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Sobol indices drawbacks

Sobol indices are based on L2 decomposition and thus on order two
methods...

1 Imagine an output Y that is a symmetric function of the
inputs X1 and X2 that do not share the same distribution but
have the same first four moments and satisfy
E
[
X 5
1

]
6= E

[
X 5
2

]
.

2 They are well adapted to measure the contribution of an input
to the deviation around the mean of Y . However, it seems
very intuitive that the sensitivity of an extreme quantile of Y
could depend on sets of variables different from that
highlighted when studying the variance sensitivity.



Intro Higher Cramér von Mises index Other Moment ind. meas. and dissimilarity dist.

Hence the need to introduce a new sensitivity index that takes into
account such an importance.

There are several ways to generalize the Sobol indices.

A first natural way consists in considering higher moment
Sobol indices.

One can also define new indices through contrast functions
based on the quantity of interest. Unfortunately the Monte
Carlo estimator of these new indices are computationally
expensive.

Another way is to proceed considering the whole distribution
of the output instead only of its second moment.
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Indices based on a constrast function

Let Y = X1 + X2 with X1 ∼ E(1), X2 = −X1 and X1 ind. of
X2.

Here S1
Sob = S2

Sob = 1/2.

Assume we are interested in the α-quantile qY (α) of Y and
its sensitivity with respect to X1 and X2.

We propose to use a“contrast”adapted to the α-quantile

Ψ(θ) = E(Y − θ)(α− 1Y≤θ)

and define a new index

Sk
ψ =

Eψ(Y ; qY (α))− E(Xk ,Y )

(
ψ(Y ; qY /Xk

(α))
)

Eψ(Y ; qY (α))
,

for k = 1, 2.

Here, all the quantities can be explicitly computed.
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Indices based on a constrast function
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Indices based on a constrast function

As expected, we have





S1
ψ < S2

ψ for α < 1/2,

S1
ψ = S2

ψ for α = 1/2,

S1
ψ > S2

ψ for α > 1/2.

Moreover, naturally,

{
limα→1 S

1
ψ = limα→0 S

2
ψ = 1,

limα→0 S
1
ψ = limα→1 S

2
ψ = 0.

On the contrary, the Sobol indices do not depend on α and do not
include the fact that we are investigating quantiles.



Intro Higher Cramér von Mises index Other Moment ind. meas. and dissimilarity dist.

Plan de l’exposé
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We generalize the numerator of the classical Sobol index by
considering higher order moments: for p > 3, we study

Hp
v := E [(E[Y |Xv ]− E[Y ])p]

instead of H2
v := Var(E[Y |Xv ]) = E

[
(E[Y |Xv ]− E[Y ])2

]
.
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We generalize the numerator of the classical Sobol index by
considering higher order moments: for p > 3, we study

Hp
v := E [(E[Y |Xv ]− E[Y ])p]

instead of H2
v := Var(E[Y |Xv ]) = E

[
(E[Y |Xv ]− E[Y ])2

]
.

The trick is to rewrite H
p
v as:

E [(E[Y |Xv ]− E[Y ])p] = E

[
p∏

i=1

(
Y v ,i − E[Y ]

)
]

such as

H2
v := Var(E[Y |Xv ]) = Cov(Y ,Y v ) = E[(Y − E[Y ]) (Y v − E[Y ])].

Here, Y v ,1 = Y and for i = 2, . . . , p, Y v ,i is constructed
independently as Y v .
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Design of experiments and estimation phase

In view of the estimation of Hp
v ,

1 we first develop the product in H
p
v :

Hp
v =

p∑

l=0

(
p

l

)
(−1)p−l

E [Y ]p−l
E

[
l∏

i=1

Y v ,i

]
.

with the usual convention
∏0

i=1 Y
v ,i = 1.

2 we use the Pick and Freeze design of experiment constituted
by the following p × N-sample

(
Y

v ,i
j

)
(i ,j)∈Ip×IN

to estimate all the expectations.
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Properties of Hv
p

1 H
p
v is only non negative for even p.

2 For any p,
|Hp

v | 6 E [|Y − E[Y ]|p] .
3 As the classical Sobol index, Hp

v is still invariant by translation
of the output.
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Properties of Hv
p

1 H
p
v is only non negative for even p.

2 For any p,
|Hp

v | 6 E [|Y − E[Y ]|p] .
3 As the classical Sobol index, Hp

v is still invariant by translation
of the output.

Asymptotic properties of Hv
p,N

Hv
p,N is consistent and asymptotically normal:

√
N
(
Hv
p,N − H

p
v

)
converges in distribution to a Gaussian rv whose

variance can be explicitly computed.
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Drawbacks of Hv
p,N

The collection of all indices Hp
v is much more informative than the

classical Sobol index.

Nevertheless it has several drawbacks: it may be negative when p

is odd. To overcome this fact, we may have introduced
E [|E[Y |Xi , i ∈ v ]− E[Y ]|p] but proceeding in such a way, we
would have loose the Pick and Freeze estimation procedure.

The Pick and Freeze estimation procedure is computationally
expensive: it requires a p × N sample of the output Y . In a sense,
if we want to have a good idea of the influence of an input on the
law of the output, we need to estimate the first d indices Hp

v and
hence we need to run the black-box code K × N times.
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The code will be denoted by Z = f (X1, . . . ,Xd) ∈ R.

Let F be the distribution function of Z

F (t) = P (Z 6 t) = E
[
1 {Z6t}

]

and F v (t) the conditional distribution function of Z conditionally
on Xv :

F v (t) = P (Z 6 t|Xv , ) = E
[
1 {Z6t}|Xv

]
.

It is obvious that E [F v (t)] = F (t).

We apply the framework presented previously with Y (t) = 1 {Z6t}

and p = 2.
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We then have a consistent and asymptotically normal estimation
procedure for the estimation of

E

[
(F (t)− F v (t))2

]
.

We define a Cramér Von Mises type distance of order 2 between
µ := L (Z ) and L (Z |Xv ) by

Dv
2,CVM :=

∫

R

E

[
(F (t)− F v (t))2

]
dµ(t)

= E

[
E

[
(F (Z )− F v (Z ))2

]]
.

The aim of the rest of the section is dedicated to the estimation of
Dv
2,CVM .
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Design of experiments and estimation phase

We consider the following design of experiments consisting in:

1 two N-samples of Z : (Z v ,1
j ,Z v ,2

j ), 1 6 j 6 N;

2 a third N-sample of Z independent of (Z v ,1
j ,Z v ,2

j )16j6N : Wk ,
1 6 k 6 N.
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Design of experiments and estimation phase

We consider the following design of experiments consisting in:

1 two N-samples of Z : (Z v ,1
j ,Z v ,2

j ), 1 6 j 6 N;

2 a third N-sample of Z independent of (Z v ,1
j ,Z v ,2

j )16j6N : Wk ,
1 6 k 6 N.

The natural estimator of Dv
2,CVM is then given by

D̂
v
2,CVM =

1

N

N∑

k=1





1

N

N∑

j=1

1
{Z

v,1
j

6Wk}
1

{Z
v,2
j

6Wk}

−



 1

2N

N∑

j=1

(
1

{Z
v,1
j

6Wk}
+ 1

{Z
v,2
j

6Wk}

)



2

 .
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Properties of Dv
2,CVM

1 0 6 Dv
2,CVM 6

1
4 .

Moreover, if F is continuous, we have 0 6 Dv
2,CVM 6

1
6 .

2 As the classical Sobol index, Dv
2,CVM is still invariant by

translation, by left-composition by any nonzero scaling of Y
and by left-composition of Y by any isometry.
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Properties of Dv
2,CVM

1 0 6 Dv
2,CVM 6

1
4 .

Moreover, if F is continuous, we have 0 6 Dv
2,CVM 6

1
6 .

2 As the classical Sobol index, Dv
2,CVM is still invariant by

translation, by left-composition by any nonzero scaling of Y
and by left-composition of Y by any isometry.

Asymptotic properties of D̂v
2,CVM

D̂v
2,CVM is consistent and asymptotically normal:

√
N
(
D̂v
2,CVM − Dv

2,CVM

)
converges in distribution to a Gaussian rv

whose variance can be explicitly computed.



Intro Higher Cramér von Mises index Other Moment ind. meas. and dissimilarity dist.

Plan de l’exposé

Introduction

Higher moment Sobol indices

The Cramér von Mises index

Other moment independent measures

Moment independent measures and dissimilarity distances



Intro Higher Cramér von Mises index Other Moment ind. meas. and dissimilarity dist.

Alternative definitions for measuring the strength of the statistical
dependence of Y on Xk have been proposed, giving rise to the
class of distribution-based sensitivity measures.

They define the importance of Xk as the distance between the
unconditional distribution of Y and its conditional distribution.

These sensitivity measures are defined both in the presence and
absence of correlations.

We present three examples of such sensitivity measures.
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the δ importance measure based on the L1-norm between
densities:

δk =
1

2
E

[∫
|pY (y)− pY |Xk

(y)| dy
]

where pY (y) and pY |Xk
(y) stands respectively for the density

function of Y and Y |Xk . Notice that δk = 0 if and only if Y
is independent of Xk .

the βKS sensitivity measure based on the Kolmogorov-Smirnov
separation between cumulative distributions functions:

βk = E

[
sup
y

|FY (y)− FY |Xk
(y)|

]
.

Both sensitivity measures δk and βk are monotonic
transformation invariant.
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the θ probabilistic sensitivity measure based on the family of
Shannon’s cross-entropy:

θk = E

[∫
|pY |Xk

(y)(log pY |Xk
(y)− log pY |Xk

(y))| dy
]
.

θk can be interpreted as value of information sensitivity
measures as the classical Sobol index for more details). We
will see in the next subsection that this measure is part of a
larger lass of sensitivity measures based on dissimilarity
distances and the family of Csiszár’s divergences.
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A common rationale

Variance-based and the previous distribution-based sensitivity
measures have a common conceptual aspect. In information
theory, the distributions are statistical signals. In probabilistic
sensitivity analysis, they are the conditional and unconditional
model output distributions, PY and PY |Xk=xk . We call

ξk = E[γk(Xk)] = E[ζ(PY ,PY |Xk
)] (1)

the global sensitivity measure of Xk based on operator ζ(·, ·) and
γk(xk) the inner statistic of ξk .
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A common rationale

The above framework accommodates the definitions of the
probabilistic sensitivity measures described previously. Selecting as
inner operators

ζ(PY ,PY |Xk
) = E[(Y − E[Y ])2|Xk = xk ] =

E[(Y − E[Y |Xk ])
2|Xk = xk ];

ζ(PY ,PY |Xk
) = 1

2

∫
|pY (y)− pY |Xk

(y)| dy ;
ζ(PY ,PY |Xk

) = supy |FY (y)− FY |Xk
(y)|;

ζ(PY ,PY |Xk
) =

∫
|pY |Xk

(y)(log pY |Xk
(y)− log pY |Xk

(y))| dy ;
we obtain the inner statistics of the classical Sobol index, δk , βk
and θk respectively.
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Motivation

A natural way of defining the impact of a given input Xk on Y is to consider a
function which measures the similarity between the distribution of Y and that
of Y |Xk . More precisely, the impact of Xk on Y is given by

SXk
= EXk

[d(Y ,Y |Xk)]

where d(·, ·) denotes a dissimilarity measure between two random variables.

The advantage of such a formulation is that many choices for d are available
and we will see in what follows that some natural dissimilarity measures yield
sensitivity indices related to well known quantities.
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Motivation

A natural way of defining the impact of a given input Xk on Y is to consider a
function which measures the similarity between the distribution of Y and that
of Y |Xk . More precisely, the impact of Xk on Y is given by

SXk
= EXk

[d(Y ,Y |Xk)]

where d(·, ·) denotes a dissimilarity measure between two random variables.

The advantage of such a formulation is that many choices for d are available
and we will see in what follows that some natural dissimilarity measures yield
sensitivity indices related to well known quantities.

Let us note that the näıve dissimilarity measure

d(Y ,Y |Xk) = (E [Y ]− E [Y |Xk ])
2

where rv are compared only through their mean values produces the

unnormalized Sobol first-order sensitivity index S1
Xk

= Var(E[Y |Xk ]).
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Dissimilarity measures

Assuming all input random variables have an absolutely continuous distribution
with respect to the Lebesgue measure on R, the f-divergence between Y and
Y |Xk is given by

dh(Y ||Y |Xk) =

∫

R

h

(
pY (y)

pY |Xk
(y)

)
pY |Xk

(y) dy

where h is a convex function such that h(1) = 0 and pY and pY |Xk
are the

probability distribution functions of Y and Y |Xk , respectively.
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Dissimilarity measures

Assuming all input random variables have an absolutely continuous distribution
with respect to the Lebesgue measure on R, the f-divergence between Y and
Y |Xk is given by

dh(Y ||Y |Xk) =

∫

R

h

(
pY (y)

pY |Xk
(y)

)
pY |Xk

(y) dy

where h is a convex function such that h(1) = 0 and pY and pY |Xk
are the

probability distribution functions of Y and Y |Xk , respectively.

Standard choices for the function h include for example

Kullback-Leibler divergence: h(t) = − ln(t) or h(t) = t ln(t);

Hellinger distance: h(t) = (
√
t − 1)2;

Total variation distance: h(t) = |t − 1|;
Pearson χ2 divergence: h(t) = (t − 1)2 or h(t) = t2 − 1;

Neyman χ2 divergence: h(t) = (t − 1)2/t or h(t) = (1− t2)/t.
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From dissimilarity measures to sensitivity indices

Plugging this dissimilarity measure into the definition yields the following
sensitivity index:

S
h
Xk

=

∫

R2

h

(
pY (y)pXk

(x)

pXk ,Y (x , y)

)
pXk ,Y (x , y) dxdy

where pXk
and pXk ,Y are the probability distribution functions of Xk and

(Xk ,Y ), respectively.

Properties

1 Sh
Xk

> 0 and Sh
Xk

= 0 iff Y and Xk are independent,

2 Sh
Xk

is invariant under any smooth and uniquely invertible transformation
of the variables Xk and Y . This is a major advantage over variance-based
Sobol sensitivity indices, which are only invariant under linear
transformations.
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Examples

The total variation distance with h(t) = |t − 1| gives a sensitivity index
equal to:

S
h
Xk

=

∫

R2

|pY (y)pXk
(x)− pXk ,Y (x , y)| dxdy .

The Kullback-Leibler divergence with h(t) = − ln(t) yields

S
h
Xk

=

∫

R2

pXk ,Y (x , y) ln

(
pXk ,Y (x , y)

pY (y)pXk
(x)

)
dxdy ,

that is the mutual information I (Xk ;Y ) between Xk and Y .

The Neyman χ2 divergence with h(t) = (1− t2)/t leads to

S
h
Xk

=

∫

R2

pXk ,Y (x , y) ln

(
pXk ,Y (x , y)

pY (y)pXk
(x)

)
dxdy ,

which is the so-called squared-loss mutual information between Xk and Y

(or mean square contingency).
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The goal is to estimate

Sh
Xk

=

∫

R2

h

(
1

r(x , y)

)
pXk ,Y (x , y) dxdy = E(Xk ,Y )

[
h

(
1

r(Xk ,Y )

)]

where r(x , y) = pXk ,Y (x , y)/(pY (y)pXk
(x)) is the ratio between

the joint density of (Xk ,Y ) and the marginals.
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The goal is to estimate

Sh
Xk

=

∫

R2

h

(
1

r(x , y)

)
pXk ,Y (x , y) dxdy = E(Xk ,Y )

[
h

(
1

r(Xk ,Y )

)]

where r(x , y) = pXk ,Y (x , y)/(pY (y)pXk
(x)) is the ratio between

the joint density of (Xk ,Y ) and the marginals.

Straightforward estimation is possible if one estimates the densities
pXk ,Y (x , y), pXk

(x) and pY (y) with e.g. kernel density estimators.
However, it is well known that density estimation suffers from the
curse of dimensionality.

Besides, since only the ratio function r(x , y) is needed, we expect
more robust estimates by focusing only on it.



Intro Higher Cramér von Mises index Other Moment ind. meas. and dissimilarity dist.

Design of experiments and estimation phase

Let us assume now that we have a sample (Xk,i ,Yi ) for i = 1, ...,N
of (Xk ,Y ), the idea is to build first an estimate r̂(x , y) of the ratio.

Powerful estimating methods for ratios include

1 maximum-likelihood estimation,

2 unconstrained least-squares importance fitting,

3 k-nearest neighbors strategy dedicated to mutual
information...
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Design of experiments and estimation phase

Let us assume now that we have a sample (Xk,i ,Yi ) for i = 1, ...,N
of (Xk ,Y ), the idea is to build first an estimate r̂(x , y) of the ratio.

Powerful estimating methods for ratios include

1 maximum-likelihood estimation,

2 unconstrained least-squares importance fitting,

3 k-nearest neighbors strategy dedicated to mutual
information...

The final estimator Ŝh
Xk

of Sh
Xk

will then be given by

Ŝh
Xk

=
1

N

N∑

i=1

h

(
1

r̂(Xk,i ,Yi )

)
.
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