Asymptotic behavior of stochastic algorithms with statistical applications Part 3

Bernard Bercu

University of Bordeaux, France

ETICS Annual Research School, Fréjus, 2019

Outline

(1) Parametric estimation of quantiles and superquantiles.
(2) Nonparametric estimation of probability density functions.
(3) Semiparametric estimation in shape invariant models.

Outline

(1) Parametric estimation of quantiles and superquantiles.

(2) Nonparametric estimation of probability density functions.
(3) Semiparametric estimation in shape invariant models.

Parametric estimation of quantiles and superquantiles.

Quantiles and superquantiles.

Let X be a continuous random variable with unknown distribution function F. Assume that F is continuous and strictly increasing.

Definition

For any α in]0, 1 , the quantile of order α of X is the unique solution θ_{α} of the equation $F(x)=\alpha$,

$$
F\left(\theta_{\alpha}\right)=\alpha .
$$

If X is integrable, the superquantile of order α of X is defined by

$$
\vartheta_{\alpha}=\mathbb{E}\left[X \mid X \geqslant \theta_{\alpha}\right]=\frac{\mathbb{E}\left[X I_{\left\{X \geqslant \theta_{\alpha}\right\}}\right]}{\mathbb{P}\left(X \geqslant \theta_{\alpha}\right)}=\frac{1}{1-\alpha} \mathbb{E}\left[X \mathbf{I}_{\left\{X \geqslant \theta_{\alpha}\right\}}\right] .
$$

Parametric estimation of quantiles and superquantiles.

Quantiles and superquantiles.

Example (Exponential distribution)

If X has an Exponential $\mathcal{E}(\lambda)$ distribution with $\lambda>0$,

$$
\theta_{\alpha}=-\frac{1}{\lambda} \log (1-\alpha) \quad \text { and } \quad \vartheta_{\alpha}=\frac{1}{\lambda}(1-\ln (1-\alpha)) .
$$

Example (Pareto distribution)

If X has a Pareto $\mathcal{P}(a, b)$ distribution with $a>1$ and $b>0$,

$$
\theta_{\alpha}=b(1-\alpha)^{-1 / a} \quad \text { and } \quad \vartheta_{\alpha}=\frac{a b}{a-1}(1-\alpha)^{-1 / a} .
$$

Goal

\longrightarrow Recursively estime the quantiles and superquantiles θ_{α} and $\boldsymbol{\vartheta}_{\alpha}$.

Parametric estimation of quantiles and superquantiles.

Recursive estimation of quantiles and superquantiles.

We already saw that we can estimate θ_{α} by the slow down Robbins-Monro algorithm given by

$$
\hat{\theta}_{n+1}=\hat{\theta}_{n}-\gamma_{n}\left(\mathbf{I}_{\left\{X_{n+1} \leqslant \hat{\theta}_{n}\right\}}-\alpha\right)
$$

where

$$
\gamma_{n}=\frac{1}{n^{c}} \quad \text { with } \quad \frac{1}{2}<c<1
$$

and its averaging version

$$
\bar{\theta}_{n}=\frac{1}{n} \sum_{k=1}^{n} \hat{\theta}_{k} .
$$

Parametric estimation of quantiles and superquantiles.

Recursive estimation of quantiles and superquantiles.

We can also estimate ϑ_{α} by

$$
\bar{\vartheta}_{n}=\frac{1}{n(1-\alpha)} \sum_{k=1}^{n} X_{k} I_{\left\{x_{k} \geqslant \bar{\theta}_{k-1}\right\}}
$$

Another strategy is to make use of the convex version

$$
\begin{aligned}
\widetilde{\vartheta}_{n} & =\frac{1}{n} \sum_{k=1}^{n}\left(\bar{\theta}_{k-1}+\frac{1}{1-\alpha}\left(X_{k}-\bar{\theta}_{k-1}\right) I_{\left\{X_{k} \geqslant \bar{\theta}_{k-1}\right\}}\right), \\
& =\bar{\vartheta}_{n}+\frac{1}{n(1-\alpha)} \sum_{k=1}^{n} \bar{\theta}_{k-1}\left(\mathrm{I}_{\left\{X_{k} \leqslant \bar{\theta}_{k-1}\right\}}-\alpha\right)
\end{aligned}
$$

Parametric estimation of quantiles and superquantiles.

Recursive estimation of quantiles and superquantiles.

Assume that X is square integrable and let

$$
\begin{aligned}
G_{\alpha}(\theta) & =\frac{1}{(1-\alpha)} \mathbb{E}\left[X \mathrm{I}_{\{X \geqslant \theta\}}\right], \\
H_{\alpha}(\theta) & =\frac{1}{(1-\alpha)^{2}} \mathbb{E}\left[X^{2} \mathrm{I}_{\{X \geqslant \theta\}}\right], \\
\sigma_{\alpha}^{2}(\theta) & =\frac{1}{(1-\alpha)^{2}} \operatorname{Var}\left(X \mathrm{I}_{\{X \geqslant \theta\}}\right) .
\end{aligned}
$$

Denote

$$
Y_{n}=\frac{1}{(1-\alpha)} X_{n} \mathrm{I}_{\left\{X_{n} \geq \bar{\theta}_{n-1}\right\}} .
$$

We clearly have

$$
\mathbb{E}\left[\boldsymbol{Y}_{n} \mid \mathcal{F}_{n-1}\right]=\mathcal{G}_{\alpha}\left(\bar{\theta}_{n-1}\right) \quad \text { and } \quad \operatorname{Var}\left(\boldsymbol{Y}_{n} \mid \mathcal{F}_{n-1}\right)=\sigma_{\alpha}^{2}\left(\bar{\theta}_{n-1}\right) .
$$

Parametric estimation of quantiles and superquantiles.

The martingale decomposition.

In addition,

$$
\bar{\vartheta}_{n}=\frac{1}{n} \sum_{k=1}^{n} Y_{k}=\frac{1}{n} \sum_{k=1}^{n}\left(Y_{k}-\mathbb{E}\left[Y_{k} \mid \mathcal{F}_{k-1}\right]\right)+\frac{1}{n} \sum_{k=1}^{n} \mathbb{E}\left[Y_{k} \mid \mathcal{F}_{k-1}\right]
$$

Recalling that $\vartheta_{\alpha}=G_{\alpha}\left(\theta_{\alpha}\right)$, we obtain the martingale decomposition

$$
\bar{\vartheta}_{n}-\vartheta_{\alpha}=\frac{1}{n} M_{n}+\frac{1}{n} \sum_{k=1}^{n} G_{\alpha}\left(\bar{\theta}_{k-1}\right)-G_{\alpha}\left(\theta_{\alpha}\right)
$$

where

$$
M_{n}=\sum_{k=1}^{n}\left(Y_{k}-\mathbb{E}\left[Y_{k} \mid \mathcal{F}_{k-1}\right]\right)
$$

The martingale decomposition.

Therefore,

$$
\begin{aligned}
M_{n} & =\sum_{k=1}^{n}\left(Y_{k}-\mathbb{E}\left[Y_{k} \mid \mathcal{F}_{k-1}\right]\right), \\
<M>_{n} & =\sum_{k=1}^{n} \operatorname{Var}\left(Y_{k} \mid \mathcal{F}_{k-1}\right)=\sum_{k=1}^{n} \sigma_{\alpha}^{2}\left(\bar{\theta}_{k-1}\right) .
\end{aligned}
$$

It follows from the almost sure convergence of $\bar{\theta}_{n}$ to θ_{α} that $\left(M_{n}\right)$ is a square integrable martingale satisfying

$$
\lim _{n \rightarrow \infty} \frac{\left\langle M>_{n}\right.}{n}=\sigma_{\alpha}^{2}\left(\theta_{\alpha}\right) \quad \text { a.s. }
$$

Parametric estimation of quantiles and superquantiles.

Recursive estimation of quantiles and superquantiles.

Theorem

If X is square integrable, we have the almost sure convergence

$$
\lim _{n \rightarrow \infty}\binom{\bar{\theta}_{n}}{\bar{\vartheta}_{n}}=\binom{\theta_{\alpha}}{\vartheta_{\alpha}} \quad \text { a.s. }
$$

Moreover, we also have the joint asymptotic normality

$$
\sqrt{\boldsymbol{n}}\binom{\bar{\theta}_{n}-\theta_{\alpha}}{\bar{\vartheta}_{n}-\vartheta_{\alpha}} \xrightarrow{\mathcal{L}} \mathcal{N}\left(\mathbf{0}, \Gamma_{\alpha}\right)
$$

where

$$
\Gamma_{\alpha}=\left(\begin{array}{cc}
\frac{\alpha(1-\alpha)}{f^{2}\left(\theta_{\alpha}\right)} & \frac{\alpha}{f\left(\theta_{\alpha}\right)}\left(\vartheta_{\alpha}-\theta_{\alpha}\right) \\
\frac{\alpha}{f\left(\theta_{\alpha}\right)}\left(\vartheta_{\alpha}-\theta_{\alpha}\right) & \sigma_{\alpha}^{2}\left(\theta_{\alpha}\right)
\end{array}\right) .
$$

Parametric estimation of quantiles and superquantiles.

Conditional value at risk in portfolio optimization.

Weekly CVaR Market Comparison

Market Uposte:9/20/2019

Outline

(1) Parametric estimation of quantiles and superquantiles.

(2) Nonparametric estimation of probability density functions.
(3) Semiparametric estimation in shape invariant models.

Recursive estimation of probability density functions.

Let $\left(X_{n}\right)$ be a sequence of iid random variables with unknown density function f. Let K be a positive and bounded function, called kernel, such that

$$
\begin{gathered}
\int_{\mathbb{R}} K(x) d x=1, \quad \int_{\mathbb{R}} x K(x) d x=0 \\
\int_{\mathbb{R}} K^{2}(x) d x=\xi^{2}
\end{gathered}
$$

Goal

\longrightarrow Recursively estimate the probability density function \boldsymbol{f}.

Choice of the Kernel.

- Uniform kernel

$$
K_{a}(x)=\frac{1}{2 a} I_{\{|x| \leqslant a\}},
$$

- Epanechnikov kernel

- Gaussian kernel

Choice of the Kernel.

- Uniform kernel

$$
K_{a}(x)=\frac{1}{2 a} \mathrm{I}_{\{|x| \leqslant a\}},
$$

- Epanechnikov kernel

$$
K_{b}(x)=\frac{3}{4 b}\left(1-\frac{x^{2}}{b^{2}}\right) \mathrm{I}_{\{|x| \leqslant b\}},
$$

- Gaussian kernel

Choice of the Kernel.

- Uniform kernel

$$
K_{a}(x)=\frac{1}{2 a} \mathrm{I}_{\{|x| \leqslant a\}},
$$

- Epanechnikov kernel

$$
K_{b}(x)=\frac{3}{4 b}\left(1-\frac{x^{2}}{b^{2}}\right) \mathrm{I}_{\{|x| \leqslant b\}}
$$

- Gaussian kernel

$$
K_{c}(x)=\frac{1}{c \sqrt{2 \pi}} \exp \left(-\frac{x^{2}}{2 c^{2}}\right) .
$$

The Wolverton-Wagner estimator.

We estimate the probability density function f by
The Wolverton-Wagner estimator

$$
\widehat{f}_{n}(x)=\frac{1}{n} \sum_{k=1}^{n} W_{k}(x)
$$

where

$$
W_{n}(x)=\frac{1}{h_{n}} K\left(\frac{X_{n}-x}{h_{n}}\right)
$$

The bandwidth $\left(h_{n}\right)$ is a sequence of positive real numbers, $h_{n} \searrow 0$, $n h_{n} \rightarrow \infty$. For $0<\alpha<1$, we can make use of

$$
h_{n}=\frac{1}{n^{\alpha}}
$$

The martingale decomposition.

We have

$$
\begin{aligned}
\hat{f}_{n}(x)-f(x) & =\frac{1}{n} \sum_{k=1}^{n} W_{k}(x)-f(x) \\
& =\frac{1}{n} \sum_{k=1}^{n}\left(W_{k}(x)-\mathbb{E}\left[W_{k}(x)\right]\right)+\frac{1}{n} \sum_{k=1}^{n} \mathbb{E}\left[W_{k}(x)\right]-f(x)
\end{aligned}
$$

Consequently,

$$
\widehat{f}_{n}(x)-f(x)=\frac{1}{n} M_{n}(x)+\frac{1}{n} \sum_{k=1}^{n} \mathbb{E}\left[W_{k}(x)\right]-f(x)
$$

where

$$
M_{n}(x)=\sum_{k=1}^{n}\left(W_{k}(x)-\mathbb{E}\left[W_{k}(x)\right]\right)
$$

The martingale decomposition.

Therefore,

$$
\begin{aligned}
M_{n}(x) & =\sum_{k=1}^{n}\left(W_{k}(x)-\mathbb{E}\left[W_{k}(x)\right]\right), \\
<M(x)>_{n} & =\sum_{k=1}^{n} \operatorname{Var}\left(W_{k}(x)\right)
\end{aligned}
$$

The sequence $\left(M_{n}(x)\right)$ is a square integrable martingale such that

$$
\lim _{n \rightarrow \infty} \frac{<\boldsymbol{M}(x)>_{n}}{n^{1+\alpha}}=\ell \quad \text { a.s. }
$$

where

$$
\ell=\frac{\xi^{2} f(x)}{1+\alpha}
$$

Nonparametric estimation of probability density functions.

Recursive estimation of probability density functions.

Theorem

For all $x \in \mathbb{R}$, we have the pointwise almost sure convergence

$$
\lim _{n \rightarrow \infty} \widehat{f}_{n}(x)=f(x) \quad \text { a.s. }
$$

In addition, as soon as $1 / 5<\alpha<1$, we have, for all $x \in \mathbb{R}$, the asymptotic normality

$$
\sqrt{n h_{n}}\left(\hat{f}_{n}(x)-f(x)\right) \xrightarrow{\mathcal{L}} \mathcal{N}\left(0, \frac{\xi^{2} f(x)}{1+\alpha}\right) .
$$

Application to sea shores water quality.

Semiparametric estimation in shape invariant models.

Outline

(1) Parametric estimation of quantiles and superquantiles.

2 Nonparametric estimation of probability density functions.
(3) Semiparametric estimation in shape invariant models.

Periodic shape invariant processes.

Consider the shape invariant process given, for all $n \geqslant 1$, by

$$
Y_{n}=h\left(X_{n}\right)+\varepsilon_{n}
$$

where the function h is periodic

$$
h(x)=m+\sum_{k=1}^{p} a_{k} f\left(x-\theta_{k}\right)
$$

- The inputs $\left(X_{n}\right)$ are random observation times,
- The outputs $\left(Y_{n}\right)$ are the observations,
- The noises $\left(\varepsilon_{n}\right)$ are unknown random errors.

Periodic shape invariant processes.

For the sake of simplicity, we focus our attention on the special case

$$
Y_{n}=f\left(X_{n}-\theta\right)+\varepsilon_{n}
$$

where $\left(\varepsilon_{n}\right)$ is iid with mean zero and variance σ^{2}.

Goals

\longrightarrow Recursively estimate the shift parameter θ,
\longrightarrow Recursively estimate the shape function f.

Detection of Atrial Fibrillation via ECG analysis.

Semiparametric estimation in shape invariant models.

Eco2mix Forecast of electricity consumption.

Consommation d'électricité pour la journée du:

Semiparametric estimation in shape invariant models.

Eco2mix Forecast of electricity consumption.

Consommation d'électricité pour la journée du: 22 Janwhr 2013

Semiparametric estimation in shape invariant models.

Eco2mix Forecast of electricity consumption.

Consommation d'électricité pour la journée du: 2s Jampor 201s

Semiparametric estimation in shape invariant models.

Eco2mix Forecast of electricity consumption.

Consommation d'électricité pour la journée du:

Semiparametric estimation in shape invariant models.

Eco2mix Forecast of electricity consumption.

Consommation d'électricité pour la journée du: 25 Jamer 2013

Hypothesis.

Symmetry and Periodicity

$\left(\mathcal{H}_{1}\right)$ The shape function f is symmetric, bounded, periodic with period 1.

Regularity of the density

$\left(\mathcal{H}_{2}\right)$ The observation times $\left(X_{n}\right)$ are iid with density function g positive on $[-1 / 2,1 / 2]$, continuous, twice differentiable with bounded derivatives.

Semiparametric estimation in shape invariant models.

A preliminary calculation.

Let X be a random variable sharing the same distribution as $\left(X_{n}\right)$. We shall make use of the auxiliary function

$$
\phi(t)=\mathbb{E}\left[\frac{\sin (2 \pi(X-t))}{g(X)} f(X-\theta)\right] .
$$

It follows from the periodicity and symmetry of f that

$$
\begin{aligned}
\phi(t) & =\int_{-1 / 2}^{1 / 2} \sin (2 \pi(x-t)) f(x-\theta) d x \\
& =\int_{-1 / 2}^{1 / 2} \sin (2 \pi(y+\theta-t)) f(y) d y
\end{aligned}
$$

Semiparametric estimation in shape invariant models.

A preliminary calculation.

Let X be a random variable sharing the same distribution as $\left(X_{n}\right)$. We shall make use of the auxiliary function

$$
\phi(t)=\mathbb{E}\left[\frac{\sin (2 \pi(X-t))}{g(X)} f(X-\theta)\right]
$$

It follows from the periodicity and symmetry of f that

$$
\begin{aligned}
\phi(t) & =\int_{-1 / 2}^{1 / 2} \sin (2 \pi(x-t)) f(x-\theta) d x \\
& =\int_{-1 / 2}^{1 / 2} \sin (2 \pi(y+\theta-t)) f(y) d y \\
& =\sin (2 \pi(\theta-t)) \int_{-1 / 2}^{1 / 2} \cos (2 \pi y) f(y) d y
\end{aligned}
$$

Semiparametric estimation in shape invariant models.

A preliminary calculation.

Let X be a random variable sharing the same distribution as $\left(X_{n}\right)$. We shall make use of the auxiliary function

$$
\phi(t)=\mathbb{E}\left[\frac{\sin (2 \pi(X-t))}{g(X)} f(X-\theta)\right]
$$

It follows from the periodicity and symmetry of f that

$$
\begin{aligned}
\phi(t) & =\int_{-1 / 2}^{1 / 2} \sin (2 \pi(x-t)) f(x-\theta) d x \\
& =\int_{-1 / 2}^{1 / 2} \sin (2 \pi(y+\theta-t)) f(y) d y \\
& =\sin (2 \pi(\theta-t)) \int_{-1 / 2}^{1 / 2} \cos (2 \pi y) f(y) d y .
\end{aligned}
$$

A preliminary calculation.

Consequently, we obtain that

$$
\phi(t)=f_{1} \sin (2 \pi(\theta-t))
$$

where f_{1} is the first Fourier coefficient of f

$$
f_{1}=\int_{-1 / 2}^{1 / 2} \cos (2 \pi x) f(x) d x .
$$

Obviously, ϕ is continuous and bounded function such that

$$
\phi(\theta)=0 .
$$

We assume in all the sequel that $f_{1}>0$. Then, for all $t \in \mathbb{R}$ such that $|t-\theta|<1 / 2$, the product $(t-\theta) \phi(t)<0$.

The Robbins-Monro procedure.

Let $K=[-1 / 4,1 / 4]$ and denote by π_{K} the projection on K,

$$
\pi_{K}(x)=\left\{\begin{array}{cl}
x & \text { if }|x| \leqslant 1 / 4 \\
1 / 4 & \text { if } x \geqslant 1 / 4 \\
-1 / 4 & \text { if } x \leqslant-1 / 4
\end{array}\right.
$$

Let $\left(\gamma_{n}\right)$ be a decreasing sequence of positive real numbers

$$
\sum_{n=1}^{\infty} \gamma_{n}=+\infty \quad \text { and } \quad \sum_{n=1}^{\infty} \gamma_{n}^{2}<+\infty
$$

For the sake of clarity, we shall make use of

$$
\gamma_{n}=\frac{1}{n}
$$

Semiparametric estimation in shape invariant models.

Stochastic approximation.

Semiparametric estimation in shape invariant models.

The Robbins-Monro procedure.

We estimate θ by
The projected Robbins-Monro estimator

$$
\hat{\theta}_{n+1}=\pi_{K}\left(\hat{\theta}_{n}+\gamma_{n+1} \boldsymbol{T}_{n+1}\right),
$$

where the initial value $\hat{\theta}_{0} \in K$ and

$$
T_{n+1}=\frac{\sin \left(2 \pi\left(X_{n+1}-\hat{\theta}_{n}\right)\right)}{g\left(X_{n+1}\right)} Y_{n+1} .
$$

\longrightarrow One can observe that

$$
\mathbb{E}\left[\boldsymbol{T}_{n+1} \mid \mathcal{F}_{n}\right]=\phi\left(\hat{\theta}_{n}\right) \quad \text { a.s. }
$$

Semiparametric estimation in shape invariant models.

Almost sure convergence.

Theorem

Assume that $\left(\mathcal{H}_{1}\right)$ and $\left(\mathcal{H}_{2}\right)$ hold and that $|\theta|<1 / 4$. Then,

$$
\lim _{n \rightarrow \infty} \hat{\theta}_{n}=\theta \quad \text { a.s. }
$$

In addition, the number of times that the random variable

$$
\hat{\theta}_{n}+\gamma_{n+1} T_{n+1}
$$

goes outside the compact K is almost surely finite.

Asymptotic normality.

In order to establish the asymptotic normality of $\hat{\theta}_{n}$, it is necessary to introduce a second auxiliary function

$$
\begin{aligned}
& \varphi(t)=\mathbb{E}\left[\frac{\sin ^{2}(2 \pi(X-t))}{g^{2}(X)}\left(f^{2}(X-\theta)+\sigma^{2}\right)\right], \\
& =\int_{-1 / 2}^{1 / 2} \frac{\sin ^{2}(2 \pi(x-t))}{g(x)}\left(f^{2}(x-\theta)+\sigma^{2}\right) d x .
\end{aligned}
$$

As soon as $4 \pi f_{1}>1$, denote

$$
\xi^{2}(\theta)=\frac{\varphi(\theta)}{4 \pi f_{1}-1}
$$

Semiparametric estimation in shape invariant models.

Asymptotic normality.

Theorem

Assume that $\left(\mathcal{H}_{1}\right)$ and $\left(\mathcal{H}_{2}\right)$ hold and that $|\theta|<1 / 4$. Moreover, suppose that $\left(\varepsilon_{n}\right)$ has a finite moment of order >2 and that $4 \pi f_{1}>1$. Then, we have the asymptotic normality

$$
\sqrt{n}\left(\hat{\theta}_{n}-\theta\right) \xrightarrow{\mathcal{L}} \mathcal{N}\left(0, \xi^{2}(\theta)\right) .
$$

\longrightarrow If f_{1} is known, we can replace γ_{n} by

$$
\gamma_{n}=\frac{1}{2 \pi n f_{1}} .
$$

Then, $\hat{\theta}_{n}$ is an asymptotically efficient estimator of θ,

$$
\sqrt{n}\left(\hat{\theta}_{n}-\theta\right) \xrightarrow{\mathcal{L}} \mathcal{N}\left(0, \frac{\varphi(\theta)}{4 \pi^{2} f_{1}^{2}}\right) .
$$

Semiparametric estimation in shape invariant models.

The symmetrized Nadaraya-Watson estimator.

We focus our attention on the estimation of the shape function f by

The symmetrized recursive Nadaraya-Watson estimator

$$
\hat{f}_{n}(x)=\frac{\sum_{k=1}^{n}\left(W_{k}(x)+W_{k}(-x)\right) Y_{k}}{\sum_{k=1}^{n}\left(W_{k}(x)+W_{k}(-x)\right)}
$$

where

$$
W_{n}(x)=\frac{1}{h_{n}} K\left(\frac{x_{n}-\hat{\theta}_{n-1}-x}{h_{n}}\right)
$$

Semiparametric estimation in shape invariant models.

Almost sure convergence.

Lipschitzianity

$\left(\mathcal{H}_{3}\right)$ The shape function f is Lipschitz.

Theorem

Assume that $\left(\mathcal{H}_{1}\right),\left(\mathcal{H}_{2}\right)$ and $\left(\mathcal{H}_{3}\right)$ hold, $|\theta|<1 / 4$, and that $\left(\varepsilon_{n}\right)$ has a finite moment of order >2. Then, for all $|x|<1 / 2$,

$$
\lim _{n \rightarrow \infty} \hat{f}_{n}(x)=f(x) \quad \text { a.s. }
$$

Semiparametric estimation in shape invariant models.

Asymptotic normality.

Theorem

Assume that $\left(\mathcal{H}_{1}\right),\left(\mathcal{H}_{2}\right)$ and $\left(\mathcal{H}_{3}\right)$ hold, $|\theta|<1 / 4$, and that $\left(\varepsilon_{n}\right)$ has a finite moment of order >2. If $1 / 3<\alpha<1$, we have for all $|x|<1 / 2$ with $x \neq 0$, the asymptotic normality

$$
\sqrt{n h_{n}}\left(\hat{f}_{n}(x)-f(x)\right) \xrightarrow{\mathcal{L}} \mathcal{N}\left(0, \frac{\sigma^{2} \nu^{2}}{(1+\alpha)(g(\theta+x)+g(\theta-x))}\right) .
$$

In addition, for $x=0$,

$$
\sqrt{n h_{n}}\left(\hat{f}_{n}(0)-f(0)\right) \xrightarrow{\mathcal{L}} \mathcal{N}\left(0, \frac{\sigma^{2} \nu^{2}}{(1+\alpha) g(\theta)}\right) .
$$

