# Interpretability methods in AI and a comparison with sensitivity analysis 

C. Labreuche ${ }^{1}$
${ }^{1}$ Thales Research \& Technology
Palaiseau, France
email: christophe.labreuche@thalesgroup.com

## Outline

## (1) Introduction

(2) Feature Importance

- Pairwise Comparison in Decision
- Absolute Assessment In Decision
- In Machine Learning
- In Sensibility Analysis
(3) Extension on trees
- Context
- axiomatic characterization

4 Conclusion

## Why shall we explain decisions?

Why is "explaining" important?

- Man-Machine Interaction: Increase acceptance \& trust of user
- Trustable AI: Validation and qualification for safety-critical systems


## Taxonomy of XAI [Guidotti et al'18]



## Explanation by Feature Attribution

## Aim

## Feature Attribution:

- Given an AI box with inputs and outputs,
- identify the input variables that
 mostly influence the outputs.
- Done by calculating the impact level of each input variable on the outputs.


## Scope: numerical functions

- Filter relevant information/motivation to be presented to the user;
- Debugging mode in Machine Learning (inputs = features).


## Decision setting

## Decision setting

- $N=\{1, \ldots, n\}$ : index set of attributes/features.
- $X_{i}$ : set of values representing attribute $i$ (for $i \in N$ ).
- $X=X_{1} \times \cdots \times X_{n}$ : set of alternatives/acts.
- $U: X \rightarrow \mathbb{R}$ : utility representing preferences of decision maker over $X$
- $U(y)>U(x): y$ is preferred to $x$
- Decision problems:
- Selection: find the best element in $\mathcal{X} \subseteq X$
- Ranking: order the elements of $\mathcal{X} \subseteq X$
- Scoring: assign a score to each element of $\mathcal{X} \subseteq X$
- Sorting: assign each element of $\mathcal{X} \subseteq X$ to a class $\mathcal{C}$


## Outline

## (1) Introduction

2 Feature Importance

- Pairwise Comparison in Decision
- Absolute Assessment In Decision
- In Machine Learning
- In Sensibility Analysis
(3) Extension on trees
- Context
- axiomatic characterization
(4) Conclusion


## Outline

(1) Introduction
2) Feature Importance

- Pairwise Comparison in Decision
- Absolute Assessment In Decision
- In Machine Learning
- In Sensibility Analysis
(3) Extension on trees
- Context
- axiomatic characterization
(4) Conclusion


## Why shall we explain decisions?

## A simple example

Function of 3 binary variables:

$$
u\left(x_{1}, x_{2}, x_{3}\right)=\max \left(x_{1}, x_{2}, x_{3}\right)+4 \max \left(x_{2}, x_{3}\right)+2 \min \left(x_{2}, x_{3}\right)
$$

How to explain the difference between

- $x=(0,0,0)$, with $u(x)=0$
- and $y=(1,1,1)$, with $u(y)=7$ ?


## A simple problem? NO!

- A simple Gradient does not work
- it is unstable!
- Figures shall have a meaning
- There are interactions among the inputs


## Idea

## Idea of the approach

- How to isolate the contribution of each input variable?
- Assess the influence of a criterion in the evaluation of two alternatives $x, y$
- by looking at alternatives obtained by replacing subsets of values of $y$ with values of $x$.


## A simple example

Function of 3 binary variables, with $x=(0,0,0)$ and $y=(1,1,1)$ :

$$
\begin{gathered}
u\left(x_{1}, x_{2}, x_{3}\right)=\max \left(x_{1}, x_{2}, x_{3}\right)+4 \max \left(x_{2}, x_{3}\right)+2 \min \left(x_{2}, x_{3}\right) \\
7=u\left(y_{1}, y_{2}, y_{3}\right)
\end{gathered}
$$

$$
u\left(x_{1}, x_{2}, x_{3}\right)=0 \stackrel{x_{2} \uparrow \underset{x_{1}}{x_{3}}}{\stackrel{x_{3}}{4}}
$$

## Idea

## Idea of the approach

- How to isolate the contribution of each input variable?
- Assess the influence of a criterion in the evaluation of two alternatives $x, y$
- by looking at alternatives obtained by replacing subsets of values of $y$ with values of $x$.


## A simple example

Function of 3 binary variables, with $x=(0,0,0)$ and $y=(1,1,1)$ :

$$
\begin{gathered}
u\left(x_{1}, x_{2}, x_{3}\right)=\max \left(x_{1}, x_{2}, x_{3}\right)+4 \max \left(x_{2}, x_{3}\right)+2 \min \left(x_{2}, x_{3}\right) \\
7=u\left(y_{1}, y_{2}, y_{3}\right)
\end{gathered}
$$



## Idea

## Idea of the approach

- How to isolate the contribution of each input variable?
- Assess the influence of a criterion in the evaluation of two alternatives $x, y$
- by looking at alternatives obtained by replacing subsets of values of $y$ with values of $x$.


## A simple example

Function of 3 binary variables, with $x=(0,0,0)$ and $y=(1,1,1)$ :

$$
\begin{gathered}
u\left(x_{1}, x_{2}, x_{3}\right)=\max \left(x_{1}, x_{2}, x_{3}\right)+4 \max \left(x_{2}, x_{3}\right)+2 \min \left(x_{2}, x_{3}\right) \\
7=u\left(y_{1}, y_{2}, y_{3}\right)
\end{gathered}
$$



## Idea

## Idea of the approach

- How to isolate the contribution of each input variable?
- Assess the influence of a criterion in the evaluation of two alternatives $x, y$
- by looking at alternatives obtained by replacing subsets of values of $y$ with values of $x$.


## A simple example

Function of 3 binary variables, with $x=(0,0,0)$ and $y=(1,1,1)$ :

$$
u\left(x_{1}, x_{2}, x_{3}\right)=\max \left(x_{1}, x_{2}, x_{3}\right)+4 \max \left(x_{2}, x_{3}\right)+2 \min \left(x_{2}, x_{3}\right)
$$



## Idea

## Idea of the approach

- How to isolate the contribution of each input variable?
- Assess the influence of a criterion in the evaluation of two alternatives $x, y$
- by looking at alternatives obtained by replacing subsets of values of $y$ with values of $x$.


## A simple example

Function of 3 binary variables, with $x=(0,0,0)$ and $y=(1,1,1)$ :

$$
\begin{aligned}
& u\left(x_{1}, x_{2}, x_{3}\right)=\max \left(x_{1}, x_{2}, x_{3}\right)+4 \max \left(x_{2}, x_{3}\right)+2 \min \left(x_{2}, x_{3}\right)
\end{aligned}
$$

## Idea

## Idea of the approach

- How to isolate the contribution of each input variable?
- Assess the influence of a criterion in the evaluation of two alternatives $x, y$
- by looking at alternatives obtained by replacing subsets of values of $y$ with values of $x$.


## A simple example

Function of 3 binary variables, with $x=(0,0,0)$ and $y=(1,1,1)$ :


## Conversion to Cooperative Game Theory

## Feature attribution

|  | Game Theory | Decision |
| :--- | :--- | :--- |
| $N$ | players | attributes |
| $v: 2^{N} \rightarrow \mathbb{R}$ | game, with $v(\emptyset)=0$ | $v(S)=u\left(y_{S}, x_{N \backslash S}\right)-u(x)$ |
| $\phi \in \mathbb{R}^{N}$ | imputation | feature importance |
| Efficiency | $\sum_{i \in N} \phi_{i}=v(N)-v(\emptyset)$ |  |

## A simple example

- Approach 1: $\phi_{i}=\frac{v(N)}{n}$

$$
\phi=(7 / 3,7 / 3,7 / 3)
$$

- Approach 2: $\phi_{i}=v(\{i\})-\frac{v(N)-\sum_{k} v(\{k\})}{n}$

$$
\phi=(-1 / 3,11 / 3,11 / 3)
$$

- Approach 3: $\phi_{i}=\frac{1}{2^{n-1}} \sum_{S \subseteq N \backslash i}(v(S \cup\{i\})-v(S))$


$$
\phi=(1 / 4,13 / 4,13 / 4)
$$

## Axioms



## Characterization result

## Characterization of the Shapley value [Shapley'53]

There is only one imputation $\phi$ which satisfies to the following properties:

- Additivity: $\phi_{i}(N, v+w)=\phi_{i}(N, v)+\phi_{i}(N, w)$,
- Null player: if $v(S \cup\{i\})=v(S)$ for all $S \subseteq N \backslash\{i\}$, then $\phi_{i}(N, v)=0$,
- Symmetry: $\phi_{\pi k}(\pi N, \pi v)=\phi_{k}(N, v)$ for every permutation $\pi$ on $N$,
- Efficiency: $\sum_{i \in N} \phi_{i}(N, v)=v(N)$.

It is equal to:

$$
\begin{aligned}
\phi_{i}(N, v)=\operatorname{Sh}_{i}(N, v) & :=\frac{1}{n!} \sum_{\tau \in \Pi(N)}\left[v(\{\tau(1), \ldots, i\})-v\left(\left\{\tau(1), \ldots, \tau\left(\tau^{-1}(i)-1\right)\right\}\right)\right] \\
& =\sum_{S \subseteq N \backslash i} \frac{(n-|S|-1)!|S|!}{n!}[v(S \cup\{i\})-v(S)]
\end{aligned}
$$

## Shapley value



## Outline

(1) Introduction
(2) Feature Importance

- Pairwise Comparison in Decision
- Absolute Assessment In Decision
- In Machine Learning
- In Sensibility Analysis
(3) Extension on trees
- Context
- axiomatic characterization
(4) Conclusion


## Absolute Assessment In Decision

## Basic Idea

Compare $x$ to a reference $r$ (e.g. expectation from user).

## Drowning effect

Function $u\left(x_{1}, x_{2}\right)=\min \left(x_{1}, x_{2}\right)$, with $x=(0.2,0.8)$.
Choice of reference $r$ :

- $r=(0,0)$ vs. $x$ :

$$
\phi_{1}=\phi_{2}=\frac{1}{2} \min \left(x_{1}, x_{2}\right)=0.1
$$

Same importance for the two attributes $\forall x_{1}, x_{2}$ !

- $x$ vs. $r=(1,1)$ :

$$
\begin{aligned}
& \phi_{1}=\frac{1}{2}\left[1-x_{1}+x_{2}-\min \left(x_{1}, x_{2}\right)\right]=0.7 \\
& \phi_{2}=\frac{1}{2}\left[1-x_{2}+x_{1}-\min \left(x_{1}, x_{2}\right)\right]=0.1
\end{aligned}
$$



## Outline

## (1) Introduction

2) Feature Importance

- Pairwise Comparison in Decision
- Absolute Assessment In Decision
- In Machine Learning
- In Sensibility Analysis
(3) Extension on trees
- Context
- axiomatic characterization

4 Conclusion

## Feature attribution in Machine Learning

## Notation

- $\mathcal{D}$ : distribution of elements $x \in X$.
- $\mathcal{D}^{\mathrm{JM}}=\prod_{i=1}^{n} \mathcal{D}_{i}^{\mathrm{JM}}, \mathcal{D}_{i}^{\mathrm{JM}}$ has the same marginal distribution than $\mathcal{D}$ over variable $i$
- $\mathcal{U}$ : uniform distribution.


## How to define the game? [Merrick, Taly'20] [Kumar et al'20]

## Feature Attribution:

- Interventional distribution:
- KernelSHAP [Lundberg, Lee'17]:

$$
v(S)=\mathbb{E}_{R \sim \mathcal{D}}\left[u\left(x_{S}, R_{N \backslash S}\right)\right]-\mathbb{E}_{R \sim \mathcal{D}}[u(R)]
$$

- QII [Datta et al'16]:

$$
v(S)=\mathbb{E}_{R \sim \mathcal{D}^{\mathrm{JM}}}\left[u\left(x_{S}, R_{N \backslash S}\right)\right]-\mathbb{E}_{R \sim \mathcal{D}^{\mathrm{JM}}}[u(R)]
$$

- IME [Strumbelj et al'10]:

$$
v(S)=\mathbb{E}_{R \sim \mathcal{U}}\left[u\left(x_{S}, R_{N \backslash S}\right)\right]-\mathbb{E}_{R \sim \mathcal{U}}[u(R)]
$$

- Conditional distribution: SHAP [Lundberg, Lee'17],
 TreeSHAP [Lundberg et al'18]

$$
v(S)=\mathbb{E}_{R \sim \mathcal{D}}\left[u\left(x_{S}, R_{N \backslash S}\right) \mid R_{S}=x_{S}\right]-\mathbb{E}_{R \sim \mathcal{D}}[u(R)]
$$

## Outline

## (1) Introduction

2) Feature Importance

- Pairwise Comparison in Decision
- Absolute Assessment In Decision
- In Machine Learning
- In Sensibility Analysis
(3) Extension on trees
- Context
- axiomatic characterization
(4) Conclusion


## Shapley value in Sensibility Analysis

## When variables are independent

- Functional ANOVA of $Y=u(X)$ :

$$
\begin{aligned}
& u(x)=\sum_{A \subseteq N} u_{A}\left(x_{A}\right), u_{A}\left(x_{A}\right)=\sum_{B \subseteq A}(-1)^{|A \backslash B|} \mathbb{E}_{N \backslash B}\left(u \mid x_{B}\right) \\
& \operatorname{Var}(Y)=\sum_{A \subseteq N} \operatorname{Var}_{A}\left(u_{A}\left(X_{A}\right)\right)
\end{aligned}
$$

- Sobol index $S_{A}=\frac{\operatorname{Var}_{A}\left(u_{A}\left(X_{A}\right)\right)}{\operatorname{Var}(Y)}$, with $\sum_{A \subseteq N} S_{A}=1$.


## When variables are dependent [Owen'14]

- $\sum_{A \subseteq N} S_{A} \neq 1$
- Game (with $v(\emptyset)=0$ and $v(N)=1$ )

$$
v(A)=\frac{\operatorname{Var}_{A}\left[\mathbb{E}_{N \backslash A}\left(Y \mid X_{A}\right)\right]}{\operatorname{Var}(Y)}
$$

- Contribution of variable $i$ in $\operatorname{Var}(Y)$

$$
\mathrm{Sh}_{i}(N, v)
$$

## Outline

## (1) Introduction

(5) Feature Importance

- Pairwise Comparison in Decision
- Absolute Assessment In Decision
- In Machine Learning
- In Sensibility Analysis
(3) Extension on trees
- Context
- axiomatic characterization

4 Conclusion

## Outline

## (1) Introduction

(2) Feature importance

- Pairwise Comparison in Decision
- Absolute Assessment In Decision
- In Machine Learning
- In Sensibility Analysis
(3) Extension on trees
- Context
- axiomatic characterization

4 Conclusion

## Example of application

## Maritime Patrol

## Mission of Maritime Patrol:

- monitor a maritime area,
- and seek for illegal activity.
- $\Rightarrow$ It evaluates in real time a Priority Level (PL) associated to each ship in this area

PL is intrinsically based on multiple criteria:


## Hierarchical evaluation

## Maritime Patrol

8. Kinematics: $8 \approx 4 \wedge 5: v_{8}(x)=0.3 v_{4}(x)+0.7 v_{4}(x) \wedge v_{5}(x)$

- Complementarity \& Speed slightly more important

10. $10 \approx 9 \wedge(1 \vee 7): U(x)=v_{10}(x)=\left(v_{1}(x) \vee v_{7}(x)+v_{1}(x) \wedge v_{9}(x)+v_{7}(x) \wedge v_{9}(x)\right) / 3$

- There is suspicion of illegal activity when either 1 or 7 are satisfied;
- We also need to have a risk of missed interception to get high PL;



## Why not using the standard Shapley value?

## Shapley value approach on trees

- Use the Shapley value on the leaves
- Use a recursive formulae otherwise: $I_{i}(x, y)=\sum_{j \in C(i)} I_{j}(x, y)$


## Illustration

Comparison between $x=(0,0,0)$ and $y=(1,1,1)$.
Use of Shapley value on tree $\mathcal{T}$ :

- $I_{1}(x, y)=I_{2}(x, y)=1 / 6, I_{3}(x, y)=2 / 3$
- $I_{4}(x, y)=I_{1}(x, y)+I_{2}(x, y)=1 / 3$
- $I(x, y)=(1 / 6,1 / 6,2 / 3,1 / 3,1)$



## Why not using the standard Shapley value?

## Shapley value approach on trees

- Use the Shapley value on the leaves
- Use a recursive formulae otherwise: $I_{i}(x, y)=\sum_{j \in C(i)} I_{j}(x, y)$


## Illustration

Comparison between $x=(0,0,0)$ and $y=(1,1,1)$.
Use of Shapley value on tree $\mathcal{T}$ :

- $I_{1}(x, y)=I_{2}(x, y)=1 / 6, I_{3}(x, y)=2 / 3$
- $I_{4}(x, y)=I_{1}(x, y)+I_{2}(x, y)=1 / 3$
- $I(x, y)=(1 / 6,1 / 6,2 / 3,1 / 3,1)$


Tree $\mathcal{T}^{\prime}$ :


## Outline

## (1) Introduction

(2) Feature Importance

- Pairwise Comparison in Decision
- Absolute Assessment In Decision
- In Machine Learning
- In Sensibility Analysis
(3) Extension on trees
- Context
- axiomatic characterization
(4) Conclusion


## Axioms

## Idea of the approach

- Assess the influence of a criterion in the evaluation of two alternatives $x, y$
- by looking at alternatives obtained by replacing subsets of values of $y$ with values of $x$.
- Example with 2 attributes: $x=\left(x_{1}, x_{2}\right),\left(y_{1}, x_{2}\right),\left(x_{1}, y_{2}\right)$, and $y=\left(y_{1}, y_{2}\right)$



## Restricted Value (RV)

$I_{k}$ depends only on the utility $u$ of compound options mixing values of $x, y$.

## Axioms

## Null Attribute (NA)

if changing $x_{k}$ to $y_{k}$ never changes $u$, then $I_{k}=0$.

## Consistency with Restricted Tree (CRT)

$l_{2}$ shall be the same for the original tree or a subtree where 9 becomes a leaf.

## Generalized Efficiency (GE)

- General Share: $I_{10}=u(y)-u(x)$
- Decomposability: e.g. $I_{9}=I_{6}+I_{8}$



## Other axioms

- Additivity (ADD): $I_{k}\left(u+u^{\prime}\right)=I_{k}(u)+I_{k}\left(u^{\prime}\right)$
- Restricted Equal Treatment (RET): All attributes are treated symmetrically


## Are these axioms sufficient to derive I?

## Theorem

There is a unique influence index satisfying RV, NA, RET, ADD, GE and CRT.

## Remark

This influence index is an extension of the Shapley value on general trees.

## Are these axioms sufficient to derive I?

## Extended Shapley/Owen value

In order to distinguish the contribution of each attribute, we move from $x$ to $y$ changing one attribute at a time, following an ordering $\pi$ on $N$ :

$$
x,\left(y_{\{\pi(1)\}}, x_{-\{\pi(1)\}}\right),\left(y_{\{\pi(1), \pi(2)\}}, x_{-\{\pi(1), \pi(2)\}}\right), \ldots, y
$$

Definition:

$$
\begin{aligned}
& I_{i}(x, y, T, u)=\left\{\begin{array}{l}
\frac{1}{|\Pi(T)|} \sum_{\pi \in \Pi(T)} \delta_{\pi}(i) \text { if } i \in N \\
\sum_{k \in \operatorname{Leaf}_{T}(i)} I_{k}(x, y, T, u) \text { else }
\end{array}\right. \\
& \delta_{\pi}(i):=u\left(y_{S_{\pi(i)}}, x_{\left.-S_{\pi(i)}\right)-u\left(y_{S_{\pi(i)} \backslash\{i\}}, x_{-S_{\pi}(i) \backslash\{i\}}\right), S_{\pi}(\pi(k)):=\{\pi(1), \ldots, \pi(k)\}}\right.
\end{aligned}
$$

Example with 2 attributes:

- Path $\# 1, \pi=(1,2)$ :
- for $\pi(1)=1: \delta_{\pi}(1)=U\left(y_{1}, x_{2}\right)-U\left(x_{1}, x_{2}\right)$,
- for $\pi(2)=2: \delta_{\pi}(2)=U\left(y_{1}, y_{2}\right)-U\left(y_{1}, x_{2}\right)$
- Path \#2, $\pi^{\prime}=(2,1)$ :
- for $\pi^{\prime}(1)=2: \delta_{\pi^{\prime}}(2)=U\left(x_{1}, y_{2}\right)-U\left(x_{1}, x_{2}\right)$,
- for $\pi^{\prime}(2)=1: \delta_{\pi^{\prime}}(1)=U\left(y_{1}, y_{2}\right)-U\left(x_{1}, y_{2}\right)$



## Are these axioms sufficient to derive I?

## What is $\Pi(T)$ ?

$\Pi(T)$ : set of orderings of elements of $N$ for which all elements of a subtree of $T$ are consecutive.
Example:

- $(5,4,6,2,3,1) \in \Pi(T)$ (indicating that $\pi(1)=5, \pi(2)=4, \pi(3)=6$, $\pi(4)=2, \pi(5)=3, \pi(6)=1)$
- $(1,6,4,5,2,3) \in \Pi(T)$
- $(1,2,3,4,5,6) \in \Pi(T)$
- $(2,3,4,5,1,6) \notin \Pi(T)$ since 1 is interleaved between attributes $\{4,5\}$
 and $\{6\}$


## Computational complexity

## Complexity issue

Computation of $l_{i}$ is exponential with $n$

## Theorem

CRT implies that index $I_{i}$ can be equivalently computed by cutting all branches not directly linking the path from node $i$ to the root.

Example with $I_{1}$ :


| $d$ | $p$ | $n$ | $\log _{10}[I(N)$ | $\log _{10}[1(T) \mid$ | $\log _{10} n\left(T_{1 j}\right)$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 2 | 4 | 1.38 | 0.903 | 0.602 |
| 2 | 3 | 9 | 5.559 | 3.112 | 1.556 |
| 2 | 4 | 16 | 13.320 | 6.901 | 2.76 |
| 2 | 5 | 25 | 25.19 | 12.47 | 4.158 |
| 2 | 6 | 36 | 41.57 | 20.0 | 5.715 |
| 3 | 2 | 8 | 4.605 | 2.107 | 0.903 |
| 3 | 3 | 27 | 28.036 | 10.115 | 2.334 |
| 3 | 4 | 64 | 89.1 | 28.984 | 4.14 |
| 3 | 5 | 125 | 209.27 | 64.454 | 6.237 |
| 3 | 6 | 216 | 412.0 | 122.86 | 8.571 |
| 4 | 2 | 16 | 13.3215 | 4.515 | 1.204 |
| 4 | 3 | 81 | 120.76 | 31.126 | 3.112 |
| 4 | 4 | 256 | 506.93 | 117.31 | 5.520 |
| 4 | 5 | 625 | 1477.7 | 324.35 | 8.316 |
| 4 | 6 | 1296 | 3473.0 | 740.04 | 11.429 |
| 5 | 2 | 32 | 35.42 | 9.332 | 1.505 |
| 5 | 3 | 243 | 475.76 | 94.156 | 3.89 |
| 5 | 4 | 1024 | 2639.7 | 470.65 | 6.901 |
| 5 | 5 | 3125 | 9566.3 | 1623.84 | 10.395 |
| 5 | 6 | 7776 | 26879 | 4443.15 | 14.286 |

## Outline

## (1) Introduction

(2) Feature Importance

- Pairwise Comparison in Decision
- Absolute Assessment In Decision
- In Machine Learning
- In Sensibility Analysis
(3) Extension on trees
- Context
- axiomatic characterization

4. Conclusion

## Conclusion \& Perspectives

## Conclusion

- Shapley value is a generic tool to measure variable importance
- Extension to trees: an extensed Shapley value taking into accout the tree structure


## Perspectives

- Further investigations between sensitivity analysis and interpretability


## References

- [Kumar et al'20] E. Kumar, S. Venkatasubramanian, C. Scheidegger, S. Friedler. Problems with Shapley-value-based explanations as feature importance measures. arxiv.org/abs/2002.11097
- [Labreuche et al'18] C. Labreuche, S. Fossier. Explaining Multi-Criteria Decision Aiding Models with an Extended Shapley Value. IJCAI, 2018.
- [Datta et al'16] A. Datta, S. Sen, Y. Zick. Algorithmic transparency via quantitative input influence: Theory and experiments with learning systems. IEEE symposium on security and privacy (SP), pp. 598-617, 2016.
- [Guidotti et al'18] R. Guidotti, A. Monreale, S. Ruggieri, F. Turini, F. Giannotti, D. Pedreschi. A survey of methods for explaining black box models. ACM Computing Surveys, 2018.
- [Lundberg, Lee'17] S. Lundberg, S. Lee. A unified approach to interpreting model predictions. NIPS, pp. 4765-4774, 2017.
- [Lundberg et al'18] S. Lundberg, G. Erion, S. Lee. Consistent individualized feature attribution for tree ensembles. arXiv:1802.03888, 2018.
- [Merrick, Taly'20] L. Merrick, A. Taly. The Explanation Game: Explaining Machine Learning Models with Cooperative Game Theory, arxiv.org/abs/1909.08128, 2020.
- [Owen'14] A.B. Owen. Sobol' indices and Shapley value. SIAM/ASA Journal on Uncertainty Quantification, 2014
- [Shapley'53] L.S. Shapley. A value for $n$-person games, 1953.
- [Strumbelj et al'10] E. Strumbelj, I. Kononenko. An efficient explanation of individual classifications using game theory. Journal of Machine Learning Research, 11, 1-18, 2010.

