
Asymptotic behavior of stochastic algorithms with

statistical applications

Part 2

Bernard Bercu

University of Bordeaux, France

ETICS Annual Research School, Fréjus, 2019

Bernard Bercu Stochastic algorithms with statistical applications 1 / 45



Outline

1 The Robbins-Monro algorithm

Introduction.

Almost sure convergence.

Asymptotic normality.

2 The Kiefer-Wolfowitz algorithm

Introduction.

Almost sure convergence.

Asymptotic normality.

3 Acceleration by averaging

Introduction.

Almost sure convergence.

Asymptotic normality.

Bernard Bercu Stochastic algorithms with statistical applications 2 / 45



The Robbins-Monro algorithm Introduction.

Outline

1 The Robbins-Monro algorithm

Introduction.

Almost sure convergence.

Asymptotic normality.

2 The Kiefer-Wolfowitz algorithm

Introduction.

Almost sure convergence.

Asymptotic normality.

3 Acceleration by averaging

Introduction.

Almost sure convergence.

Asymptotic normality.

Bernard Bercu Stochastic algorithms with statistical applications 3 / 45



The Robbins-Monro algorithm Introduction.

Stochastic approximation.

Herbert Robbins

Bernard Bercu Stochastic algorithms with statistical applications 4 / 45



The Robbins-Monro algorithm Introduction.

Stochastic approximation.

Let f be an unknown function from R
d to R

d .

Goal

−→ For a given vector α of Rd , find a vector x∗ which satisfies

f (x∗) = α.

We will assume in all the sequel that for all n > 1, we can compute

X1, . . . ,Xn of Rd and we can find Yn+1 of Rd such that

E[Yn+1|Fn] = f (Xn)

where Fn = σ(X1, . . . ,Xn).
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The Robbins-Monro algorithm Introduction.

Stochastic approximation for d = 1.
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Goal

−→ Find the value x∗ with very few knowledge on f .
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The Robbins-Monro algorithm Introduction.

Stochastic approximation.
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Basic Idea

If you are able to say that f (Xn) > α, then increase the value of Xn.
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The Robbins-Monro algorithm Almost sure convergence.

The Robbins-Monro algorithm.

Let (γn) be a sequence of positive real numbers decreasing to zero

∞
ÿ

n=1

γn = +∞ and

∞
ÿ

n=1

γ2
n < +∞.

For the sake of simplicity, we shall make use of

γn =
1

n
.

The Robbins-Monro algorithm

Xn+1 = Xn + γn

(

Yn+1 − α
)

where the initial state X0 is a square integrable random vector of Rd

which can be arbitrarily chosen.
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The Robbins-Monro algorithm Almost sure convergence.

Almost sure convergence.

Let g be the positive function defined on R
d by

g(Xn) = E[||Yn+1||
2|Fn].

Theorem (Robbins-Monro)

Assume that the function f is continuous from R
d to R

d such that

f (x∗) = α, and for all x different from x∗,

〈x − x∗, f (x) − α〉 < 0.

Assume that for K > 0 and for all x ∈ R
d ,

g(x) 6 K
(

1 + ||x ||2
)

.

Then, we have the almost sure convergence

lim
n→∞

Xn = x∗ a.s.
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The Robbins-Monro algorithm Almost sure convergence.

Proof of the almost sure convergence.

Proof.

First of all, denote

Vn = ||Xn − x∗||2.

For all n > 0, we clearly have

Vn+1 = ||Xn+1 − x∗||2,

= ||Xn + γn

(

Yn+1 − α
)

− x∗||2,

= ||Xn − x∗||2 + 2γn〈Xn − x∗,Yn+1 − α〉+ γ2
n ||Yn+1 − α||2,

which leads to

Vn+1 = Vn + γ2
n||Yn+1 − α||2 + 2γn〈Xn − x∗, f (Xn) + εn+1 − α〉

where εn+1 = Yn+1 − f (Xn).
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The Robbins-Monro algorithm Almost sure convergence.

Proof of the almost sure convergence, continued

Proof.

Since E[Yn+1|Fn]= f (Xn), E[εn+1|Fn]=0. It means that (εn) is a

martingale difference sequence. Consequently,

E[Vn+1|Fn] = Vn + γ2
nE[||Yn+1 − α||2|Fn] − Bn

where (Bn) is the positive sequence given by

Bn = −2γn〈Xn − x∗, f (Xn) − α〉

Moreover,

E[||Yn+1||
2|Fn] 6 K (1 + ||Xn||

2) 6 L(1 + Vn)

where L = 2K (1 + ||x∗||2).
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The Robbins-Monro algorithm Almost sure convergence.

Proof of the almost sure convergence, continued

Proof.

Therefore, we obtain that

E[Vn+1|Fn] 6 Vn(1 + an) + An − Bn

where an = 2Lγ2
n and An = 2(L + ||α||2)γ2

n . The assumption

∞
ÿ

n=1

γ2
n < +∞

clearly implies that

∞
ÿ

n=1

an < +∞ and

∞
ÿ

n=1

An < +∞ a.s.
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The Robbins-Monro algorithm Almost sure convergence.

Proof of the almost sure convergence, continued

Proof.

Hence, it follows from Robbins-Siegmund theorem that (Vn) converges

a.s. to a random variable V∞ and

∞
ÿ

n=1

Bn < +∞ a.s.

It remains to prove that V∞=0. Assume by contradiction that V∞>0.

Then, we can find two finite constants 0 < a < b such that, for n large

enough, a 6 ||Xn − x∗|| 6 b. Denote by ∆ the annulus of Rd ,

∆ =
{

x ∈ R
d such that a 6 ||x − x∗|| 6 b

}

.

Let F be the continuous negative function defined, for all x ∈ R
d , by

F (x) = 〈x − x∗, f (x)− α〉.
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The Robbins-Monro algorithm Almost sure convergence.

Proof.

One can find c > 0 such that, for all x ∈ ∆,

F (x) 6 −c.

However, for n large enough Xn ∈ ∆, which implies that F (Xn) 6 −c.

Consequently, for n large enough,

Bn = −2γnF (Xn) > 2cγn.

Finally, the assumption

∞
ÿ

n=1

γn = +∞ =⇒
∞
ÿ

n=1

Bn = +∞

leading to a contradiction. It means that V∞ = 0 so Xn → x∗ a.s.
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The Robbins-Monro algorithm Asymptotic normality.
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The Robbins-Monro algorithm Asymptotic normality.

Asymptotic normality.

The aymptotic normality requires more assumption on the function f .

We now assume that f is twice differentiable. It follows from Taylor’s

formula that

f (x) = α+ H(x − x∗) + O
(

||x − x∗||2
)

where H is the Jacobian matrix of f at x∗. We also assume that H is

an Hurwitz matrix. It means that the real parts of all the eigenvalues

of H are negative. Let λmax(H) be the eigenvalue of H with the largest

real part and denote

ρ = −Re(λmax(H)).

In dimension d = 1, we have f (x∗) = α, H = f ′(x∗) and ρ = −f ′(x∗).
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The Robbins-Monro algorithm Asymptotic normality.

Asymptotic normality, continued.

Let (εn) be the martingale difference sequence given by

εn+1 = Yn+1 − E[Yn+1|Fn] = Yn+1 − f (Xn).

Theorem (Robbins-Monro, continued)

Assume that the function f is twice differentiable from R
d to R

d such

that f (x∗) = α. Suppose that f and g satisfy the same assumptions as

in Robbins-Monro Theorem. Moreover, assume that

lim
n→∞

E[εn+1ε
T
n+1|Fn] = Γ a.s.

where Γ is a symmetric definite positive matrix and that (εn) has a

conditional moment of order > 2. If ρ > 1/2, we have the aymptotic

normality
‘

n
(

Xn − x∗
) L
−→ N

(

0,Σ
)

.
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The Robbins-Monro algorithm Asymptotic normality.

Asymptotic normality for d = 1.

The limiting covariance matrix Σ is the unique solution of the

Lyapunov equation

(

H +
1

2
Id

)

Σ+ Σ
(

HT +
1

2
Id

)

= −Γ.

It is quite complicated to evaluate Σ. However, in the special case

d = 1 and Γ = σ2, we have ρ = −H = −f ′(x∗),

Σ =
σ2

2ρ− 1
.

Consequently, as soon as ρ > 1/2, we have

‘

n
(

Xn − x∗
) L
−→ N

(

0,
σ2

2ρ − 1

)

.
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The Kiefer-Wolfowitz algorithm Introduction.
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The Kiefer-Wolfowitz algorithm Introduction.

Stochastic approximation.

Jack Kiefer Jacob Wolfowitz
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The Kiefer-Wolfowitz algorithm Introduction.

Stochastic approximation.

Let f be an unknown differentiable function from R
d to R.

Goal

−→ Find a vector x∗ of Rd which satisfies

∇f (x∗) = 0.

We will make use of the directional derivative of f at x ∈ R
d along

the vector y ∈ R
d , given by

〈∇f (x), y〉 = lim
t→0

f (x + ty) − f (x − ty)

2t
.
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The Kiefer-Wolfowitz algorithm Introduction.

Stochastic approximation.

We will assume in all the sequel that for all n > 1, we can compute

X1, . . . ,Xn of Rd and we can find Yn+1 and Zn+1 of Rd such that

E[Yn+1|Fn] =







f (Xn + cne1)
...

f (Xn + cned)






= Φ(Xn)

and

E[Zn+1|Fn] =







f (Xn − cne1)
...

f (Xn − cned)






= Ψ(Xn)

where (e1, . . . , ed) is the canonical basis of Rd , (cn) is a sequence of

positive real numbers decreasing to zero, and Fn = σ(X1, . . . ,Xn). In

dimension d = 1, E[Yn+1|Fn] = f (Xn + cn), E[Zn+1|Fn] = f (Xn − cn).
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The Kiefer-Wolfowitz algorithm Almost sure convergence.
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The Kiefer-Wolfowitz algorithm Almost sure convergence.

The Kiefer-Wolfowitz algorithm.

Let (γn) be a sequence of positive real numbers decreasing to zero

∞
ÿ

n=1

γn = +∞,
∞
ÿ

n=1

(γn

cn

)2
< +∞,

∞
ÿ

n=1

γncn < +∞.

For the sake of simplicity, we can choose 0 < c < 1/2,

γn =
1

n
and cn =

1

nc
.

The Kiefer-Wolfowitz algorithm

Xn+1 = Xn +
γn

2cn

(

Yn+1 − Zn+1

)

where the initial state X0 is a square integrable random vector of Rd

which can be arbitrarily chosen.
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The Kiefer-Wolfowitz algorithm Almost sure convergence.

Almost sure convergence.

Let g and h be the two positive functions defined on R
d by

g(Xn) = E[||Yn+1||
2|Fn] and h(Xn) = E[||Zn+1||

2|Fn].

Theorem (Kiefer-Wolfowitz)

Assume that the function f is twice continuously differentiable from R
d

to R such that ∇f (x∗) = 0, and for all x different from x∗,

〈x − x∗,∇f (x)〉 < 0.

Assume that for L > 0 and for all x ∈ R
d ,

||∇2f (x)|| 6 L
(

1 + ||x ||
)

.
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The Kiefer-Wolfowitz algorithm Almost sure convergence.

Almost sure convergence, continued

Theorem (Kiefer-Wolfowitz, continued)

Moreover, assume that for Kg > 0, Kh > 0 and for all x ∈ R
d ,

g(x) 6 Kg

(

1 + ||x ||2
)

and h(x) 6 Kh

(

1 + ||x ||2
)

.

Then, we have the almost sure convergence

lim
n→∞

Xn = x∗ a.s.
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The Kiefer-Wolfowitz algorithm Asymptotic normality.
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The Kiefer-Wolfowitz algorithm Asymptotic normality.

Asymptotic normality.

The asymptotic normality requires more assumption on the function f .

We now assume that f ∈ C3(Rd) with ∇f (x∗) = 0. As ∇f ∈ C2(Rd), it

follows from Taylor’s formula that

∇f (x) = H(x − x∗) + O
(

||x − x∗||2
)

where H = ∇2f (x∗) is the Hessian matrix of f at x∗. We also assume

that H is a negative definite matrix. It means that all the eigenvalues

of H are negative. Denote

ρ = −λmax(H).

In dimension d = 1, we have f ′(x∗) = 0, H = f ′′(x∗) and ρ = −f ′′(x∗).
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The Kiefer-Wolfowitz algorithm Asymptotic normality.

Asymptotic normality, continued

Let (εn) and (ξn) be the martingale difference sequences given by

εn+1 = Yn+1 − E[Yn+1|Fn] = Yn+1 − Φ(Xn),

ξn+1 = Zn+1 − E[Zn+1|Fn] = Zn+1 −Ψ(Xn).

Theorem (Kiefer-Wolfowitz, continued)

Assume that the function f ∈ C3(Rd) such that ∇f (x∗) = 0. Suppose

that f and g satisfy the same assumptions as in Kiefer-Wolfowitz

Theorem. Moreover, assume that

lim
n→∞

E[εn+1ε
T
n+1|Fn] = Γg a.s.

lim
n→∞

E[ξn+1ξ
T
n+1|Fn] = Γh a.s.

where Γg and Γh are symmetric definite positive matrices and that (εn)
and (ξn) have conditional moments of order > 2.
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The Kiefer-Wolfowitz algorithm Asymptotic normality.

Asymptotic normality, continued

Theorem (Kiefer-Wolfowitz, continued)

If ρ > 2c where 1/6 < c < 1/2, we have the aymptotic normality

b

nc2
n

(

Xn − x∗
) L
−→ N

(

0,Σ
)

.

−→ In the special case ρ > 2c with c = 1/6, we also have

n1/3
(

Xn − x∗
) L
−→ N

(

m,Σ
)

where the mean m can be explicitely calculated.
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The Kiefer-Wolfowitz algorithm Asymptotic normality.

Asymptotic normality for d = 1.

The limiting covariance matrix Σ is the unique solution of the

Lyapunov equation

(

H +
(1

2
− c

)

Id

)

Σ+ Σ
(

H +
(1

2
− c

)

Id

)

= −
1

4
Γ.

It is quite complicated to evaluate Σ. However, in the special case

d = 1 and Γ = σ2, we have

Σ =
σ2

8(ρ+ c − 1/2)
.

Consequently, as soon as ρ > 2c where 1/6 < c < 1/2, we have

b

nc2
n

(

Xn − x∗
) L
−→ N

(

0,
σ2

8(ρ + c − 1/2)

)

.
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Acceleration by averaging Introduction.

Stochastic averaging.

David Ruppert Boris Polyak
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Acceleration by averaging Introduction.

Stochastic averaging.

The idea of using averaging to accelerate stochastic algorithms in due

to Poliak and Ruppert. It consists in introducing a Cesaro mean over

the iterations of the original stochastic algorithm

X n =
1

n

n
ÿ

k=1

Xk .

Goal

−→ Improve the convergence properties of the stochastic algorithm by

minimizing its asymptotic variance.

−→ Substantially weaken the conditions of the previous asymptotic

results on the stochastic algorithm.
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Acceleration by averaging Introduction.

Stochastic averaging on the Robbins-Monro algorithm.

Consider the slow down Robbins-Monro algorithm given by

Xn+1 = Xn + γn

(

Yn+1 − α
)

where the initial state X0 is a square integrable random vector of Rd

which can be arbitrarily chosen and the step

γn =
1

nc
with

1

2
< c < 1.

At time n > 1, compute de Cesaro mean

X n =
1

n

n
ÿ

k=1

Xk .
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Acceleration by averaging Introduction.

A second-order recursive equation.

We have

(n + 1)X n+1 =
n

ÿ

k=1

Xk + Xn+1 = nX n + Xn+1,

which implies that

X n+1 = X n +
1

n + 1

(

Xn+1 − X n

)

.

However,

Xn+1 = Xn + γn

(

Yn+1 − α
)

.
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Acceleration by averaging Introduction.

A second-order recursive equation.

Consequently, as Xn = nX n − (n − 1)X n−1 we obtain that

X n+1 = X n +
1

n + 1

(

Xn − X n + γn

(

Yn+1 − α
))

,

= X n +
1

n + 1

(

(n − 1)
(

X n − X n−1

)

+ γn

(

Yn+1 − α
))

,

= X n +
(n − 1

n + 1

)

X n −
(n − 1

n + 1

)

X n−1 +
γn

n + 1

(

Yn+1 − α
)

,

leading to the second-order recursive equation

X n+1 =
( 2n

n + 1

)

X n −
(n − 1

n + 1

)

X n−1 +
γn

n + 1

(

Yn+1 − α
)

.
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Acceleration by averaging Introduction.

A second-order recursive equation.
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A second-order recursive equation.
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Acceleration by averaging Almost sure convergence.
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Acceleration by averaging Almost sure convergence.

Almost sure convergence.

Theorem (Robbins-Monro averaging)

Assume that the function f is continuous from R
d to R

d such that

f (x∗) = α, and for all x different from x∗,

〈x − x∗, f (x) − α〉 < 0.

Assume that for K > 0 and for all x ∈ R
d ,

g(x) 6 K
(

1 + ||x ||2
)

.

Then, we have the almost sure convergence

lim
n→∞

X n = x∗ a.s.
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Acceleration by averaging Asymptotic normality.
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Acceleration by averaging Asymptotic normality.

Asymptotic normality.

Theorem (Robbins-Monro averaging)

Assume that the function f is twice differentiable from R
d to R

d such

that f (x∗) = α. Suppose that f and g satisfy the same assumptions as

in Robbins-Monro Theorem. Moreover, assume that

lim
n→∞

E[εn+1ε
T
n+1|Fn] = Γ a.s.

where Γ is a symmetric definite positive matrix and that (εn) has a

conditional moment of order > 2. Then, we have the asymptotic

normality
‘

n
(

X n − x∗
) L
−→ N

(

0,Σ
)

where the asymptotic matrix Σ is given by

Σ = H−1Γ(H−1)T .
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Acceleration by averaging Asymptotic normality.

Asymptotic normality for d = 1.

It is not necessary to assume that

ρ = −Re(λmax(H)) >
1

2
.

In the special case d = 1 and Γ = σ2, we have ρ = −H = −f ′(x∗),
which means that

Σ =
σ2

(

f ′(x∗)
)2

.

Consequently, the asymptotic normality reduces to

‘

n
(

X n − x∗
) L
−→ N

(

0,
σ2

(

f ′(x∗)
)2

)

.
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Acceleration by averaging Asymptotic normality.
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