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Why shall we explain decisions?

Why is “explaining” important?

Man-Machine Interaction: Increase acceptance & trust of user

Trustable AI: Validation and qualification for safety-critical

systems

Taxonomy of XAI [Guidotti et al’18]
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Explanation by Feature Attribution

Aim

Feature Attribution:

Given an AI box with inputs

and outputs,

identify the input variables that

mostly influence the outputs.

Done by calculating the impact level of each input variable on the

outputs.

Scope: numerical functions

Filter relevant information/motivation to be presented to the user;

Debugging mode in Machine Learning (inputs = features).
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Decision setting

Decision setting

N = {1, . . . , n}: index set of attributes/features.

Xi : set of values representing attribute i (for i ∈ N).

X = X1 × · · · × Xn: set of alternatives/acts.

U : X → R: utility representing preferences of decision maker over X

U(y) > U(x): y is preferred to x

Decision problems:

Selection: find the best element in X ⊆ X

Ranking: order the elements of X ⊆ X

Scoring: assign a score to each element of X ⊆ X

Sorting: assign each element of X ⊆ X to a class C
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Why shall we explain decisions?

A simple example

Function of 3 binary variables:

u(x1, x2, x3) = max(x1, x2, x3) + 4 max(x2, x3) + 2 min(x2, x3)

How to explain the difference between

x = (0, 0, 0), with u(x) = 0

and y = (1, 1, 1), with u(y) = 7?

A simple problem? NO!

A simple Gradient does not work

it is unstable!

Figures shall have a meaning

There are interactions among the inputs
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Idea

Idea of the approach

How to isolate the contribution of each input variable?

Assess the influence of a criterion in the evaluation of two alternatives x, y

by looking at alternatives obtained by replacing subsets of values of y with values of x .

A simple example

Function of 3 binary variables, with x = (0, 0, 0) and y = (1, 1, 1):

u(x1, x2, x3) = max(x1, x2, x3) + 4 max(x2, x3) + 2 min(x2, x3)

X1

X2 X3

u(x1,x2,x3)=0

7= u(y1,y2,y3)
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Idea

Idea of the approach

How to isolate the contribution of each input variable?

Assess the influence of a criterion in the evaluation of two alternatives x, y

by looking at alternatives obtained by replacing subsets of values of y with values of x .

A simple example

Function of 3 binary variables, with x = (0, 0, 0) and y = (1, 1, 1):

u(x1, x2, x3) = max(x1, x2, x3) + 4 max(x2, x3) + 2 min(x2, x3)

X1

X2 X3

u(x1,x2,x3)=0

7= u(y1,y2,y3)

Influence(X1 | x2,x3) = 1
1= u(y1,x2,x3)
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Idea

Idea of the approach

How to isolate the contribution of each input variable?

Assess the influence of a criterion in the evaluation of two alternatives x, y

by looking at alternatives obtained by replacing subsets of values of y with values of x .

A simple example

Function of 3 binary variables, with x = (0, 0, 0) and y = (1, 1, 1):

u(x1, x2, x3) = max(x1, x2, x3) + 4 max(x2, x3) + 2 min(x2, x3)

X1

X2 X3

u(x1,x2,x3)=0

7= u(y1,y2,y3)

Influence(X1 | x2,x3) = 1
1= u(y1,x2,x3)

Influence(X2 | y1,x3) = 4

5= u(y1,y2,x3)
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Idea

Idea of the approach

How to isolate the contribution of each input variable?

Assess the influence of a criterion in the evaluation of two alternatives x, y

by looking at alternatives obtained by replacing subsets of values of y with values of x .

A simple example

Function of 3 binary variables, with x = (0, 0, 0) and y = (1, 1, 1):

u(x1, x2, x3) = max(x1, x2, x3) + 4 max(x2, x3) + 2 min(x2, x3)

X1

X2 X3

u(x1,x2,x3)=0

7= u(y1,y2,y3)

Influence(X1 | x2,x3) = 1
1= u(y1,x2,x3)

Influence(X2 | y1,x3) = 4
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Influence(X3 | y1,y2) = 2
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Idea

Idea of the approach

How to isolate the contribution of each input variable?

Assess the influence of a criterion in the evaluation of two alternatives x, y

by looking at alternatives obtained by replacing subsets of values of y with values of x .

A simple example

Function of 3 binary variables, with x = (0, 0, 0) and y = (1, 1, 1):

u(x1, x2, x3) = max(x1, x2, x3) + 4 max(x2, x3) + 2 min(x2, x3)

X1

X2 X3

u(x1,x2,x3)=0

7= u(y1,y2,y3)

Influence(X1 | x2,x3) = 1
1= u(y1,x2,x3)

Influence(X2 | y1,x3) = 4

5= u(y1,y2,x3)

Influence(X3 | y1,y2) = 2

5= u(y1,x2,y3)u(x1,x2,y3)=5

u(x1,y2,y3)=7

u(x1,y2,x3)=5
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Idea

Idea of the approach

How to isolate the contribution of each input variable?

Assess the influence of a criterion in the evaluation of two alternatives x, y

by looking at alternatives obtained by replacing subsets of values of y with values of x .

A simple example

Function of 3 binary variables, with x = (0, 0, 0) and y = (1, 1, 1):

u(x1, x2, x3) = max(x1, x2, x3) + 4 max(x2, x3) + 2 min(x2, x3)

X1

X2 X3

u(x1,x2,x3)=0

7= u(y1,y2,y3)

Influence(X1 | x2,x3) = 1
1= u(y1,x2,x3)

Influence(X2 | y1,x3) = 4

5= u(y1,y2,x3)

Influence(X3 | y1,y2) = 2

5= u(y1,x2,y3)u(x1,x2,y3)=5

u(x1,y2,y3)=7

u(x1,y2,x3)=5

Influence(X3 | x1,x2) = 5

Influence(X2 | x1,y3) = 2

Influence(X1 | y2,y3) = 0
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Conversion to Cooperative Game Theory

Feature attribution

Game Theory Decision

N players attributes

v : 2N → R game, with v(∅) = 0 v(S) = u(yS , xN\S) − u(x)

φ ∈ R
N imputation feature importance

Efficiency
∑

i∈N φi = v(N) − v(∅)

A simple example

Approach 1: φi =
v(N)

n

φ = (7/3, 7/3, 7/3)

Approach 2: φi = v({i}) −
v(N)−

∑

k v({k})

n

φ = (−1/3, 11/3, 11/3)

Approach 3: φi =
1

2n−1

∑

S⊆N\i (v(S ∪ {i}) − v(S))

φ = (1/4, 13/4, 13/4)

0

7

1

5

55

7

5
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Characterization result

Characterization of the Shapley value [Shapley’53]

There is only one imputation φ which satisfies to the following properties:

Additivity: φi (N, v + w) = φi (N, v) + φi (N, w),

Null player: if v(S ∪ {i}) = v(S) for all S ⊆ N \ {i}, then φi (N, v) = 0,

Symmetry: φπk (πN, πv) = φk (N, v) for every permutation π on N,

Efficiency:
∑

i∈N φi (N, v) = v(N).

It is equal to:

φi (N, v) = Shi (N, v) :=
1

n!

∑

τ∈Π(N)

[

v({τ(1), . . . , i}) − v({τ(1), . . . , τ(τ−1
(i) − 1)})

]

=
∑

S⊆N\i

(n − |S| − 1)!|S|!

n!

[

v(S ∪ {i}) − v(S)
]

.
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Absolute Assessment In Decision

Basic Idea

Compare x to a reference r (e.g. expectation from user).

Drowning effect

Function u(x1, x2) = min(x1, x2), with x = (0.2, 0.8).
Choice of reference r :

r = (0, 0) vs. x :

φ1 = φ2 =
1

2
min(x1, x2) = 0.1

Same importance for the two attributes ∀x1, x2! 0 0

0.20

x vs. r = (1, 1):

φ1 =
1

2

[

1 − x1 + x2 − min(x1, x2)
]

= 0.7

φ2 =
1

2

[

1 − x2 + x1 − min(x1, x2)
]

= 0.1
0.2 0.8

10.2
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Feature attribution in Machine Learning

Notation

D: distribution of elements x ∈ X .

DJM =
∏n

i=1 D
JM

i , DJM

i has the same marginal distribution than D over variable i

U : uniform distribution.

How to define the game? [Merrick, Taly’20] [Kumar et al’20]

Feature Attribution:

Interventional distribution:

KernelSHAP [Lundberg, Lee’17]:

v(S) = ER∼D

[

u(xS , RN\S)
]

− ER∼D

[

u(R)
]

QII [Datta et al’16]:

v(S) = E
R∼DJM

[

u(xS , RN\S)
]

−E
R∼DJM

[

u(R)
]

IME [Strumbelj et al’10]:

v(S) = ER∼U

[

u(xS , RN\S)
]

− ER∼U

[

u(R)
]

Conditional distribution: SHAP [Lundberg, Lee’17],
TreeSHAP [Lundberg et al’18]

v(S) = ER∼D

[

u(xS , RN\S)|RS = xS

]

− ER∼D

[

u(R)
]
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Shapley value in Sensibility Analysis

When variables are independent

Functional ANOVA of Y = u(X):

u(x) =
∑

A⊆N

uA(xA) , uA(xA) =
∑

B⊆A

(−1)
|A\B|

EN\B(u|xB)

Var(Y ) =
∑

A⊆N

VarA(uA(XA))

Sobol index SA =
VarA(uA(XA))

Var(Y )
, with

∑

A⊆N SA = 1.

When variables are dependent [Owen’14]
∑

A⊆N SA 6= 1

Game (with v(∅) = 0 and v(N) = 1)

v(A) =
VarA[EN\A(Y |XA)]

Var(Y )

Contribution of variable i in Var(Y )
Shi (N, v)

Christophe Labreuche Interpretability methods in AI
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Example of application

Maritime Patrol

Mission of Maritime Patrol:

monitor a maritime area,

and seek for illegal activity.

⇒ It evaluates in real time a Priority Level
(PL) associated to each ship in this area

PL is intrinsically based on multiple criteria:

10:PL

1:AIS Incoherence 7:Illegal activity 9:Capability to escape interception

2:Drug smuggling 3:Human smuggling 8:Kinematics 6:Proximity shore

4:Speed 5:Trajectory

Christophe Labreuche Interpretability methods in AI
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Hierarchical evaluation

Maritime Patrol

8. Kinematics: 8 ≈ 4 ∧ 5: v8(x) = 0.3v4(x) + 0.7v4(x) ∧ v5(x)

Complementarity & Speed slightly more important

10. 10 ≈ 9 ∧ (1 ∨ 7): U(x) = v10(x) =
(

v1(x) ∨ v7(x) + v1(x) ∧ v9(x) + v7(x) ∧ v9(x)
)

/3

There is suspicion of illegal activity when either 1 or 7 are satisfied;

We also need to have a risk of missed interception to get high PL;

10:PL
[

U(x)=v10(x)=H10(v1(x),v7(x),v9(x))
]

1:AIS Incoherence
[

v1(x)
]

7:Illegal activity
[

v7(x)=H7(v2(x),v3(x))
]

9:Capability to escape interception
[

v9(x)=H9(v6(x),v8(x))
]

2:Drug smuggling
[

v2(x)
]

3:Human smuggling
[

v3(x)
]

8:Kinematics
[

v8(x)=H8(v4(x),v5(x))
]

6:Proximity shore
[

v6(x)
]

4:Speed
[

v4(x)
]

5:Trajectory
[

v5(x)
]

Christophe Labreuche Interpretability methods in AI
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Why not using the standard Shapley value?

Shapley value approach on trees

Use the Shapley value on the leaves

Use a recursive formulae otherwise: Ii(x , y) =
∑

j∈C(i) Ij(x , y)

Illustration

Comparison between x = (0, 0, 0) and y = (1, 1, 1).
Use of Shapley value on tree T :

I1(x, y) = I2(x, y) = 1/6, I3(x, y) = 2/3

I4(x, y) = I1(x, y) + I2(x, y) = 1/3

I(x, y) = (1/6, 1/6, 2/3, 1/3, 1)

5

34

21

max

min

Tree T :

Christophe Labreuche Interpretability methods in AI
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Why not using the standard Shapley value?

Shapley value approach on trees

Use the Shapley value on the leaves

Use a recursive formulae otherwise: Ii(x , y) =
∑

j∈C(i) Ij(x , y)

Illustration

Comparison between x = (0, 0, 0) and y = (1, 1, 1).
Use of Shapley value on tree T :

I1(x, y) = I2(x, y) = 1/6, I3(x, y) = 2/3

I4(x, y) = I1(x, y) + I2(x, y) = 1/3

I(x, y) = (1/6, 1/6, 2/3, 1/3, 1)

5

34

21

max

min

Tree T :

On subtree T ′:

On T ′: I3(x, y) = I4(x, y) = 1/2

Nodes 1 and 2 shall share equally I4(x, y) = 1/2

I(x, y) = (1/4, 1/4, 1/2, 1/2, 1)

5

34
min

Tree T ′:
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Axioms

Idea of the approach

Assess the influence of a criterion in the evaluation of two alternatives x, y

by looking at alternatives obtained by replacing subsets of values of y with values of x .

Example with 2 attributes: x = (x1, x2) , ( y1 , x2 ), ( x1 , y2 ), and y = (y1, y2)

X1

X2

x1 y1

x2

y2

x = (x1, x2)

( y1 , x2 )

( x1 , y2 ) y = (y1, y2)

Influence of At2 when At1=x1

u( x1 , y2 ) − u( x1 , x2 ) Influence of At2 when At1=y1

Influence of At1 when At2=x2

Influence of At1 when At2=y2

Restricted Value (RV)

Ik depends only on the utility u of compound options mixing values of x , y .

Christophe Labreuche Interpretability methods in AI
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Axioms

Null Attribute (NA)

if changing xk to yk never changes u, then Ik = 0.

Consistency with Restricted Tree (CRT)

I2 shall be the same for the original tree or

a subtree where 9 becomes a leaf.

Generalized Efficiency (GE)

General Share: I10 = u(y)− u(x)

Decomposability: e.g. I9 = I6 + I8

Other axioms

Additivity (ADD): Ik (u + u′) = Ik (u) + Ik (u
′)

Restricted Equal Treatment (RET): All attributes are treated

symmetrically

Christophe Labreuche Interpretability methods in AI
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Are these axioms sufficient to derive I?

Theorem

There is a unique influence index satisfying RV, NA, RET, ADD, GE

and CRT.

Remark

This influence index is an extension of the Shapley value on general

trees.

Christophe Labreuche Interpretability methods in AI
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Are these axioms sufficient to derive I?

Extended Shapley/Owen value

In order to distinguish the contribution of each attribute, we move from x to y changing one attribute
at a time, following an ordering π on N:

x, (y{π(1)}, x−{π(1)}), (y{π(1),π(2)}, x−{π(1),π(2)}), . . . , y.

Definition:

Ii (x, y, T , u) =

{

1
|Π(T )|

∑

π∈Π(T ) δπ(i) if i ∈ N
∑

k∈LeafT (i) Ik (x, y, T , u) else

δπ(i) := u(ySπ (i), x−Sπ (i)) − u(ySπ (i)\{i}, x−Sπ (i)\{i}) , Sπ(π(k)) := {π(1), . . . , π(k)}

Example with 2 attributes:

Path #1, π = (1, 2):

• for π(1) = 1 : δπ(1) = U( y1 , x2) − U( x1 , x2),

• for π(2) = 2 : δπ(2) = U(y1, y2 ) − U(y1, x2 )

Path #2, π′ = (2, 1):

• for π′(1) = 2 : δ
π′ (2) = U(x1, y2 ) − U(x1, x2 ),

• for π′(2) = 1 : δ
π′ (1) = U( y1 , y2)− U( x1 , y2) X1

X2

x1 y1

x2

y2

x
(y1, x2)

(x1, y2) y

δ
π′ (2) δπ(2)

δπ(1)

δ
π′ (1)
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Are these axioms sufficient to derive I?

What is Π(T )?

Π(T ): set of orderings of elements of N for which all elements of a subtree of T are consecutive.

Example:

(5, 4, 6, 2, 3, 1) ∈ Π(T ) (indicating that
π(1) = 5, π(2) = 4, π(3) = 6,
π(4) = 2, π(5) = 3, π(6) = 1)

(1, 6, 4, 5, 2, 3) ∈ Π(T )

(1, 2, 3, 4, 5, 6) ∈ Π(T )

(2, 3, 4, 5, 1, 6) 6∈ Π(T ) since 1 is
interleaved between attributes {4, 5}
and {6}

Christophe Labreuche Interpretability methods in AI



Introduction

Feature Importance

Extension on trees

Conclusion

Context

axiomatic characterization

Computational complexity

Complexity issue

Computation of Ii is exponential with n

Theorem

CRT implies that index Ii can be

equivalently computed by cutting all

branches not directly linking the path

from node i to the root.

Example with I1:

Christophe Labreuche Interpretability methods in AI
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Conclusion & Perspectives

Conclusion

Shapley value is a generic tool to measure variable importance

Extension to trees: an extensed Shapley value taking into accout the

tree structure
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Further investigations between sensitivity analysis and interpretability
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