mathcal{F}_{n}=\sigma\left(X_{1}, \ldots, X_{n}\right)$.

Stochastic approximation for $d=1$.

Goal

\longrightarrow Find the value \boldsymbol{x}^{*} with very few knowledge on \boldsymbol{f}.

Stochastic approximation.

Basic Idea

If you are able to say that $f\left(X_{n}\right)>\alpha$, then increase the value of X_{n}.

Stochastic approximation.

Basic Idea

If you are able to say that $f\left(X_{n}\right)<\alpha$, then decrease the value of X_{n}.

Outline

(1) The Robbins-Monro algorithm

- Introduction.
- Almost sure convergence.
- Asymptotic normality.
(2) The Kiefer-Wolfowitz algorithm
- Introduction.
- Almost sure convergence.
- Asymptotic normality.
(3) Acceleration by averaging
- Introduction.
- Almost sure convergence.
- Asymptotic normality.

The Robbins-Monro algorithm.

Let $\left(\gamma_{n}\right)$ be a sequence of positive real numbers decreasing to zero

$$
\sum_{n=1}^{\infty} \gamma_{n}=+\infty \quad \text { and } \quad \sum_{n=1}^{\infty} \gamma_{n}^{2}<+\infty
$$

For the sake of simplicity, we shall make use of

$$
\gamma_{n}=\frac{1}{n} .
$$

The Robbins-Monro algorithm

$$
\boldsymbol{X}_{n+1}=\boldsymbol{X}_{n}+\gamma_{n}\left(\boldsymbol{Y}_{n+1}-\alpha\right)
$$

where the initial state X_{0} is a square integrable random vector of \mathbb{R}^{d} which can be arbitrarily chosen.

Almost sure convergence.

Let g be the positive function defined on \mathbb{R}^{d} by

$$
g\left(X_{n}\right)=\mathbb{E}\left[\left\|Y_{n+1}\right\|^{2} \mid \mathcal{F}_{n}\right] .
$$

Theorem (Robbins-Monro)

Assume that the function f is continuous from \mathbb{R}^{d} to \mathbb{R}^{d} such that $f\left(x^{*}\right)=\alpha$, and for all x different from x^{*},

$$
\left\langle x-x^{*}, f(x)-\alpha\right\rangle<0 .
$$

Assume that for $K>0$ and for all $x \in \mathbb{R}^{d}$,

$$
g(x) \leqslant K\left(1+\|x\|^{2}\right) .
$$

Then, we have the almost sure convergence

$$
\lim _{n \rightarrow \infty} x_{n}=x^{*} \quad \text { a.s. }
$$

Proof of the almost sure convergence.

Proof.

First of all, denote

$$
V_{n}=\left\|X_{n}-x^{*}\right\|^{2}
$$

For all $n \geqslant 0$, we clearly have

$$
\begin{aligned}
V_{n+1} & =\left\|X_{n+1}-x^{*}\right\|^{2} \\
& =\left\|X_{n}+\gamma_{n}\left(Y_{n+1}-\alpha\right)-x^{*}\right\|^{2} \\
& =\left\|X_{n}-x^{*}\right\|^{2}+2 \gamma_{n}\left\langle X_{n}-x^{*}, Y_{n+1}-\alpha\right\rangle+\gamma_{n}^{2}\left\|Y_{n+1}-\alpha\right\|^{2}
\end{aligned}
$$

which leads to

$$
V_{n+1}=V_{n}+\gamma_{n}^{2}\left\|Y_{n+1}-\alpha\right\|^{2}+2 \gamma_{n}\left\langle X_{n}-x^{*}, f\left(X_{n}\right)+\varepsilon_{n+1}-\alpha\right\rangle
$$

where $\varepsilon_{n+1}=Y_{n+1}-f\left(X_{n}\right)$.

Proof of the almost sure convergence, continued

Proof.

Since $\mathbb{E}\left[Y_{n+1} \mid \mathcal{F}_{n}\right]=f\left(X_{n}\right), \mathbb{E}\left[\varepsilon_{n+1} \mid \mathcal{F}_{n}\right]=0$. It means that $\left(\varepsilon_{n}\right)$ is a martingale difference sequence. Consequently,

$$
\mathbb{E}\left[V_{n+1} \mid \mathcal{F}_{n}\right]=V_{n}+\gamma_{n}^{2} \mathbb{E}\left[\left\|\boldsymbol{Y}_{n+1}-\alpha\right\|^{2} \mid \mathcal{F}_{n}\right]-B_{n}
$$

where $\left(B_{n}\right)$ is the positive sequence given by

$$
B_{n}=-2 \gamma_{n}\left\langle X_{n}-x^{*}, f\left(X_{n}\right)-\alpha\right\rangle
$$

Moreover,

$$
\mathbb{E}\left[\left\|Y_{n+1}\right\|^{2} \mid \mathcal{F}_{n}\right] \leqslant K\left(1+\left\|X_{n}\right\|^{2}\right) \leqslant L\left(1+V_{n}\right)
$$

where $L=2 K\left(1+\left\|x^{*}\right\|^{2}\right)$.

Proof of the almost sure convergence, continued

Proof.

Therefore, we obtain that

$$
\mathbb{E}\left[V_{n+1} \mid \mathcal{F}_{n}\right] \leqslant V_{n}\left(1+a_{n}\right)+A_{n}-B_{n}
$$

where $a_{n}=2 L \gamma_{n}^{2}$ and $A_{n}=2\left(L+\|\alpha\|^{2}\right) \gamma_{n}^{2}$. The assumption

$$
\sum_{n=1}^{\infty} \gamma_{n}^{2}<+\infty
$$

clearly implies that

$$
\sum_{n=1}^{\infty} a_{n}<+\infty \quad \text { and } \quad \sum_{n=1}^{\infty} \boldsymbol{A}_{n}<+\infty \quad \text { a.s. }
$$

Proof of the almost sure convergence, continued

Proof.

Hence, it follows from Robbins-Siegmund theorem that (V_{n}) converges a.s. to a random variable V_{∞} and

$$
\sum_{n=1}^{\infty} B_{n}<+\infty \quad \text { a.s. }
$$

It remains to prove that $V_{\infty}=0$. Assume by contradiction that $V_{\infty}>0$. Then, we can find two finite constants $0<a<b$ such that, for n large enough, $a \leqslant\left\|X_{n}-\boldsymbol{x}^{*}\right\| \leqslant \boldsymbol{b}$. Denote by Δ the annulus of \mathbb{R}^{d},

$$
\Delta=\left\{x \in \mathbb{R}^{d} \text { such that } a \leqslant\left\|x-x^{*}\right\| \leqslant b\right\}
$$

Let F be the continuous negative function defined, for all $x \in \mathbb{R}^{d}$, by

$$
F(x)=\left\langle x-x^{*}, f(x)-\alpha\right\rangle
$$

Proof.

One can find $c>0$ such that, for all $x \in \Delta$,

$$
F(x) \leqslant-c .
$$

However, for n large enough $X_{n} \in \Delta$, which implies that $F\left(X_{n}\right) \leqslant-c$. Consequently, for n large enough,

$$
B_{n}=-2 \gamma_{n} F\left(X_{n}\right) \geqslant 2 c \gamma_{n}
$$

Finally, the assumption

$$
\sum_{n=1}^{\infty} \gamma_{n}=+\infty \quad \Longrightarrow \quad \sum_{n=1}^{\infty} B_{n}=+\infty
$$

leading to a contradiction. It means that $V_{\infty}=0$ so $X_{n} \rightarrow X^{*}$ a.s.

Outline

(1) The Robbins-Monro algorithm

- Introduction.
- Almost sure convergence.
- Asymptotic normality.
(2) The Kiefer-Wolfowitz algorithm
- Introduction.
- Almost sure convergence.
- Asymptotic normality.
(3) Acceleration by averaging
- Introduction.
- Almost sure convergence.
- Asymptotic normality.

Asymptotic normality.

The aymptotic normality requires more assumption on the function f. We now assume that f is twice differentiable. It follows from Taylor's formula that

$$
f(x)=\alpha+H\left(x-x^{*}\right)+O\left(\left\|x-x^{*}\right\|^{2}\right)
$$

where H is the Jacobian matrix of f at x^{*}. We also assume that H is an Hurwitz matrix. It means that the real parts of all the eigenvalues of H are negative. Let $\lambda_{\max }(H)$ be the eigenvalue of H with the largest real part and denote

$$
\rho=-\operatorname{Re}\left(\lambda_{\max }(H)\right) .
$$

In dimension $d=1$, we have $f\left(x^{*}\right)=\alpha, H=f^{\prime}\left(x^{*}\right)$ and $\rho=-f^{\prime}\left(x^{*}\right)$.

Asymptotic normality, continued.

Let $\left(\varepsilon_{n}\right)$ be the martingale difference sequence given by

$$
\varepsilon_{n+1}=Y_{n+1}-\mathbb{E}\left[Y_{n+1} \mid \mathcal{F}_{n}\right]=Y_{n+1}-f\left(X_{n}\right) .
$$

Theorem (Robbins-Monro, continued)

Assume that the function f is twice differentiable from \mathbb{R}^{d} to \mathbb{R}^{d} such that $f\left(x^{*}\right)=\alpha$. Suppose that f and g satisfy the same assumptions as in Robbins-Monro Theorem. Moreover, assume that

$$
\lim _{n \rightarrow \infty} \mathbb{E}\left[\varepsilon_{n+1} \varepsilon_{n+1}^{T} \mid \mathcal{F}_{n}\right]=\Gamma \quad \text { a.s. }
$$

where Γ is a symmetric definite positive matrix and that $\left(\varepsilon_{n}\right)$ has a conditional moment of order >2. If $\rho>1 / 2$, we have the aymptotic normality

$$
\sqrt{n}\left(X_{n}-x^{*}\right) \xrightarrow{\mathcal{L}} \mathcal{N}(\mathbf{0}, \boldsymbol{\Sigma}) .
$$

Asymptotic normality for $d=1$.

The limiting covariance matrix Σ is the unique solution of the Lyapunov equation

$$
\left(H+\frac{1}{2} I_{d}\right) \Sigma+\Sigma\left(H^{T}+\frac{1}{2} I_{d}\right)=-\Gamma .
$$

It is quite complicated to evaluate Σ. However, in the special case $d=1$ and $\Gamma=\sigma^{2}$, we have $\rho=-H=-f^{\prime}\left(x^{*}\right)$,

$$
\Sigma=\frac{\sigma^{2}}{2 \rho-1}
$$

Consequently, as soon as $\rho>1 / 2$, we have

$$
\sqrt{n}\left(X_{n}-x^{*}\right) \xrightarrow{\mathcal{L}} \mathcal{N}\left(0, \frac{\sigma^{2}}{2 \rho-1}\right) .
$$

Outline

(1) The Robbins-Monro algorithm

- Introduction.
- Almost sure convergence.
- Asymptotic normality.
(2) The Kiefer-Wolfowitz algorithm
- Introduction.
- Almost sure convergence.
- Asymptotic normality.
(3) Acceleration by averaging
- Introduction.
- Almost sure convergence.
- Asymptotic normality.

Stochastic approximation.

Jack Kiefer

Jacob Wolfowitz

Stochastic approximation.

Let f be an unknown differentiable function from \mathbb{R}^{d} to \mathbb{R}.

Goal

\longrightarrow Find a vector \boldsymbol{x}^{*} of \mathbb{R}^{d} which satisfies

$$
\nabla f\left(x^{*}\right)=0
$$

We will make use of the directional derivative of f at $x \in \mathbb{R}^{d}$ along the vector $y \in \mathbb{R}^{d}$, given by

$$
\langle\nabla f(x), y\rangle=\lim _{t \rightarrow 0} \frac{f(x+t y)-f(x-t y)}{2 t}
$$

Stochastic approximation.

We will assume in all the sequel that for all $n \geqslant 1$, we can compute X_{1}, \ldots, X_{n} of \mathbb{R}^{d} and we can find Y_{n+1} and Z_{n+1} of \mathbb{R}^{d} such that

$$
\mathbb{E}\left[Y_{n+1} \mid \mathcal{F}_{n}\right]=\left(\begin{array}{c}
f\left(X_{n}+c_{n} e_{1}\right) \\
\vdots \\
f\left(X_{n}+c_{n} e_{d}\right)
\end{array}\right)=\Phi\left(X_{n}\right)
$$

and

$$
\mathbb{E}\left[Z_{n+1} \mid \mathcal{F}_{n}\right]=\left(\begin{array}{c}
f\left(X_{n}-c_{n} e_{1}\right) \\
\vdots \\
f\left(X_{n}-c_{n} e_{d}\right)
\end{array}\right)=\Psi\left(X_{n}\right)
$$

where $\left(e_{1}, \ldots, e_{d}\right)$ is the canonical basis of $\mathbb{R}^{d},\left(c_{n}\right)$ is a sequence of positive real numbers decreasing to zero, and $\mathcal{F}_{n}=\sigma\left(X_{1}, \ldots, X_{n}\right)$. In dimension $d=1, \mathbb{E}\left[Y_{n+1} \mid \mathcal{F}_{n}\right]=f\left(X_{n}+c_{n}\right), \mathbb{E}\left[Z_{n+1} \mid \mathcal{F}_{n}\right]=f\left(X_{n}-c_{n}\right)$.

Outline

(1) The Robbins-Monro algorithm

- Introduction.
- Almost sure convergence.
- Asymptotic normality.
(2) The Kiefer-Wolfowitz algorithm
- Introduction.
- Almost sure convergence.
- Asymptotic normality.
(3) Acceleration by averaging
- Introduction.
- Almost sure convergence.
- Asymptotic normality.

The Kiefer-Wolfowitz algorithm.

Let $\left(\gamma_{n}\right)$ be a sequence of positive real numbers decreasing to zero

$$
\sum_{n=1}^{\infty} \gamma_{n}=+\infty, \quad \sum_{n=1}^{\infty}\left(\frac{\gamma_{n}}{c_{n}}\right)^{2}<+\infty, \quad \sum_{n=1}^{\infty} \gamma_{n} c_{n}<+\infty .
$$

For the sake of simplicity, we can choose $0<c<1 / 2$,

$$
\gamma_{n}=\frac{1}{n} \quad \text { and } \quad c_{n}=\frac{1}{n^{c}} .
$$

The Kiefer-Wolfowitz algorithm

$$
X_{n+1}=X_{n}+\frac{\gamma_{n}}{2 c_{n}}\left(Y_{n+1}-Z_{n+1}\right)
$$

where the initial state X_{0} is a square integrable random vector of \mathbb{R}^{d} which can be arbitrarily chosen.

Almost sure convergence.

Let g and h be the two positive functions defined on \mathbb{R}^{d} by

$$
g\left(X_{n}\right)=\mathbb{E}\left[\left\|Y_{n+1}\right\|^{2} \mid \mathcal{F}_{n}\right] \quad \text { and } \quad h\left(X_{n}\right)=\mathbb{E}\left[\left\|Z_{n+1}\right\|^{2} \mid \mathcal{F}_{n}\right]
$$

Theorem (Kiefer-Wolfowitz)

Assume that the function f is twice continuously differentiable from \mathbb{R}^{d} to \mathbb{R} such that $\nabla f\left(x^{*}\right)=0$, and for all x different from x^{*},

$$
\left\langle x-x^{*}, \nabla f(x)\right\rangle<0
$$

Assume that for $L>0$ and for all $x \in \mathbb{R}^{d}$,

$$
\left\|\nabla^{2} f(x)\right\| \leqslant L(1+\|x\|)
$$

Almost sure convergence, continued

Theorem (Kiefer-Wolfowitz, continued)

Moreover, assume that for $K_{g}>0, K_{h}>0$ and for all $x \in \mathbb{R}^{d}$,

$$
g(x) \leqslant K_{g}\left(1+\|x\|^{2}\right) \quad \text { and } \quad h(x) \leqslant K_{h}\left(1+\|x\|^{2}\right) .
$$

Then, we have the almost sure convergence

$$
\lim _{n \rightarrow \infty} X_{n}=x^{*} \quad \text { a.s. }
$$

Outline

(1) The Robbins-Monro algorithm

- Introduction.
- Almost sure convergence.
- Asymptotic normality.
(2) The Kiefer-Wolfowitz algorithm
- Introduction.
- Almost sure convergence.
- Asymptotic normality.
(3) Acceleration by averaging
- Introduction.
- Almost sure convergence.
- Asymptotic normality.

Asymptotic normality.

The asymptotic normality requires more assumption on the function f. We now assume that $f \in \mathcal{C}^{3}\left(\mathbb{R}^{d}\right)$ with $\nabla f\left(x^{*}\right)=0$. As $\nabla f \in \mathcal{C}^{2}\left(\mathbb{R}^{d}\right)$, it follows from Taylor's formula that

$$
\nabla f(x)=H\left(x-x^{*}\right)+O\left(\left\|x-x^{*}\right\|^{2}\right)
$$

where $H=\nabla^{2} f\left(x^{*}\right)$ is the Hessian matrix of f at x^{*}. We also assume that H is a negative definite matrix. It means that all the eigenvalues of H are negative. Denote

$$
\rho=-\lambda_{\max }(H)
$$

In dimension $d=1$, we have $f^{\prime}\left(x^{*}\right)=0, H=f^{\prime \prime}\left(x^{*}\right)$ and $\rho=-f^{\prime \prime}\left(x^{*}\right)$.

Asymptotic normality, continued

Let $\left(\varepsilon_{n}\right)$ and $\left(\xi_{n}\right)$ be the martingale difference sequences given by

$$
\begin{aligned}
\varepsilon_{n+1} & =Y_{n+1}-\mathbb{E}\left[Y_{n+1} \mid \mathcal{F}_{n}\right]=Y_{n+1}-\Phi\left(X_{n}\right) \\
\xi_{n+1} & =Z_{n+1}-\mathbb{E}\left[Z_{n+1} \mid \mathcal{F}_{n}\right]=Z_{n+1}-\Psi\left(X_{n}\right)
\end{aligned}
$$

Theorem (Kiefer-Wolfowitz, continued)

Assume that the function $f \in \mathcal{C}^{3}\left(\mathbb{R}^{d}\right)$ such that $\nabla f\left(x^{*}\right)=0$. Suppose that f and g satisfy the same assumptions as in Kiefer-Wolfowitz Theorem. Moreover, assume that

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \mathbb{E}\left[\varepsilon_{n+1} \varepsilon_{n+1}^{T} \mid \mathcal{F}_{n}\right] & =\Gamma_{g} & \text { a.s. } \\
\lim _{n \rightarrow \infty} \mathbb{E}\left[\xi_{n+1} \xi_{n+1}^{T} \mid \mathcal{F}_{n}\right] & =\Gamma_{h} & \text { a.s. }
\end{aligned}
$$

where Γ_{g} and Γ_{h} are symmetric definite positive matrices and that $\left(\varepsilon_{n}\right)$ and $\left(\xi_{n}\right)$ have conditional moments of order >2.

Asymptotic normality, continued

Theorem (Kiefer-Wolfowitz, continued)
If $\rho>2 c$ where $1 / 6<c<1 / 2$, we have the aymptotic normality

$$
\sqrt{n c_{n}^{2}}\left(X_{n}-x^{*}\right) \xrightarrow{\mathcal{L}} \mathcal{N}(0, \Sigma)
$$

\longrightarrow In the special case $\rho>2 c$ with $c=1 / 6$, we also have

$$
n^{1 / 3}\left(X_{n}-x^{*}\right) \xrightarrow{\mathcal{L}} \mathcal{N}(m, \Sigma)
$$

where the mean m can be explicitely calculated.

Asymptotic normality for $d=1$.

The limiting covariance matrix Σ is the unique solution of the Lyapunov equation

$$
\left(H+\left(\frac{1}{2}-c\right) I_{d}\right) \Sigma+\Sigma\left(H+\left(\frac{1}{2}-c\right) I_{d}\right)=-\frac{1}{4} \Gamma .
$$

It is quite complicated to evaluate Σ. However, in the special case $d=1$ and $\Gamma=\sigma^{2}$, we have

$$
\Sigma=\frac{\sigma^{2}}{8(\rho+c-1 / 2)}
$$

Consequently, as soon as $\rho>2 c$ where $1 / 6<c<1 / 2$, we have

$$
\sqrt{n c_{n}^{2}}\left(X_{n}-x^{*}\right) \xrightarrow{\mathcal{L}} \mathcal{N}\left(0, \frac{\sigma^{2}}{8(\rho+c-1 / 2)}\right) .
$$

Outline

(1) The Robbins-Monro algorithm

- Introduction.
- Almost sure convergence.
- Asymptotic normality.
(2) The Kiefer-Wolfowitz algorithm
- Introduction.
- Almost sure convergence.
- Asymptotic normality.
(3) Acceleration by averaging
- Introduction.
- Almost sure convergence.
- Asymptotic normality.

Stochastic averaging.

David Ruppert

Boris Polyak

Stochastic averaging.

The idea of using averaging to accelerate stochastic algorithms in due to Poliak and Ruppert. It consists in introducing a Cesaro mean over the iterations of the original stochastic algorithm

$$
\bar{X}_{n}=\frac{1}{n} \sum_{k=1}^{n} x_{k} .
$$

Goal

\longrightarrow Improve the convergence properties of the stochastic algorithm by minimizing its asymptotic variance.
\longrightarrow Substantially weaken the conditions of the previous asymptotic results on the stochastic algorithm.

Stochastic averaging on the Robbins-Monro algorithm.

Consider the slow down Robbins-Monro algorithm given by

$$
x_{n+1}=X_{n}+\gamma_{n}\left(Y_{n+1}-\alpha\right)
$$

where the initial state X_{0} is a square integrable random vector of \mathbb{R}^{d} which can be arbitrarily chosen and the step

$$
\gamma_{n}=\frac{1}{n^{c}} \quad \text { with } \quad \frac{1}{2}<c<1 .
$$

At time $n \geqslant 1$, compute de Cesaro mean

$$
\bar{X}_{n}=\frac{1}{n} \sum_{k=1}^{n} x_{k} .
$$

A second-order recursive equation.

We have

$$
(n+1) \bar{X}_{n+1}=\sum_{k=1}^{n} X_{k}+X_{n+1}=n \bar{X}_{n}+X_{n+1}
$$

which implies that

$$
\bar{X}_{n+1}=\bar{X}_{n}+\frac{1}{n+1}\left(X_{n+1}-\bar{X}_{n}\right)
$$

However,

$$
X_{n+1}=X_{n}+\gamma_{n}\left(Y_{n+1}-\alpha\right)
$$

A second-order recursive equation.

Consequently, as $X_{n}=n \bar{X}_{n}-(n-1) \bar{X}_{n-1}$ we obtain that

$$
\bar{X}_{n+1}=\bar{X}_{n}+\frac{1}{n+1}\left(X_{n}-\bar{X}_{n}+\gamma_{n}\left(Y_{n+1}-\alpha\right)\right)
$$

leading to the second-order recursive equation

A second-order recursive equation.

Consequently, as $X_{n}=n \bar{X}_{n}-(n-1) \bar{X}_{n-1}$ we obtain that

$$
\begin{aligned}
\bar{X}_{n+1} & =\bar{X}_{n}+\frac{1}{n+1}\left(X_{n}-\bar{X}_{n}+\gamma_{n}\left(Y_{n+1}-\alpha\right)\right) \\
& =\bar{X}_{n}+\frac{1}{n+1}\left((n-1)\left(\bar{X}_{n}-\bar{X}_{n-1}\right)+\gamma_{n}\left(Y_{n+1}-\alpha\right)\right) \\
& =X_{n}+\left(\frac{n-1}{n+1}\right) \bar{X}_{n}-\left(\frac{n-1}{n+1}\right) X_{n-1}+\frac{\gamma_{n}}{n+1}\left(Y_{n+1}-\alpha\right)
\end{aligned}
$$

leading to the second-order recursive equation

A second-order recursive equation.

Consequently, as $X_{n}=n \bar{X}_{n}-(n-1) \bar{X}_{n-1}$ we obtain that

$$
\begin{aligned}
\bar{X}_{n+1} & =\bar{X}_{n}+\frac{1}{n+1}\left(X_{n}-\bar{X}_{n}+\gamma_{n}\left(Y_{n+1}-\alpha\right)\right) \\
& =\bar{X}_{n}+\frac{1}{n+1}\left((n-1)\left(\bar{X}_{n}-\bar{X}_{n-1}\right)+\gamma_{n}\left(Y_{n+1}-\alpha\right)\right), \\
& =\bar{X}_{n}+\left(\frac{n-1}{n+1}\right) \bar{X}_{n}-\left(\frac{n-1}{n+1}\right) \bar{X}_{n-1}+\frac{\gamma_{n}}{n+1}\left(Y_{n+1}-\alpha\right),
\end{aligned}
$$

leading to the second-order recursive equation

$$
\bar{X}_{n+1}=\left(\frac{2 n}{n+1}\right) \bar{X}_{n}-\left(\frac{n-1}{n+1}\right) \bar{X}_{n-1}+\frac{\gamma_{n}}{n+1}\left(Y_{n+1}-\alpha\right) .
$$

Outline

(1) The Robbins-Monro algorithm

- Introduction.
- Almost sure convergence.
- Asymptotic normality.
(2) The Kiefer-Wolfowitz algorithm
- Introduction.
- Almost sure convergence.
- Asymptotic normality.
(3) Acceleration by averaging
- Introduction.
- Almost sure convergence.
- Asymptotic normality.

Almost sure convergence.

Theorem (Robbins-Monro averaging)

Assume that the function f is continuous from \mathbb{R}^{d} to \mathbb{R}^{d} such that $f\left(x^{*}\right)=\alpha$, and for all x different from x^{*},

$$
\left\langle x-x^{*}, f(x)-\alpha\right\rangle<0
$$

Assume that for $K>0$ and for all $x \in \mathbb{R}^{d}$,

$$
g(x) \leqslant K\left(1+\|x\|^{2}\right)
$$

Then, we have the almost sure convergence

$$
\lim _{n \rightarrow \infty} \bar{X}_{n}=x^{*} \quad \text { a.s. }
$$

Outline

(1) The Robbins-Monro algorithm

- Introduction.
- Almost sure convergence.
- Asymptotic normality.
(2) The Kiefer-Wolfowitz algorithm
- Introduction.
- Almost sure convergence.
- Asymptotic normality.
(3) Acceleration by averaging
- Introduction.
- Almost sure convergence.
- Asymptotic normality.

Asymptotic normality.

Theorem (Robbins-Monro averaging)

Assume that the function f is twice differentiable from \mathbb{R}^{d} to \mathbb{R}^{d} such that $f\left(x^{*}\right)=\alpha$. Suppose that f and g satisfy the same assumptions as in Robbins-Monro Theorem. Moreover, assume that

$$
\lim _{n \rightarrow \infty} \mathbb{E}\left[\varepsilon_{n+1} \varepsilon_{n+1}^{T} \mid \mathcal{F}_{n}\right]=\Gamma \quad \text { a.s. }
$$

where Γ is a symmetric definite positive matrix and that $\left(\varepsilon_{n}\right)$ has a conditional moment of order >2. Then, we have the asymptotic normality

$$
\sqrt{n}\left(\bar{X}_{n}-x^{*}\right) \xrightarrow{\mathcal{L}} \mathcal{N}(0, \Sigma)
$$

where the asymptotic matrix Σ is given by

$$
\Sigma=H^{-1} \Gamma\left(H^{-1}\right)^{T} .
$$

Acceleration by averaging Asymptotic normality.

Asymptotic normality for $d=1$.

It is not necessary to assume that

$$
\rho=-\operatorname{Re}\left(\lambda_{\max }(H)\right)>\frac{1}{2} .
$$

In the special case $d=1$ and $\Gamma=\sigma^{2}$, we have $\rho=-H=-f^{\prime}\left(x^{*}\right)$, which means that

$$
\Sigma=\frac{\sigma^{2}}{\left(f^{\prime}\left(x^{*}\right)\right)^{2}}
$$

Consequently, the asymptotic normality reduces to

$$
\sqrt{n}\left(\bar{X}_{n}-x^{*}\right) \xrightarrow{\mathcal{L}} \mathcal{N}\left(0, \frac{\sigma^{2}}{\left(f^{\prime}\left(x^{*}\right)\right)^{2}}\right) .
$$

