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Parametric estimation of quantiles and superquantiles.

Quantiles and superquantiles.

Let X be a continuous random variable with unknown distribution

function F . Assume that F is continuous and strictly increasing.

Definition

For any α in ]0, 1[, the quantile of order α of X is the unique solution θα
of the equation F (x) = α,

F (θα) = α.

If X is integrable, the superquantile of order α of X is defined by

ϑα = E[X |X > θα] =
E[X I{X>θα}]

P(X > θα)
=

1

1 − α
E[X I{X>θα}].

Bernard Bercu Stochastic algorithms with statistical applications 4 / 42



Parametric estimation of quantiles and superquantiles.

Quantiles and superquantiles.

Example (Exponential distribution)

If X has an Exponential E(λ) distribution with λ > 0,

θα = −
1

λ
log(1 − α) and ϑα =

1

λ

(

1 − ln(1 − α)
)

.

Example (Pareto distribution)

If X has a Pareto P(a, b) distribution with a > 1 and b > 0,

θα = b(1 − α)−1/a and ϑα =
ab

a − 1
(1 − α)−1/a.

Goal

−→ Recursively estime the quantiles and superquantiles θα and ϑα.
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Parametric estimation of quantiles and superquantiles.

Recursive estimation of quantiles and superquantiles.

We already saw that we can estimate θα by the slow down

Robbins-Monro algorithm given by

pθn+1 = pθn − γn

(

I{Xn+16
pθn}

− α
)

where

γn =
1

nc
with

1

2
< c < 1

and its averaging version

θn =
1

n

nÿ

k=1

pθk .
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Parametric estimation of quantiles and superquantiles.

Recursive estimation of quantiles and superquantiles.

We can also estimate ϑα by

ϑn =
1

n(1 − α)

nÿ

k=1

Xk I{Xk>θk−1}
.

Another strategy is to make use of the convex version

rϑn =
1

n

nÿ

k=1

(

θk−1 +
1

1 − α
(Xk − θk−1)I{Xk>θk−1}

)

,

= ϑn +
1

n(1 − α)

nÿ

k=1

θk−1

(

I{Xk6θk−1}
− α

)

.

Bernard Bercu Stochastic algorithms with statistical applications 7 / 42



Parametric estimation of quantiles and superquantiles.

Recursive estimation of quantiles and superquantiles.

Assume that X is square integrable and let

Gα(θ) =
1

(1 − α)
E[X I{X>θ}],

Hα(θ) =
1

(1 − α)2
E[X 2

I{X>θ}],

σ2
α(θ) =

1

(1 − α)2
Var(X I{X>θ}).

Denote

Yn =
1

(1 − α)
Xn I{Xn>θn−1}

.

We clearly have

E[Yn|Fn−1] = Gα(θn−1) and Var(Yn|Fn−1) = σ2
α
(θn−1).
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Parametric estimation of quantiles and superquantiles.

The martingale decomposition.

In addition,

ϑn =
1

n

nÿ

k=1

Yk =
1

n

nÿ

k=1

(Yk − E[Yk |Fk−1]) +
1

n

nÿ

k=1

E[Yk |Fk−1].

Recalling that ϑα = Gα(θα), we obtain the martingale decomposition

ϑn − ϑα =
1

n
Mn +

1

n

nÿ

k=1

Gα(θk−1) − Gα(θα)

where

Mn =
nÿ

k=1

(Yk − E[Yk |Fk−1]).
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Parametric estimation of quantiles and superquantiles.

The martingale decomposition.

Therefore,

Mn =
nÿ

k=1

(Yk − E[Yk |Fk−1]),

<M>n =
nÿ

k=1

Var(Yk |Fk−1) =
nÿ

k=1

σ2
α(θk−1).

It follows from the almost sure convergence of θn to θα that (Mn) is a

square integrable martingale satisfying

lim
n→∞

<M >n

n
= σ2

α
(θα) a.s.
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Parametric estimation of quantiles and superquantiles.

Recursive estimation of quantiles and superquantiles.

Theorem

If X is square integrable, we have the almost sure convergence

lim
n→∞

(

θn

ϑn

)

=

(

θα
ϑα

)

a.s.

Moreover, we also have the joint asymptotic normality

‘
n

(

θn − θα
ϑn − ϑα

)

L
−→ N

(

0, Γα

)

where

Γα =

(

α(1−α)
f 2(θα)

α
f (θα)

(ϑα − θα)
α

f (θα)
(ϑα − θα) σ2

α(θα)

)

.
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Nonparametric estimation of probability density functions.
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Nonparametric estimation of probability density functions.

Recursive estimation of probability density functions.

Let (Xn) be a sequence of iid random variables with unknown density

function f . Let K be a positive and bounded function, called kernel,

such that

ż

R

K (x) dx = 1,

ż

R

xK (x) dx = 0,

ż

R

K 2(x) dx = ξ2.

Goal

−→ Recursively estimate the probability density function f .
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Nonparametric estimation of probability density functions.

Choice of the Kernel.

Uniform kernel

Ka(x) =
1

2a
I{|x |6a},

Epanechnikov kernel

Kb(x) =
3

4b

(

1 −
x2

b2

)

I{|x |6b},

Gaussian kernel

Kc(x) =
1

c
‘

2π
exp
(

−
x2

2c2

)

.

Bernard Bercu Stochastic algorithms with statistical applications 15 / 42



Nonparametric estimation of probability density functions.

Choice of the Kernel.

Uniform kernel

Ka(x) =
1

2a
I{|x |6a},

Epanechnikov kernel

Kb(x) =
3

4b

(

1 −
x2

b2

)

I{|x |6b},

Gaussian kernel

Kc(x) =
1

c
‘

2π
exp
(

−
x2

2c2

)

.

Bernard Bercu Stochastic algorithms with statistical applications 15 / 42



Nonparametric estimation of probability density functions.

Choice of the Kernel.

Uniform kernel

Ka(x) =
1

2a
I{|x |6a},

Epanechnikov kernel

Kb(x) =
3

4b

(

1 −
x2

b2

)

I{|x |6b},

Gaussian kernel

Kc(x) =
1

c
‘

2π
exp
(

−
x2

2c2

)

.

Bernard Bercu Stochastic algorithms with statistical applications 15 / 42



Nonparametric estimation of probability density functions.

The Wolverton-Wagner estimator.

We estimate the probability density function f by

The Wolverton-Wagner estimator

pfn(x) =
1

n

nÿ

k=1

Wk (x)

where

Wn(x) =
1

hn
K
(Xn − x

hn

)

.

The bandwidth (hn) is a sequence of positive real numbers, hn ց 0,

nhn → ∞. For 0 < α < 1, we can make use of

hn =
1

nα
.
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Nonparametric estimation of probability density functions.

The martingale decomposition.

We have

pfn(x)− f (x) =
1

n

nÿ

k=1

Wk (x)− f (x),

=
1

n

nÿ

k=1

(Wk (x)− E[Wk (x)]) +
1

n

nÿ

k=1

E[Wk (x)]− f (x).

Consequently,

pfn(x) − f (x) =
1

n
Mn(x) +

1

n

nÿ

k=1

E[Wk (x)] − f (x)

where

Mn(x) =
nÿ

k=1

(Wk (x) − E[Wk (x)]).
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Nonparametric estimation of probability density functions.

The martingale decomposition.

Therefore,

Mn(x) =
nÿ

k=1

(Wk (x)− E[Wk (x)]),

<M(x)>n =
nÿ

k=1

Var(Wk (x)).

The sequence (Mn(x)) is a square integrable martingale such that

lim
n→∞

<M(x)>n

n1+α
= ℓ a.s.

where

ℓ =
ξ2f (x)

1 + α
.
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Nonparametric estimation of probability density functions.

Recursive estimation of probability density functions.

Theorem

For all x ∈ R, we have the pointwise almost sure convergence

lim
n→∞

pfn(x) = f (x) a.s.

In addition, as soon as 1/5 < α < 1, we have, for all x ∈ R, the

asymptotic normality

a
nhn

(

pfn(x) − f (x)
) L
−→ N

(

0,
ξ2f (x)

1 + α

)

.
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Semiparametric estimation in shape invariant models.
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Semiparametric estimation in shape invariant models.

Periodic shape invariant processes.

Consider the shape invariant process given, for all n > 1, by

Yn = h(Xn) + εn

where the function h is periodic

h(x) = m +

pÿ

k=1

ak f (x − θk ),

The inputs (Xn) are random observation times,

The outputs (Yn) are the observations,

The noises (εn) are unknown random errors.
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Semiparametric estimation in shape invariant models.

Periodic shape invariant processes.

For the sake of simplicity, we focus our attention on the special case

Yn = f (Xn − θ) + εn

where (εn) is iid with mean zero and variance σ2.

Goals

−→ Recursively estimate the shift parameter θ,

−→ Recursively estimate the shape function f .
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Semiparametric estimation in shape invariant models.

Detection of Atrial Fibrillation via ECG analysis.
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Semiparametric estimation in shape invariant models.

Hypothesis.

Symmetry and Periodicity

(H1) The shape function f is symmetric, bounded, periodic

with period 1.

Regularity of the density

(H2) The observation times (Xn) are iid with density function

g positive on [−1/2,1/2], continuous, twice differentiable

with bounded derivatives.
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Semiparametric estimation in shape invariant models.

A preliminary calculation.

Let X be a random variable sharing the same distribution as (Xn). We

shall make use of the auxiliary function

φ(t) = E

[sin(2π(X − t))

g(X )
f (X − θ)

]

.

It follows from the periodicity and symmetry of f that

φ(t) =

ż 1/2

−1/2

sin(2π(x − t))f (x − θ) dx ,

=

ż 1/2

−1/2

sin(2π(y + θ − t))f (y) dy ,

= sin(2π(θ − t))

ż 1/2

−1/2

cos(2πy)f (y) dy .
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Semiparametric estimation in shape invariant models.

A preliminary calculation.

Consequently, we obtain that

φ(t) = f1 sin(2π(θ − t))

where f1 is the first Fourier coefficient of f

f1 =

ż 1/2

−1/2

cos(2πx)f (x) dx .

Obviously, φ is continuous and bounded function such that

φ(θ) = 0.

We assume in all the sequel that f1 > 0. Then, for all t ∈ R such that

|t − θ| < 1/2, the product (t − θ)φ(t) < 0.
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Semiparametric estimation in shape invariant models.

The Robbins-Monro procedure.

Let K = [−1/4, 1/4] and denote by πK the projection on K ,

πK (x) =















x if |x | 6 1/4,

1/4 if x > 1/4,

−1/4 if x 6 −1/4.

Let (γn) be a decreasing sequence of positive real numbers

∞ÿ

n=1

γn = +∞ and

∞ÿ

n=1

γ2
n < +∞.

For the sake of clarity, we shall make use of

γn =
1

n
.
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Semiparametric estimation in shape invariant models.

Stochastic approximation.
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Semiparametric estimation in shape invariant models.

The Robbins-Monro procedure.

We estimate θ by

The projected Robbins-Monro estimator

pθn+1 = πK

(

pθn + γn+1Tn+1

)

,

where the initial value pθ0 ∈ K and

Tn+1 =
sin(2π(Xn+1 − pθn))

g(Xn+1)
Yn+1.

−→ One can observe that

E[Tn+1|Fn] = φ(pθn) a.s.
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Semiparametric estimation in shape invariant models.

Almost sure convergence.

Theorem

Assume that (H1) and (H2) hold and that |θ| < 1/4. Then,

lim
n→∞

pθn = θ a.s.

In addition, the number of times that the random variable

pθn + γn+1Tn+1

goes outside the compact K is almost surely finite.
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Semiparametric estimation in shape invariant models.

Asymptotic normality.

In order to establish the asymptotic normality of pθn, it is necessary to

introduce a second auxiliary function

ϕ(t) = E

[sin2(2π(X − t))

g2(X )
(f 2(X − θ) + σ2)

]

,

=

ż 1/2

−1/2

sin2(2π(x − t))

g(x)
(f 2(x − θ) + σ2) dx .

As soon as 4πf1 > 1, denote

ξ2(θ) =
ϕ(θ)

4πf1 − 1
.
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Semiparametric estimation in shape invariant models.

Asymptotic normality.

Theorem

Assume that (H1) and (H2) hold and that |θ| < 1/4. Moreover,

suppose that (εn) has a finite moment of order > 2 and that 4πf1 > 1.

Then, we have the asymptotic normality

‘
n
(

pθn − θ
) L
−→ N (0, ξ2(θ)).

−→ If f1 is known, we can replace γn by

γn =
1

2πnf1
.

Then, pθn is an asymptotically efficient estimator of θ,

‘
n(pθn − θ)

L
−→ N

(

0,
ϕ(θ)

4π2f 2
1

)

.
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Semiparametric estimation in shape invariant models.

The symmetrized Nadaraya-Watson estimator.

We focus our attention on the estimation of the shape function f by

The symmetrized recursive Nadaraya-Watson estimator

pfn(x) =

řn
k=1(Wk (x) + Wk (−x))Ykřn

k=1(Wk (x) + Wk (−x))
,

where

Wn(x) =
1

hn
K
(Xn − pθn−1 − x

hn

)

.
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Semiparametric estimation in shape invariant models.

Almost sure convergence.

Lipschitzianity

(H3) The shape function f is Lipschitz.

Theorem

Assume that (H1), (H2) and (H3) hold, |θ| < 1/4, and that (εn) has a

finite moment of order > 2. Then, for all |x | < 1/2,

lim
n→∞

pfn(x) = f (x) a.s.
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Semiparametric estimation in shape invariant models.

Asymptotic normality.

Theorem

Assume that (H1), (H2) and (H3) hold, |θ| < 1/4, and that (εn) has a

finite moment of order > 2. If 1/3 < α < 1, we have for all |x | < 1/2

with x =/ 0, the asymptotic normality

a
nhn

(

pfn(x)−f (x)
) L
−→N

(

0,
σ2ν2

(1 + α)(g(θ+x)+g(θ−x))

)

.

In addition, for x = 0,

a
nhn

(

pfn(0)− f (0)
) L
−→ N

(

0,
σ2ν2

(1 + α)g(θ)

)

.
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Semiparametric estimation in shape invariant models.

!!!! Many thanks for your attention !!!!

Bernard Bercu Stochastic algorithms with statistical applications 42 / 42


	Parametric estimation of quantiles and superquantiles.

