Asymptotic behavior of stochastic algorithms with statistical applications Part 3

Bernard Bercu

University of Bordeaux, France

ETICS Annual Research School, Fréjus, 2019

3 Semiparametric estimation in shape invariant models.

< 3 > <

Outline

Parametric estimation of quantiles and superquantiles.

2 Nonparametric estimation of probability density functions.

3) Semiparametric estimation in shape invariant models.

Quantiles and superquantiles.

Let *X* be a **continuous** random variable with **unknown** distribution function *F*. Assume that *F* is **continuous and strictly increasing**.

Definition

For any α in]0, 1[, the quantile of order α of X is the unique solution θ_{α} of the equation $F(x) = \alpha$,

 $F(\theta_{\alpha}) = \alpha.$

If X is **integrable**, the superquantile of order α of X is defined by

$$artheta_lpha = \mathbb{E}[\pmb{X}|\pmb{X} \geqslant heta_lpha] = rac{\mathbb{E}[\pmb{X}\,\mathbf{I}_{\{\pmb{X} \geqslant heta_lpha\}}]}{\mathbb{P}(\pmb{X} \geqslant heta_lpha)} = rac{1}{1-lpha}\mathbb{E}[\pmb{X}\,\mathbf{I}_{\{\pmb{X} \geqslant heta_lpha\}}].$$

< 回 > < 回 > < 回 >

Quantiles and superquantiles.

Example (Exponential distribution)

If X has an Exponential $\mathcal{E}(\lambda)$ distribution with $\lambda > 0$,

$$heta_{lpha} = -rac{1}{\lambda}\log(1-lpha) \qquad ext{ and } \qquad artheta_{lpha} = rac{1}{\lambda}ig(1-\ln(1-lpha)ig).$$

Example (Pareto distribution)

If X has a Pareto $\mathcal{P}(a, b)$ distribution with a > 1 and b > 0,

$$\theta_{\alpha} = b(1-\alpha)^{-1/a} \quad \text{and} \quad \vartheta_{\alpha} = \frac{ab}{a-1}(1-\alpha)^{-1/a}.$$

Goal

 \rightarrow Recursively estime the quantiles and superquantiles θ_{α} and ϑ_{α} .

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・ ・

Recursive estimation of quantiles and superquantiles.

We already saw that we can estimate θ_{α} by the **slow down Robbins-Monro algorithm** given by

$$\hat{\theta}_{n+1} = \hat{\theta}_n - \gamma_n \Big(\mathbf{I}_{\{\boldsymbol{X}_{n+1} \leqslant \hat{\theta}_n\}} - \alpha \Big)$$

where

$$\gamma_n = rac{1}{n^c}$$
 with $rac{1}{2} < c < 1$

and its averaging version

$$\overline{\theta}_n = \frac{1}{n} \sum_{k=1}^n \widehat{\theta}_k.$$

Recursive estimation of quantiles and superquantiles.

We can also estimate ϑ_{α} by

$$\overline{\vartheta}_n = \frac{1}{n(1-\alpha)} \sum_{k=1}^n X_k \mathbf{I}_{\{X_k \ge \overline{\theta}_{k-1}\}}.$$

Another strategy is to make use of the convex version

$$\widetilde{\vartheta}_n = \frac{1}{n} \sum_{k=1}^n \left(\overline{\theta}_{k-1} + \frac{1}{1-\alpha} (X_k - \overline{\theta}_{k-1}) \mathbf{I}_{\{X_k \ge \overline{\theta}_{k-1}\}} \right), \\ = \overline{\vartheta}_n + \frac{1}{n(1-\alpha)} \sum_{k=1}^n \overline{\theta}_{k-1} \left(\mathbf{I}_{\{X_k \le \overline{\theta}_{k-1}\}} - \alpha \right).$$

Recursive estimation of quantiles and superquantiles.

Assume that X is square integrable and let

$$G_{\alpha}(\theta) = \frac{1}{(1-\alpha)} \mathbb{E}[X \operatorname{I}_{\{X \ge \theta\}}],$$

$$H_{\alpha}(\theta) = \frac{1}{(1-\alpha)^{2}} \mathbb{E}[X^{2} \operatorname{I}_{\{X \ge \theta\}}],$$

$$\sigma_{\alpha}^{2}(\theta) = \frac{1}{(1-\alpha)^{2}} \operatorname{Var}(X \operatorname{I}_{\{X \ge \theta\}}).$$

Denote

$$Y_n = \frac{1}{(1-\alpha)} X_n \operatorname{I}_{\{X_n \geqslant \overline{\theta}_{n-1}\}}.$$

We clearly have

 $\mathbb{E}[Y_n|\mathcal{F}_{n-1}] = G_{\alpha}(\overline{\theta}_{n-1}) \quad \text{and} \quad \text{Var}(Y_n|\mathcal{F}_{n-1}) = \sigma_{\alpha}^2(\overline{\theta}_{n-1}).$

The martingale decomposition.

In addition,

$$\overline{\vartheta}_n = \frac{1}{n} \sum_{k=1}^n Y_k = \frac{1}{n} \sum_{k=1}^n (Y_k - \mathbb{E}[Y_k | \mathcal{F}_{k-1}]) + \frac{1}{n} \sum_{k=1}^n \mathbb{E}[Y_k | \mathcal{F}_{k-1}].$$

Recalling that $\vartheta_{\alpha} = G_{\alpha}(\theta_{\alpha})$, we obtain the martingale decomposition

$$\overline{\vartheta}_n - \vartheta_\alpha = \frac{1}{n}M_n + \frac{1}{n}\sum_{k=1}^n G_\alpha(\overline{\theta}_{k-1}) - G_\alpha(\theta_\alpha)$$

where

$$M_n = \sum_{k=1}^n (Y_k - \mathbb{E}[Y_k | \mathcal{F}_{k-1}]).$$

・ 何 ト ・ ヨ ト ・ ヨ ト …

The martingale decomposition.

Therefore,

$$M_n = \sum_{k=1}^n (Y_k - \mathbb{E}[Y_k | \mathcal{F}_{k-1}]),$$

$$< M >_n = \sum_{k=1}^n \operatorname{Var}(Y_k | \mathcal{F}_{k-1}) = \sum_{k=1}^n \sigma_\alpha^2(\overline{\theta}_{k-1}).$$

It follows from the almost sure convergence of $\overline{\theta}_n$ to θ_α that (M_n) is a square integrable martingale satisfying

$$\lim_{n\to\infty}\frac{_n}{n}=\sigma_{\alpha}^2(\theta_{\alpha}) \qquad \text{a.s.}$$

Recursive estimation of quantiles and superquantiles.

Theorem

If X is square integrable, we have the almost sure convergence

$$\lim_{n\to\infty} \left(\frac{\overline{\theta}_n}{\overline{\vartheta}_n}\right) = \begin{pmatrix}\theta_\alpha\\\vartheta_\alpha\end{pmatrix} \qquad \text{a.s.}$$

Moreover, we also have the joint asymptotic normality

$$\sqrt{n} \begin{pmatrix} \overline{\theta}_n - \theta_\alpha \\ \overline{\vartheta}_n - \vartheta_\alpha \end{pmatrix} \xrightarrow{\mathcal{L}} \mathcal{N} \big(\mathbf{0}, \mathbf{\Gamma}_\alpha \big)$$

where

$$\mathsf{\Gamma}_{\alpha} = \begin{pmatrix} \frac{\alpha(1-\alpha)}{f^{2}(\theta_{\alpha})} & \frac{\alpha}{f(\theta_{\alpha})}(\vartheta_{\alpha} - \theta_{\alpha}) \\ \frac{\alpha}{f(\theta_{\alpha})}(\vartheta_{\alpha} - \theta_{\alpha}) & \sigma_{\alpha}^{2}(\theta_{\alpha}) \end{pmatrix}$$

Conditional value at risk in portfolio optimization.



(母) (注)

Outline

Parametric estimation of quantiles and superquantiles.

2 Nonparametric estimation of probability density functions.

Semiparametric estimation in shape invariant models.

_ ⊳

Recursive estimation of probability density functions.

Let (X_n) be a sequence of **iid** random variables with **unknown density** function *f*. Let *K* be a positive and bounded function, called **kernel**, such that

$$\int_{\mathbb{R}} K(x) \, dx = 1, \qquad \int_{\mathbb{R}} x K(x) \, dx = 0,$$
$$\int_{\mathbb{R}} K^2(x) \, dx = \xi^2.$$

Goal

 \rightarrow Recursively estimate the probability density function f.

伺 ト イヨ ト イヨ ト

Choice of the Kernel.

• Uniform kernel

$$\mathcal{K}_{a}(x) = \frac{1}{2a} \mathrm{I}_{\{|x| \leqslant a\}},$$

Epanechnikov kernel

$$K_b(x) = \frac{3}{4b} \left(1 - \frac{x^2}{b^2}\right) I_{\{|x| \le b\}},$$

Gaussian kernel

$$K_c(x) = \frac{1}{c\sqrt{2\pi}} \exp\left(-\frac{x^2}{2c^2}\right).$$

Bernard Bercu

Stochastic algorithms with statistical applications

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Choice of the Kernel.

• Uniform kernel

$$K_a(x) = rac{1}{2a} \mathrm{I}_{\{|x|\leqslant a\}},$$

Epanechnikov kernel

$$\mathcal{K}_b(x) = \frac{3}{4b} \left(1 - \frac{x^2}{b^2}\right) \mathrm{I}_{\{|x| \leq b\}},$$

Gaussian kernel

$$K_c(x) = \frac{1}{c\sqrt{2\pi}} \exp\left(-\frac{x^2}{2c^2}\right).$$

Bernard Bercu

Stochastic algorithms with statistical applications

・ 同 ト ・ ヨ ト ・ ヨ ト

Choice of the Kernel.

• Uniform kernel

$$K_a(x) = rac{1}{2a} \mathrm{I}_{\{|x|\leqslant a\}},$$

Epanechnikov kernel

$$\mathcal{K}_b(x) = rac{3}{4b} \left(1 - rac{x^2}{b^2}
ight) \mathrm{I}_{\{|x|\leqslant b\}},$$

Gaussian kernel

$$K_c(x) = \frac{1}{c\sqrt{2\pi}} \exp\left(-\frac{x^2}{2c^2}\right).$$

Bernard Bercu

伺い イヨト イヨト

The Wolverton-Wagner estimator.

We estimate the probability density function f by

The Wolverton-Wagner estimator

$$\widehat{f}_n(x) = \frac{1}{n} \sum_{k=1}^n W_k(x)$$

where

$$W_n(x) = \frac{1}{h_n} K\Big(\frac{X_n - x}{h_n}\Big).$$

The **bandwidth** (h_n) is a sequence of positive real numbers, $h_n \searrow 0$, $nh_n \rightarrow \infty$. For $0 < \alpha < 1$, we can make use of

$$h_n=rac{1}{n^{lpha}}$$

A (1) > A (2) > A (2) > A

The martingale decomposition.

We have

$$\widehat{f}_n(x) - f(x) = \frac{1}{n} \sum_{k=1}^n W_k(x) - f(x),$$

$$= \frac{1}{n} \sum_{k=1}^n (W_k(x) - \mathbb{E}[W_k(x)]) + \frac{1}{n} \sum_{k=1}^n \mathbb{E}[W_k(x)] - f(x).$$

Consequently,

$$\widehat{f}_n(x) - f(x) = \frac{1}{n} M_n(x) + \frac{1}{n} \sum_{k=1}^n \mathbb{E}[W_k(x)] - f(x)$$

where

$$M_n(x) = \sum_{k=1}^n (W_k(x) - \mathbb{E}[W_k(x)]).$$

э

・ 同 ト ・ ヨ ト ・ ヨ ト

The martingale decomposition.

Therefore,

$$M_n(x) = \sum_{k=1}^n (W_k(x) - \mathbb{E}[W_k(x)]),$$

< $M(x) >_n = \sum_{k=1}^n Var(W_k(x)).$

The sequence $(M_n(x))$ is a square integrable martingale such that

$$\lim_{n\to\infty}\frac{< M(x)>_n}{n^{1+\alpha}}=\ell \qquad \text{a.s}$$

where

$$\ell = \frac{\xi^2 f(x)}{1+\alpha}.$$

э

・ 何 ト ・ ヨ ト ・ ヨ ト

Recursive estimation of probability density functions.

Theorem

For all $x \in \mathbb{R}$, we have the pointwise almost sure convergence

$$\lim_{n\to\infty}\hat{f}_n(x)=f(x) \qquad \text{a.s.}$$

In addition, as soon as $1/5 < \alpha < 1$, we have, for all $x \in \mathbb{R}$, the asymptotic normality

$$\sqrt{nh_n}\left(\widehat{f}_n(\boldsymbol{x})-f(\boldsymbol{x})\right)\overset{\mathcal{L}}{\longrightarrow}\mathcal{N}\Big(0,\frac{\xi^2f(\boldsymbol{x})}{1+lpha}\Big).$$

伺 ト イ ヨ ト イ ヨ ト ー

Application to sea shores water quality.

くほう くまう

Outline

Nonparametric estimation of probability density functions.

3 Semiparametric estimation in shape invariant models.

A ►

Periodic shape invariant processes.

Consider the **shape invariant** process given, for all $n \ge 1$, by

 $Y_n = h(X_n) + \varepsilon_n$

where the function h is periodic

$$h(x) = m + \sum_{k=1}^{p} a_k f(x - \theta_k),$$

- The inputs (X_n) are random observation times,
- The outputs (Y_n) are the observations,
- The noises (ε_n) are unknown random errors.

伺い イヨト イヨト

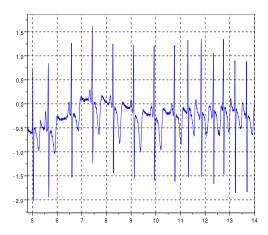
Periodic shape invariant processes.

For the sake of simplicity, we focus our attention on the special case

$$Y_n = f(X_n - \theta) + \varepsilon_n$$

where (ε_n) is **iid** with mean zero and variance σ^2 .

Detection of Atrial Fibrillation via ECG analysis.



Bernard Bercu

Stochastic algorithms with statistical applications

24 / 42

Eco2mix Forecast of electricity consumption.

Bernard Bercu

Stochastic algorithms with statistical applications

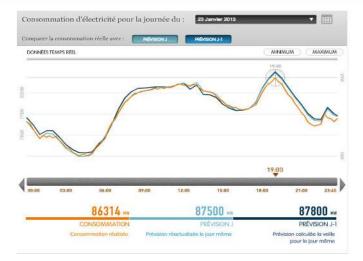
つへで 25/42

得トイモトイヨト

Eco2mix Forecast of electricity consumption.

1211121

Eco2mix Forecast of electricity consumption.

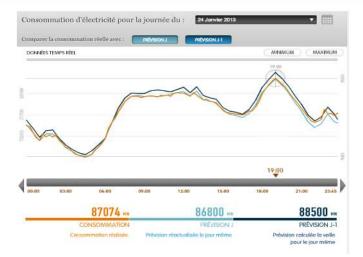


Bernard Bercu

Stochastic algorithms with statistical applications

(第)(第)

Eco2mix Forecast of electricity consumption.



Bernard Bercu

Stochastic algorithms with statistical applications

つへで 28/42

(2)

Eco2mix Forecast of electricity consumption.

つへで 29/42

1

< E> < E>

Hypothesis.

Symmetry and Periodicity

(\mathcal{H}_1) The shape function *f* is **symmetric**, **bounded**, **periodic** with period 1.

Regularity of the density

(\mathcal{H}_2) The observation times (X_n) are **iid** with density function *g* positive on [-1/2,1/2], continuous, twice differentiable with bounded derivatives.

A preliminary calculation.

Let X be a random variable sharing the same distribution as (X_n) . We shall make use of the auxiliary function

$$\phi(t) = \mathbb{E}\Big[rac{\sin(2\pi(X-t))}{g(X)}f(X- heta)\Big].$$

It follows from the periodicity and symmetry of f that

$$b(t) = \int_{-1/2}^{1/2} \sin(2\pi(x-t))f(x-\theta) \, dx,$$

= $\int_{-1/2}^{1/2} \sin(2\pi(y+\theta-t))f(y) \, dy,$
= $\sin(2\pi(\theta-t)) \int_{-1/2}^{1/2} \cos(2\pi y)f(y) \, dy$

• • = • • = •

A preliminary calculation.

Let X be a random variable sharing the same distribution as (X_n) . We shall make use of the auxiliary function

$$\phi(t) = \mathbb{E}\Big[rac{\sin(2\pi(X-t))}{g(X)}f(X- heta)\Big].$$

It follows from the periodicity and symmetry of f that

$$\phi(t) = \int_{-1/2}^{1/2} \sin(2\pi(x-t))f(x-\theta) \, dx,$$

= $\int_{-1/2}^{1/2} \sin(2\pi(y+\theta-t))f(y) \, dy,$
= $\sin(2\pi(\theta-t)) \int_{-1/2}^{1/2} \cos(2\pi y)f(y) \, dy$

A preliminary calculation.

Let X be a random variable sharing the same distribution as (X_n) . We shall make use of the auxiliary function

$$\phi(t) = \mathbb{E}\Big[rac{\sin(2\pi(X-t))}{g(X)}f(X- heta)\Big].$$

It follows from the periodicity and symmetry of f that

$$\phi(t) = \int_{-1/2}^{1/2} \sin(2\pi(x-t))f(x-\theta) \, dx,$$

= $\int_{-1/2}^{1/2} \sin(2\pi(y+\theta-t))f(y) \, dy,$
= $\sin(2\pi(\theta-t)) \int_{-1/2}^{1/2} \cos(2\pi y)f(y) \, dy$

A preliminary calculation.

Consequently, we obtain that

 $\phi(t) = f_1 \sin(2\pi(\theta - t))$

where f_1 is the first Fourier coefficient of f

$$f_1 = \int_{-1/2}^{1/2} \cos(2\pi x) f(x) \, dx.$$

Obviously, ϕ is continuous and bounded function such that

 $\phi(\theta) = \mathbf{0}.$

We assume in all the sequel that $f_1 > 0$. Then, for all $t \in \mathbb{R}$ such that $|t - \theta| < 1/2$, the product $(t - \theta)\phi(t) < 0$.

A (10) A (10)

The Robbins-Monro procedure.

Let K = [-1/4, 1/4] and denote by π_K the projection on K,

$$\pi_{\mathcal{K}}(x) = \begin{cases} x & \text{if } |x| \leq 1/4, \\ 1/4 & \text{if } x \geq 1/4, \\ -1/4 & \text{if } x \leq -1/4. \end{cases}$$

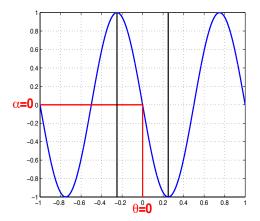
Let (γ_n) be a decreasing sequence of positive real numbers

For the sake of clarity, we shall make use of

$$\gamma_n = \frac{1}{n}$$

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Stochastic approximation.



Bernard Bercu

Stochastic algorithms with statistical applications

34 / 42

2

▲□ ▶ ▲ □ ▶ ▲ □ ▶ ...

The Robbins-Monro procedure.

We estimate θ by

The projected Robbins-Monro estimator

$$\widehat{\theta}_{n+1} = \pi_{\mathcal{K}} \Big(\widehat{\theta}_n + \gamma_{n+1} T_{n+1} \Big),$$

where the initial value $\widehat{\theta}_0 \in K$ and

$$T_{n+1} = \frac{\sin(2\pi(X_{n+1} - \widehat{\theta}_n))}{g(X_{n+1})} Y_{n+1}.$$

 \rightarrow One can observe that

$$\mathbb{E}[\mathbf{T}_{n+1}|\mathcal{F}_n] = \phi(\widehat{\theta}_n) \qquad \text{a.s.}$$

伺下 イヨト イヨト

Almost sure convergence.

Theorem

Assume that (\mathcal{H}_1) and (\mathcal{H}_2) hold and that $|\theta| < 1/4$. Then,

$$\lim_{n\to\infty}\widehat{\theta}_n=\theta \qquad a.s.$$

In addition, the number of times that the random variable

$$\widehat{\theta}_n + \gamma_{n+1} T_{n+1}$$

goes outside the compact *K* is almost surely finite.

Asymptotic normality.

In order to establish the **asymptotic normality** of $\hat{\theta}_n$, it is necessary to introduce a second auxiliary function

$$\varphi(t) = \mathbb{E}\Big[\frac{\sin^2(2\pi(X-t))}{g^2(X)}(f^2(X-\theta)+\sigma^2)\Big],$$

= $\int_{-1/2}^{1/2} \frac{\sin^2(2\pi(x-t))}{g(x)}(f^2(x-\theta)+\sigma^2)\,dx.$

As soon as $4\pi f_1 > 1$, denote

$$\xi^2(heta) = rac{arphi(heta)}{4\pi f_1 - 1}.$$

Asymptotic normality.

Theorem

Assume that (\mathcal{H}_1) and (\mathcal{H}_2) hold and that $|\theta| < 1/4$. Moreover, suppose that (ε_n) has a finite moment of order > 2 and that $4\pi f_1 > 1$. Then, we have the asymptotic normality

$$\sqrt{n}\left(\widehat{ heta}_{n}- heta
ight)\stackrel{\mathcal{L}}{\longrightarrow}\mathcal{N}(\mathbf{0},\xi^{2}(heta)).$$

 \longrightarrow If f_1 is known, we can replace γ_n by

$$\gamma_n = \frac{1}{2\pi n f_1}$$

Then, $\hat{\theta}_n$ is an **asymptotically efficient estimator** of θ ,

$$\sqrt{n}(\widehat{\theta}_n - \theta) \xrightarrow{\mathcal{L}} \mathcal{N}\left(\mathbf{0}, \frac{\varphi(\theta)}{4\pi^2 f_1^2}\right).$$

· • • • • • • • • • • • • • • • •

The symmetrized Nadaraya-Watson estimator.

We focus our attention on the estimation of the shape function f by

The symmetrized recursive Nadaraya-Watson estimator

$$\widehat{f}_n(\mathbf{x}) = \frac{\sum_{k=1}^n (W_k(\mathbf{x}) + W_k(-\mathbf{x})) Y_k}{\sum_{k=1}^n (W_k(\mathbf{x}) + W_k(-\mathbf{x}))},$$

where

$$W_n(x) = \frac{1}{h_n} \kappa \Big(\frac{X_n - \widehat{\theta}_{n-1} - x}{h_n} \Big).$$

A (10) A (10)

Almost sure convergence.

Lipschitzianity

 (\mathcal{H}_3) The shape function *f* is Lipschitz.

Theorem

Assume that (\mathcal{H}_1) , (\mathcal{H}_2) and (\mathcal{H}_3) hold, $|\theta| < 1/4$, and that (ε_n) has a finite moment of order > 2. Then, for all |x| < 1/2,

$$\lim_{n\to\infty}\hat{f}_n(x)=f(x) \qquad a.s.$$

ヘロト 人間 とくほとく ほとう

Asymptotic normality.

Theorem

Assume that (\mathcal{H}_1) , (\mathcal{H}_2) and (\mathcal{H}_3) hold, $|\theta| < 1/4$, and that (ε_n) has a finite moment of order > 2. If $1/3 < \alpha < 1$, we have for all |x| < 1/2 with $x \neq 0$, the asymptotic normality

$$\sqrt{nh_n}\left(\widehat{f}_n(\boldsymbol{x})-f(\boldsymbol{x})\right) \xrightarrow{\mathcal{L}} \mathcal{N}\left(0, \frac{\sigma^2\nu^2}{(1+\alpha)(\boldsymbol{g}(\boldsymbol{\theta}+\boldsymbol{x})+\boldsymbol{g}(\boldsymbol{\theta}-\boldsymbol{x}))}\right)$$

In addition, for x = 0,

$$\sqrt{nh_n}\left(\widehat{f}_n(0)-f(0)\right) \xrightarrow{\mathcal{L}} \mathcal{N}\left(0, \frac{\sigma^2\nu^2}{(1+\alpha)g(\theta)}\right).$$

ヘロト 人間 とくほとく ほとう

э

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・