Interpretability methods in AI and a comparison with sensitivity analysis

C. Labreuche 1

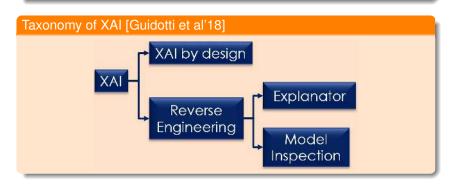
¹ Thales Research & Technology Palaiseau, France email: christophe.labreuche@thalesgroup.com

- Introduction
- Peature Importance
 - Pairwise Comparison in Decision
 - Absolute Assessment In Decision
 - In Machine Learning
 - In Sensibility Analysis
- Extension on trees
 - Context
 - axiomatic characterization
- 4 Conclusion

Why shall we explain decisions?

Why is "explaining" important?

- Man-Machine Interaction: Increase acceptance & trust of user
- Trustable AI: Validation and qualification for safety-critical systems



Explanation by Feature Attribution

Aim

Feature Attribution:

- Given an AI box with inputs and outputs,
- identify the input variables that mostly influence the outputs.
- Done by calculating the impact level of each input variable on the outputs.

Scope: numerical functions

- Filter relevant information/motivation to be presented to the user;
- Debugging mode in Machine Learning (inputs = features).

Decision setting

Decision setting

- $N = \{1, ..., n\}$: index set of attributes/features.
- X_i : set of values representing attribute i (for $i \in N$).
- $X = X_1 \times \cdots \times X_n$: set of alternatives/acts.
- $U: X \to \mathbb{R}$: utility representing preferences of decision maker over X
 - U(y) > U(x): y is preferred to x
- Decision problems:
 - Selection: find the best element in $\mathcal{X} \subseteq X$
 - Ranking: order the elements of $\mathcal{X} \subseteq X$
 - Scoring: assign a score to each element of X ⊆ X
 - Sorting: assign each element of $\mathcal{X} \subseteq X$ to a class \mathcal{C}

- Introduction
- Peature Importance
 - Pairwise Comparison in Decision
 - Absolute Assessment In Decision
 - In Machine Learning
 - In Sensibility Analysis
- Extension on trees
 - Context
 - axiomatic characterization
- 4 Conclusion

- Introduction
- Peature Importance
 - Pairwise Comparison in Decision
 - Absolute Assessment In Decision
 - In Machine Learning
 - In Sensibility Analysis
- Extension on trees
 - Context
 - axiomatic characterization
- 4 Conclusion

Why shall we explain decisions?

A simple example

Function of 3 binary variables:

$$u(x_1, x_2, x_3) = \max(x_1, x_2, x_3) + 4 \max(x_2, x_3) + 2 \min(x_2, x_3)$$

How to explain the difference between

- x = (0,0,0), with u(x) = 0
- and y = (1, 1, 1), with u(y) = 7?

A simple problem? NO!

- A simple Gradient does not work
 - it is unstable!
- Figures shall have a meaning
- There are interactions among the inputs

- How to isolate the contribution of each input variable?
- Assess the influence of a criterion in the evaluation of two alternatives x, y
- by looking at alternatives obtained by replacing subsets of values of *y* with values of *x*.

A simple example

$$u(x_1, x_2, x_3) = \max(x_1, x_2, x_3) + 4 \max(x_2, x_3) + 2 \min(x_2, x_3)$$

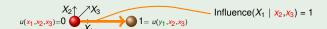
$$07 = u(y_1, y_2, y_3)$$

- How to isolate the contribution of each input variable?
- Assess the influence of a criterion in the evaluation of two alternatives x, y
- by looking at alternatives obtained by replacing subsets of values of *y* with values of *x*.

A simple example

$$u(x_1, x_2, x_3) = \max(x_1, x_2, x_3) + 4 \max(x_2, x_3) + 2 \min(x_2, x_3)$$

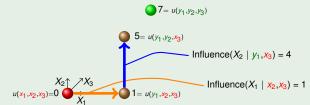
$$\bigcirc$$
 7= $u(y_1, y_2, y_3)$



- How to isolate the contribution of each input variable?
- Assess the influence of a criterion in the evaluation of two alternatives x, y
- by looking at alternatives obtained by replacing subsets of values of *y* with values of *x*.

A simple example

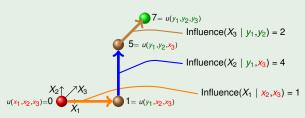
$$u(x_1, x_2, x_3) = \max(x_1, x_2, x_3) + 4 \max(x_2, x_3) + 2 \min(x_2, x_3)$$



- How to isolate the contribution of each input variable?
- Assess the influence of a criterion in the evaluation of two alternatives x, y
- by looking at alternatives obtained by replacing subsets of values of *y* with values of *x*.

A simple example

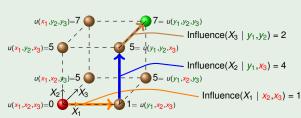
$$u(x_1, x_2, x_3) = \max(x_1, x_2, x_3) + 4 \max(x_2, x_3) + 2 \min(x_2, x_3)$$



- How to isolate the contribution of each input variable?
- Assess the influence of a criterion in the evaluation of two alternatives x, y
- by looking at alternatives obtained by replacing subsets of values of *y* with values of *x*.

A simple example

$$u(x_1, x_2, x_3) = \max(x_1, x_2, x_3) + 4 \max(x_2, x_3) + 2 \min(x_2, x_3)$$



Idea

Idea of the approach

- How to isolate the contribution of each input variable?
- Assess the influence of a criterion in the evaluation of two alternatives x, y
- by looking at alternatives obtained by replacing subsets of values of y with values of x.

A simple example

$$u(x_1, x_2, x_3) = \max(x_1, x_2, x_3) + 4 \max(x_2, x_3) + 2 \min(x_2, x_3)$$

$$\begin{aligned} & \text{Influence}(X_1 \mid y_2, y_3) = 0 \\ & u(x_1, y_2, y_3) = 7 \\ & u($$

Conversion to Cooperative Game Theory

Feature attribution

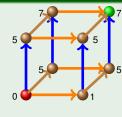
	Game Theory	Decision	
N	players	attributes	
$v: 2^N \to \mathbb{R}$	game, with $\nu(\emptyset) = 0$	$v(S) = u(y_S, x_{N \setminus S}) - u(x)$	
$\phi \in \mathbb{R}^N$	imputation	feature importance	
Efficiency	$\sum_{i \in N} \phi_i = \nu(N) - \nu(\emptyset)$		

A simple example

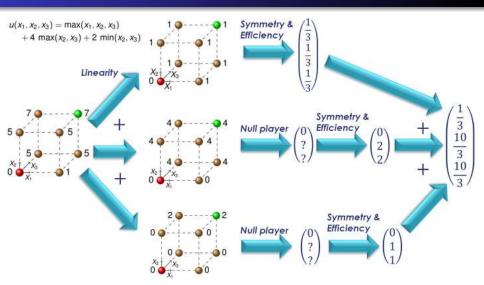
• Approach 1: $\phi_i = \frac{v(N)}{n}$

$$\phi = (7/3, 7/3, 7/3)$$

- Approach 2: $\phi_i = v(\{i\}) \frac{v(N) \sum_k v(\{k\})}{n}$ $\phi = (-1/3, 11/3, 11/3)$
- Approach 3: $\phi_i = \frac{1}{2^{n-1}} \sum_{S \subseteq N \setminus i} (v(S \cup \{i\}) v(S))$ $\phi = (1/4, 13/4, 13/4)$



Axioms



Characterization result

Characterization of the Shapley value [Shapley'53]

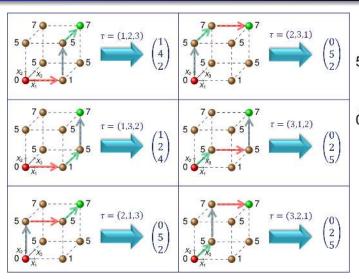
There is only one imputation ϕ which satisfies to the following properties:

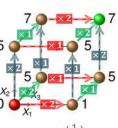
- Additivity: $\phi_i(N, v + w) = \phi_i(N, v) + \phi_i(N, w)$,
- Null player: if $v(S \cup \{i\}) = v(S)$ for all $S \subseteq N \setminus \{i\}$, then $\phi_i(N, v) = 0$,
- Symmetry: $\phi_{\pi k}(\pi N, \pi v) = \phi_k(N, v)$ for every permutation π on N,
- Efficiency: $\sum_{i \in N} \phi_i(N, v) = v(N)$.

It is equal to:

$$\phi_i(N, v) = \operatorname{Sh}_i(N, v) := \frac{1}{n!} \sum_{\tau \in \Pi(N)} \left[v(\{\tau(1), \dots, i\}) - v(\{\tau(1), \dots, \tau(\tau^{-1}(i) - 1)\}) \right]$$
$$= \sum_{S \subseteq N \setminus i} \frac{(n - |S| - 1)!|S|!}{n!} \left[v(S \cup \{i\}) - v(S) \right].$$

Shapley value





$$\phi = \begin{pmatrix} \frac{3}{3} \\ \frac{10}{3} \\ \frac{10}{3} \end{pmatrix}$$

- Introduction
- Peature Importance
 - Pairwise Comparison in Decision
 - Absolute Assessment In Decision
 - In Machine Learning
 - In Sensibility Analysis
- Extension on trees
 - Context
 - axiomatic characterization
- 4 Conclusion

Absolute Assessment In Decision

Basic Idea

Compare x to a reference r (e.g. expectation from user).

Drowning effect

Function $u(x_1, x_2) = \min(x_1, x_2)$, with x = (0.2, 0.8). Choice of reference r:

•
$$r = (0,0)$$
 vs. x :

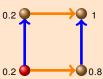
$$\phi_1 = \phi_2 = \frac{1}{2} \min(x_1, x_2) = 0.1$$

Same importance for the two attributes $\forall x_1, x_2!$

•
$$x \text{ vs. } r = (1, 1)$$
:

$$\phi_1 = \frac{1}{2} [1 - x_1 + x_2 - \min(x_1, x_2)] = 0.7$$

$$\phi_2 = \frac{1}{2} [1 - x_2 + x_1 - \min(x_1, x_2)] = 0.1$$



- Introduction
- Peature Importance
 - Pairwise Comparison in Decision
 - Absolute Assessment In Decision
 - In Machine Learning
 - In Sensibility Analysis
- Extension on trees
 - Context
 - axiomatic characterization
- Conclusion

Feature attribution in Machine Learning

Notation

- lacktriangledown \mathcal{D} : distribution of elements $x \in X$.
- $\mathcal{D}^{\text{JM}} = \prod_{i=1}^{n} \mathcal{D}_{i}^{\text{JM}}, \mathcal{D}_{i}^{\text{JM}}$ has the same marginal distribution than \mathcal{D} over variable i
- U: uniform distribution.

How to define the game? [Merrick, Taly'20] [Kumar et al'20]

Feature Attribution:

- Interventional distribution:
 - KernelSHAP [Lundberg, Lee'17]:

$$v(S) = \mathbb{E}_{R \sim \mathcal{D}} \left[u(x_S, R_{N \setminus S}) \right] - \mathbb{E}_{R \sim \mathcal{D}} \left[u(R) \right]$$

QII [Datta et al'16]:

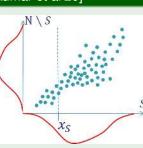
$$v(S) = \mathbb{E}_{R \sim \mathcal{D}^{\mathrm{JM}}} \left[u(x_S, R_{N \setminus S}) \right] - \mathbb{E}_{R \sim \mathcal{D}^{\mathrm{JM}}} \left[u(R) \right]$$

IME [Strumbelj et al'10]:

$$v(S) = \mathbb{E}_{R \sim \mathcal{U}} \left[u(x_S, R_{N \setminus S}) \right] - \mathbb{E}_{R \sim \mathcal{U}} \left[u(R) \right]$$

 Conditional distribution: SHAP [Lundberg, Lee'17], TreeSHAP [Lundberg et al'18]

$$v(S) = \mathbb{E}_{R \sim \mathcal{D}} \left[u(x_S, R_{N \setminus S}) | R_S = x_S \right] - \mathbb{E}_{R \sim \mathcal{D}} \left[u(R) \right]$$



- Introduction
- Peature Importance
 - Pairwise Comparison in Decision
 - Absolute Assessment In Decision
 - In Machine Learning
 - In Sensibility Analysis
- Extension on trees
 - Context
 - axiomatic characterization
- 4 Conclusion

Shapley value in Sensibility Analysis

When variables are independent

• Functional ANOVA of Y = u(X):

$$u(x) = \sum_{A \subseteq N} u_A(x_A) , \ u_A(x_A) = \sum_{B \subseteq A} (-1)^{|A \setminus B|} \mathbb{E}_{N \setminus B}(u|x_B)$$

$$\operatorname{Var}(Y) = \sum_{A \subseteq N} \operatorname{Var}_A(u_A(X_A))$$

• Sobol index $S_A = \frac{\text{Var}_A(u_A(X_A))}{\text{Var}(Y)}$, with $\sum_{A\subseteq N} S_A = 1$.

When variables are dependent [Owen'14]

- Game (with $v(\emptyset) = 0$ and v(N) = 1)

$$v(A) = \frac{\operatorname{Var}_{A}[\mathbb{E}_{N \setminus A}(Y|X_{A})]}{\operatorname{Var}(Y)}$$

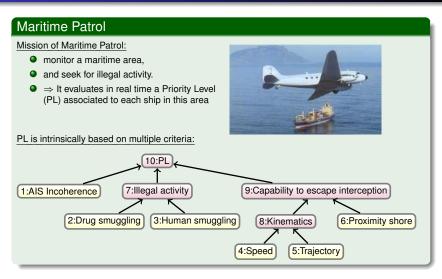
Contribution of variable i in Var(Y)

$$Sh_i(N, v)$$

- Introduction
- Peature Importance
 - Pairwise Comparison in Decision
 - Absolute Assessment In Decision
 - In Machine Learning
 - In Sensibility Analysis
- Extension on trees
 - Context
 - axiomatic characterization
- 4 Conclusion

- Introduction
- Peature Importance
 - Pairwise Comparison in Decision
 - Absolute Assessment In Decision
 - In Machine Learning
 - In Sensibility Analysis
- Extension on trees
 - Context
 - axiomatic characterization
- Conclusion

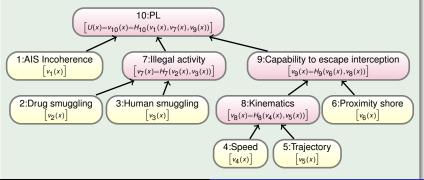
Example of application



Hierarchical evaluation

Maritime Patrol

- 8. Kinematics: $8 \approx 4 \land 5$: $v_8(x) = 0.3v_4(x) + 0.7v_4(x) \land v_5(x)$
 - Complementarity & Speed slightly more important
- 10. $10 \approx 9 \wedge (1 \vee 7)$: $U(x) = v_{10}(x) = (v_1(x) \vee v_7(x) + v_1(x) \wedge v_9(x) + v_7(x) \wedge v_9(x))/3$
 - There is suspicion of illegal activity when either 1 or 7 are satisfied;
 - We also need to have a risk of missed interception to get high PL;



Why not using the standard Shapley value?

Shapley value approach on trees

- Use the Shapley value on the leaves
- Use a recursive formulae otherwise: $I_i(x,y) = \sum_{j \in C(i)} I_j(x,y)$

Illustration

Comparison between x = (0, 0, 0) and y = (1, 1, 1). Use of Shapley value on tree \mathcal{T} :

•
$$l_1(x, y) = l_2(x, y) = \frac{1}{6}, l_3(x, y) = \frac{2}{3}$$

$$\bullet$$
 $l_4(x, y) = l_1(x, y) + l_2(x, y) = 1/3$

$$I(x,y) = (1/6, 1/6, 2/3, 1/3, 1)$$

Why not using the standard Shapley value?

Shapley value approach on trees

- Use the Shapley value on the leaves
- Use a recursive formulae otherwise: $I_i(x, y) = \sum_{j \in C(i)} I_j(x, y)$

Illustration

Comparison between x = (0, 0, 0) and y = (1, 1, 1). Use of Shapley value on tree \mathcal{T} :

•
$$I_1(x, y) = I_2(x, y) = \frac{1}{6}, I_3(x, y) = \frac{2}{3}$$

$$\bullet$$
 $l_4(x, y) = l_1(x, y) + l_2(x, y) = 1/3$

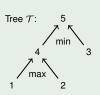
$$I(x,y) = (1/6, 1/6, 2/3, 1/3, 1)$$

On subtree \mathcal{T}' :

• On
$$\mathcal{T}'$$
: $l_3(x, y) = l_4(x, y) = 1/2$

• Nodes 1 and 2 shall share equally
$$I_4(x, y) = 1/2$$

$$I(x, y) = (1/4, 1/4, 1/2, 1/2, 1)$$



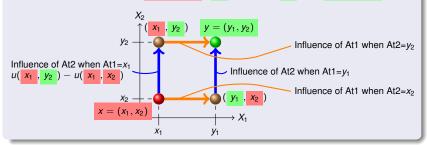
Tree
$$\mathcal{T}'$$
: 5 min 3

- 1 Introduction
- Peature Importance
 - Pairwise Comparison in Decision
 - Absolute Assessment In Decision
 - In Machine Learning
 - In Sensibility Analysis
- Extension on trees
 - Context
 - axiomatic characterization
- 4 Conclusion

Axioms

Idea of the approach

- Assess the influence of a criterion in the evaluation of two alternatives x, y
- by looking at alternatives obtained by replacing subsets of values of y with values of x.
- Example with 2 attributes: $x = (x_1, x_2)$, (y_1, x_2) , (x_1, y_2) , and $y = (y_1, y_2)$



Restricted Value (RV)

 I_k depends only on the utility u of compound options mixing values of x, y.

Axioms

Null Attribute (NA)

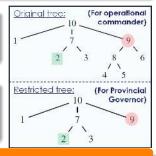
if changing x_k to y_k never changes u, then $I_k = 0$.

Consistency with Restricted Tree (CRT)

 l_2 shall be the same for the original tree or a subtree where 9 becomes a leaf.

Generalized Efficiency (GE)

- General Share: $I_{10} = u(y) u(x)$
- Decomposability: e.g. $I_9 = I_6 + I_8$



Other axioms

- Additivity (ADD): $I_k(u + u') = I_k(u) + I_k(u')$
- Restricted Equal Treatment (RET): All attributes are treated symmetrically

Are these axioms sufficient to derive *I*?

Theorem

There is a unique influence index satisfying RV, NA, RET, ADD, GE and CRT.

Remark

This influence index is an extension of the Shapley value on general trees.

Are these axioms sufficient to derive *I*?

Extended Shapley/Owen value

In order to distinguish the contribution of each attribute, we move from x to y changing one attribute at a time, following an ordering π on N:

$$X, (y_{\{\pi(1)\}}, X_{-\{\pi(1)\}}), (y_{\{\pi(1), \pi(2)\}}, X_{-\{\pi(1), \pi(2)\}}), \ldots, y.$$

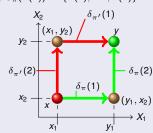
Definition:

$$I_i(x, y, T, u) = \begin{cases} \frac{1}{|\Pi(T)|} \sum_{\pi \in \Pi(T)} \delta_{\pi}(i) \text{ if } i \in N \\ \sum_{k \in \text{Leaf}_T(i)} I_k(x, y, T, u) \text{ else} \end{cases}$$

$$\delta_{\pi}(i) := u(y_{S_{\pi}(i)}, x_{-S_{\pi}(i)}) - u(y_{S_{\pi}(i)\setminus\{i\}}, x_{-S_{\pi}(i)\setminus\{i\}}), \ S_{\pi}(\pi(k)) := \{\pi(1), \ldots, \pi(k)\}$$

Example with 2 attributes:

- Path #1, $\pi = (1, 2)$:
 - for $\pi(1) = 1$: $\delta_{\pi}(1) = U(y_1, x_2) U(x_1, x_2)$,
 - for $\pi(2) = 2 : \delta_{\pi}(2) = U(y_1, y_2) U(y_1, x_2)$
- Path #2, $\pi' = (2, 1)$:
 - for $\pi'(1) = 2 : \delta_{\pi'}(2) = U(x_1, y_2) U(x_1, x_2),$
 - for $\pi'(2) = 1 : \delta_{\pi'}(1) = U(y_1, y_2) U(x_1, y_2)$



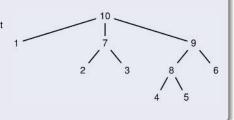
Are these axioms sufficient to derive I?

What is $\Pi(T)$?

 $\Pi(T)$: set of orderings of elements of N for which all elements of a subtree of T are consecutive.

Example:

- $(5, 4, 6, 2, 3, 1) \in \Pi(T)$ (indicating that $\pi(1) = 5, \pi(2) = 4, \pi(3) = 6, \pi(4) = 2, \pi(5) = 3, \pi(6) = 1)$
- $(1,6,4,5,2,3) \in \Pi(T)$
- $(1,2,3,4,5,6) \in \Pi(T)$
- (2,3,4,5,1,6) ∉ Π(T) since 1 is interleaved between attributes {4,5} and {6}



Computational complexity

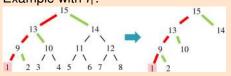
Complexity issue

Computation of I_i is exponential with n

Theorem

CRT implies that index I_i can be equivalently computed by cutting all branches not directly linking the path from node i to the root.

Example with I_1 :



d	P	n	$log_{10} \Pi(N) $	$\log_{10} \Pi(T) $	$\log_{10} \Pi(T_{(J)})$
2	2	4	1.38	0.903	0.602
2 2	3	9	5.559	3.112	1.556
2	4	16	13.320	6.901	2.76
2 2	5	25	25.19	12.47	4.158
	6	36	41.57	20.0	5.715
3	2	8	4.605	2.107	0.903
3	3	27	28.036	10,115	2.334
3 3	4	64	89.1	28.984	4.14
3	5	125	209.27	64.454	6.237
3	6	216	412.0	122.86	8.571
4	2	16	13.3215	4.515	1.204
4	3	81	120.76	31.126	3.112
4	4	256	506.93	117.31	5.520
4	5	625	1477.7	324.35	8.316
	6	1296	3473.0	740.04	11.429
5	2	32	35.42	9.332	1.505
5	3	243	475.76	94.156	3.89
5	4	1024	2639.7	470.65	6.901
5	5	3125	9566.3	1623.84	10.395
5	6	7776	26879	4443.15	14.286

- Introduction
- Peature Importance
 - Pairwise Comparison in Decision
 - Absolute Assessment In Decision
 - In Machine Learning
 - In Sensibility Analysis
- Extension on trees
 - Context
 - axiomatic characterization
- Conclusion

Conclusion & Perspectives

Conclusion

- Shapley value is a generic tool to measure variable importance
- Extension to trees: an extensed Shapley value taking into accout the tree structure

Perspectives

• Further investigations between sensitivity analysis and interpretability

References

- [Kumar et al'20] E. Kumar, S. Venkatasubramanian, C. Scheidegger, S. Friedler. Problems with Shapley-value-based explanations as feature importance measures. arxiv.org/abs/2002.11097
- [Labreuche et al'18] C. Labreuche, S. Fossier. Explaining Multi-Criteria Decision Aiding Models with an Extended Shapley Value. IJCAI, 2018.
- [Datta et al'16] A. Datta, S. Sen, Y. Zick. Algorithmic transparency via quantitative input influence: Theory and experiments with learning systems. IEEE symposium on security and privacy (SP), pp. 598-617, 2016.
- [Guidotti et al'18] R. Guidotti, A. Monreale, S. Ruggieri, F. Turini, F. Giannotti, D. Pedreschi. A survey of methods for explaining black box models. ACM Computing Surveys, 2018.
- [Lundberg, Lee'17] S. Lundberg, S. Lee. A unified approach to interpreting model predictions. NIPS, pp. 4765-4774, 2017.
- [Lundberg et al'18] S. Lundberg, G. Erion, S. Lee. Consistent individualized feature attribution for tree ensembles. arXiv:1802.03888, 2018.
- [Merrick, Taly'20] L. Merrick, A. Taly. The Explanation Game: Explaining Machine Learning Models with Cooperative Game Theory, arxiv.org/abs/1909.08128, 2020.
- [Owen'14] A.B. Owen. Sobol' indices and Shapley value. SIAM/ASA Journal on Uncertainty Quantification, 2014
- [Shapley'53] L.S. Shapley. A value for n-person games, 1953.
- [Strumbelj et al'10] E. Strumbelj, I. Kononenko. An efficient explanation of individual classifications using game theory. Journal of Machine Learning Research, 11, 1-18, 2010.