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Deep Neural Network

given x

h1 = φ (W1x)

h2 = φ (W2h1)

h3 = φ (W3h2)
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Mathematically

h1 = φ (W1x)

h2 = φ (W2h1)

h3 = φ (W3h2)

y = w⊤4 h3



Overfitting

◮ Potential problem: if number of nodes in two adjacent
layers is big, corresponding W is also very big and there is
the potential to overfit.

◮ Proposed solution: “dropout”.

◮ Alternative solution: parameterize W with its SVD.

W = UΛV⊤

or
W = UV⊤

where if W ∈ ℜk1×k2 then U ∈ ℜk1×q and V ∈ ℜk2×q, i.e. we
have a low rank matrix factorization for the weights.



Deep Neural Network
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Deep Neural Network

given x

z1 = V⊤
1

x

h1 = g (U1z1)

z2 = V⊤
2
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h2 = g (U2z2)

z3 = V⊤
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Mathematically

z1 = V⊤1 x

h1 = φ (U1z1)

z2 = V⊤2 h1

h2 = φ (U2z2)

z3 = V⊤3 h2

h3 = φ (U3z3)

y = w⊤4 h3



A Cascade of Neural Networks

z1 = V⊤1 x

z2 = V⊤2 φ (U1z1)

z3 = V⊤3 φ (U2z2)

y = w⊤4 z3



Replace Each Neural Network with a Gaussian
Process

z1 = f (x)

z2 = f (z1)

z3 = f (z2)

y = f (z3)

This is equivalent to Gaussian prior over weights and
integrating out all parameters and taking width of each layer to
infinity.



Gaussian Processes: Extremely Short Overview
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Mathematically

◮ Composite multivariate function

g(x) = f5(f4(f3(f2(f1(x)))))



Why Deep?

◮ Gaussian processes give priors over functions.
◮ Elegant properties:

◮ e.g. Derivatives of process are also Gaussian distributed (if
they exist).

◮ For particular covariance functions they are ‘universal
approximators’, i.e. all functions can have support under
the prior.

◮ Gaussian derivatives might ring alarm bells.

◮ E.g. a priori they don’t believe in function ‘jumps’.



Process Composition

◮ From a process perspective: process composition.

◮ A (new?) way of constructing more complex processes
based on simpler components.

Note: To retain Kolmogorov consistency introduce IBP priors over
latent variables in each layer (Zhenwen Dai).



Analysis of Deep GPs

◮ Duvenaud et al. (2014) Duvenaud et al show that the
derivative distribution of the process becomes more heavy
tailed as number of layers increase.



Difficulty for Probabilistic Approaches

◮ Propagate a probability distribution through a non-linear
mapping.

◮ Normalisation of distribution becomes intractable.
z 2

z1

y j = f j(z)
−→

Figure : A three dimensional manifold formed by mapping from a
two dimensional space to a three dimensional space.



Difficulty for Probabilistic Approaches

y 2

y1

z

y1 = f1(z)

−→
y2 = f2(z)

Figure : A string in two dimensions, formed by mapping from one
dimension, z, line to a two dimensional space, [y1, y2] using
nonlinear functions f1(·) and f2(·).



Difficulty for Probabilistic Approaches

p(y)p(z)

y = f (z) + ǫ
−→

Figure : A Gaussian distribution propagated through a non-linear

mapping. yi = f (zi) + ǫi. ǫ ∼ N
(

0, 0.22
)

and f (·) uses RBF basis, 100

centres between -4 and 4 and ℓ = 0.1. New distribution over y (right)
is multimodal and difficult to normalize.



Variational Compression

(Sne; Quiñonero Candela and Rasmussen, 2005; Lawrence, 2007; Titsias, 2009)

◮ Complexity of standard GP:
◮ O(n3) in computation.
◮ O(n2) in storage.



Variational Compression
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Variational Compression

(Sne; Quiñonero Candela and Rasmussen, 2005; Lawrence, 2007; Titsias, 2009)

◮ Complexity of standard GP:
◮ O(n3) in computation.
◮ O(n2) in storage.

◮ Via low rank representations of covariance:
◮ O(nm2) in computation.
◮ O(nm) in storage.

◮ Where m is user chosen number of inducing variables.
They give the rank of the resulting covariance.



Variational Compression

◮ Inducing variables are a compression of the real
observations.

◮ They are like pseudo-data. They can be in space of f or a
space that is related through a linear operator (Álvarez
et al., 2010) — e.g. a gradient or convolution.

◮ There are inducing variables associated with each set of
hidden variables, zi.



Variational Compression II

◮ Importantly conditioning on inducing variables renders
the likelihood independent across the data.

◮ It turns out that this allows us to variationally handle
uncertainty on the kernel (including the inputs to the
kernel).

◮ It also allows standard scaling approaches: stochastic
variational inference Hensman et al. (2013), parallelization
Gal et al. (2014) and work by Zhenwen Dai on GPUs to be
applied: an engineering challenge?
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What is Variational Inference?

◮ Convert an integral into an optimization.

◮ Entered machine learning via statistical physics in 1990s.

◮ But there’s a classic example from statistics: expectation
maximization.



Variational Bound

Latent variable model: marginal likelihood computed by
integrating latent variables.

p(y|θ) =

∫

p(y|z,θ)p(z)dz



Variational Bound

Log marginal likelihood computed by integrating latent
variables.

log p(y|θ) = log

∫

p(y|z,θ)p(z)dz



Variational Bound

Jensen’s inequality allows us to obtain a lower bound.

log p(y)= log

∫

p(y|z,θ)p(z)dz



Variational Bound

Jensen’s inequality allows us to obtain a lower bound.

log p(y)≥

∫

logp(y|z,θ)p(z)dz

But the bound can be very loose.



Variational Bound

Modify Jensens by introducing variational distribution, q(z).

log p(y)= log

∫

q(z)
p(y|z,θ)p(z)

q(z)
dz



Variational Bound

Modify Jensens by introducing variational distribution, q(z).

log p(y)≥

∫

q(z) log
p(y|z,θ)p(z)

q(z)
dz

Bound is tightened through changing q(z).



Variational Bound

This is the bound behind EM, in E-step set q(z) = p(z|y).

log p(y) ≥

∫

q(z) log
p(y|z,θ)p(z)

q(z)
dz

Replace variational distribution with ...



Variational Bound

This is the bound behind EM, in E-step set q(z) = p(z|y).

log p(y|θ) =

∫

p(z|y,θ) log
p(y|z,θ)p(z)

p(z|y,θ)
dz

... true posterior which allows for ...



Variational Bound

This is the bound behind EM, in E-step set q(z) = p(z|y).

log p(y|θ) =

∫

p(z|y,θ) log p(y|θ)dz

... a reorganisation via product rule ...



Variational Bound

This is the bound behind EM, in E-step set q(z) = p(z|y).

log p(y|θ) = log p(y|θ)

... to recover equality (bound is tight).



Variational Bound

This is the bound behind EM, in M-step ignore fact that
q(z) = p(z|y,θ) should depend on parameters and maximize
bound.

log p(y) ≥

∫

q(z) log
p(y|z,θ)p(z)

q(z)
dz



Variational Bound

This is the bound behind EM, in M-step ignore fact that
q(z) = p(z|y,θ) should depend on parameters and maximize
bound.

log p(y) ≥

∫

q(z) log p(y|z,θ)dz +

∫

q(z) log
p(z)

q(z)
dz

Split into expected log likelihood ...



Variational Bound

This is the bound behind EM, in M-step ignore fact that
q(z) = p(z|y,θ) should depend on parameters and maximize
bound.

log p(y) ≥
〈

log p(y|z,θ)
〉

q(z) − KL
(

q(z) ‖ p(z)
)

... and Kullback Leibler divergence term.



Variational Bound

This gives the variational lower bound ...

L =
〈

log p(y|z,θ)
〉

q(z) − KL
(

q(z) ‖ p(z)
)

... which is an information theoretic interpretation of
marginalization.



How is this a Variational Method?

◮ To apply EM we need to compute p(z|y,θ)

◮ Often this is intractable, in this case we note that:

log p(y) =

∫

q(z) log
p(y|z)p(z)

q(z)
dz +

∫

q(z) log
q(z)

p(z|y)
dz

(dropping conditioning on θ)
the difference between the bound and the log likelihood is
the Kullback Leibler divergence between the true posterior
and the variational distribution q(z).



How is this a Variational Method?

◮ To apply EM we need to compute p(z|y,θ)

◮ Often this is intractable, in this case we note that:

log p(y) = L + KL
(

q(z) ‖ p(z|y)
)

(dropping conditioning on θ)
the difference between the bound and the log likelihood is
the Kullback Leibler divergence between the true posterior
and the variational distribution q(z).



Variational Compression

Model for our data, y.

p(y) y



Variational Compression

Prior density over f. Likelihood
relates data, y, to f.

p(y) =

∫

p(y|f)p(f)df

y

f



Variational Compression

Augment standard model with a set
of m new inducing variables, u.

p(y) =

∫

p(y|f)p(u|f)p(f)dfdu
y

f

u



Variational Compression
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Variational Compression
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Variational Compression

p(y) =

∫ ∫

p(y|f)p(f|u)dfp(u)du
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f
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Variational Compression

p(y|u) =

∫

p(y|f)p(f|u)df

y

f

u



Variational Compression

p(y|u) =

∫ n
∏

i=1

p(yi| fi)p(f|u)df

yi

fi

u

i = 1 . . . n



Variational Compression

Consider the conditional likelihood.

p(y|u) =

∫ n
∏

i=1

p(yi| fi)p(f|u)df



Variational Compression

Consider the conditional log likelihood.

log p(y|u) = log

∫ n
∏

i=1

p(yi| fi)p(f|u)df



Variational Compression

Introduce variational lower bound

log p(y|u) ≥

∫

q(f) log

∏n
i=1 p(yi| fi)p(f|u)

q(f)
df



Variational Compression

Set q(f) = p(f|u)

log p(y|u) ≥

∫

p(f|u)

n
∑

i=1

log p(yi| fi)df



Variational Compression

Set q(f) = p(f|u)

log p(y|u) ≥

n
∑

i=1

〈

log p(yi| fi)
〉

p( fi|u)



Variational Compression

Difference between bound and truth is KL divergence:

KL
(

p(f|u) ‖ p(f|u,y)
)

=

∫

p(f|u) log
p(f|u)

p(f|u,y)
df

This is why we call it variational compression, information in y

is compressed into u



Gaussian p(yi| fi)

For Gaussian likelihoods:

〈

log p(yi| fi)
〉

p( fi|u) = −
1

2
log 2πσ2−

1

2σ2

(

yi −
〈

fi
〉)2
−

1

2σ2

(〈

f 2
i

〉

−
〈

fi
〉2
)



Gaussian p(yi| fi)

For Gaussian likelihoods:

〈

log p(yi| fi)
〉

p( fi|u) = −
1

2
log 2πσ2−

1

2σ2

(

yi −
〈

fi
〉)2
−

1

2σ2

(〈

f 2
i

〉

−
〈

fi
〉2
)

Implying:

p(yi|u) ≥ exp
〈

log ci
〉

N
(

yi|
〈

fi
〉

, σ2
)



Gaussian Process Over f and u

Define:
qi,i = varp( fi|u)

(

fi
)

=

〈

f 2
i

〉

p( fi|u)
−
〈

fi
〉2

p( fi|u)

We can write:

ci = exp
(

−
qi,i

2σ2

)

If joint distribution of p(f,u) is Gaussian then:

qi,i = ki,i − k⊤i,uK−1
u,uki,u

ci is not a function of u but is a function of Xu.



Lower Bound on Likelihood

Substitute variational bound into marginal likelihood:

p(y) ≥

n
∏

i=1

ci

∫

N
(

y| 〈f〉 , σ2I
)

p(u)du

Note that:
〈f〉p(f|u) = Kf,uK−1

u,uu

is linearly dependent on u.



Deterministic Training Conditional

Making the marginalization of u straightforward. In the
Gaussian case:

p(u) = N
(

u|0,Ku,u
)

∫

p(y|u)p(u)du ≥

n
∏

i=1

ci

∫

N
(

y|Kf,uK−1
u,uu, σ2

)

N
(

u|0,Ku,u
)

du
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∏

i=1

ciN
(

y|0, σ2I +Kf,uK−1
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Deterministic Training Conditional

Making the marginalization of u straightforward. In the
Gaussian case:

p(u) = N
(

u|0,Ku,u
)

∫

p(y|u)p(u)du ≥

n
∏

i=1

ciN
(

y|0, σ2I +Kf,uK−1
u,uKu,f

)

Maximize log of the bound to find covariance function
parameters,

L ≥

n
∑

i=1

log ci + logN
(

y|0, σ2I +Kf,uK−1
u,uKu,f,

)



Deterministic Training Conditional

Making the marginalization of u straightforward. In the
Gaussian case:

p(u) = N
(

u|0,Ku,u
)

∫

p(y|u)p(u)du ≥

n
∏

i=1

ciN
(

y|0, σ2I +Kf,uK−1
u,uKu,f

)

Maximize log of the bound to find covariance function
parameters,

L ≥

n
∑

i=1

log ci + logN
(

y|0, σ2I +Kf,uK−1
u,uKu,f,

)



Deterministic Training Conditional

Making the marginalization of u straightforward. In the
Gaussian case:

p(u) = N
(

u|0,Ku,u
)

∫

p(y|u)p(u)du ≥

n
∏

i=1

ciN
(

y|0, σ2I +Kf,uK−1
u,uKu,f

)

Maximize log of the bound to find covariance function
parameters,

L ≈ logN
(

y|0, σ2I +Kf,uK−1
u,uKu,f,

)

◮ If the bound is normalized, the ci terms are removed.



Deterministic Training Conditional

Making the marginalization of u straightforward. In the
Gaussian case:

p(u) = N
(

u|0,Ku,u
)

∫

p(y|u)p(u)du ≥

n
∏

i=1

ciN
(

y|0, σ2I +Kf,uK−1
u,uKu,f

)

Maximize log of the bound to find covariance function
parameters,

◮ If the bound is normalized, the ci terms are removed.

◮ This results in the projected process approximation
(Rasmussen and Williams, 2006) or DTC (Quiñonero Candela and

Rasmussen, 2005). Proposed by (Smola and Bartlett, 2001; Seeger et al.,

2003; Csató and Opper, 2002; Csató, 2002).



Relationship to Nyström Approximation

◮ Variational lower bound leads to Nyström style
approximation (Williams and Seeger, 2001; Seeger et al., 2003).
Relations to subset of regressors (Poggio and Girosi, 1990; Williams

et al., 2002).
K ≈ σ2I +KfuK−1

uuKuf

◮ Has probabilistic interpretation of

u ∼ N (0,Kuu)

y|u ∼ N
(

KfuK−1
uuu, σ2I

)

cf

w ∼ N (0, αI)

y|w ∼ N
(

Φw, σ2I
)

y ∼ N
(

0, αΦΦ
⊤
+ σ2I

)



Marginalising Latent Variables

◮ Integrating out Z becomes possible variationally, because
Gaussian expectations of

logN
(

f|KfuK−1
uuu, σ2I

)

are now tractable

◮ Relies on computing expectations of Kfu and KufKfu under
Gaussian density over Z.



Apply Variational Inference Before Integration of u

∫

p(y|u)p(u)du ≥

n
∏

i=1

ci

∫

N
(

y|Kf,uK−1
u,uu, σ2

)

N
(

u|0,Ku,u
)

du



Apply Variational Inference Before Integration of u

∫

p(y|u)p(u)p(z)dudz ≥

∫

q(z) log

∏n
i=1 ciN

(

y|Kf,uK−1
u,uu, σ2

)

N
(

u|0,Ku,u
)

q(z)
du
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Structures for Extracting Information from Data
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Damianou and Lawrence (2013)

Deep Gaussian Processes

Andreas C. Damianou Neil D. Lawrence

Dept. of Computer Science & Sheffield Institute for Translational Neuroscience,

University of Sheffield, UK

Abstract

In this paper we introduce deep Gaussian process

(GP) models. Deep GPs are a deep belief net-

work based on Gaussian process mappings. The

data is modeled as the output of a multivariate

GP. The inputs to that Gaussian process are then

governed by another GP. A single layer model is

equivalent to a standard GP or the GP latent vari-

able model (GP-LVM). We perform inference in

the question as to whether deep structures and the learning

of abstract structure can be undertaken in smaller data sets.

For smaller data sets, questions of generalization arise: to

demonstrate such structures are justified it is useful to have

an objective measure of the model’s applicability.

The traditional approach to deep learning is based around

binary latent variables and the restricted Boltzmann ma-

chine (RBM) [Hinton, 2010]. Deep hierarchies are con-

structed by stacking these models and various approxi-

mate inference techniques (such as contrastive divergence)



Deep Models
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Deep Models

y
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z4 Abstract features

More com-
bination
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Deep Gaussian Processes

Damianou and Lawrence (2013)

◮ Deep architectures allow abstraction of features (Bengio, 2009;

Hinton and Osindero, 2006; Salakhutdinov and Murray, 2008).

◮ We use variational approach to stack GP models.
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Motion Capture

◮ ‘High five’ data.

◮ Model learns structure between two interacting subjects.





Digits Data Set

◮ Are deep hierarchies justified for small data sets?

◮ We can lower bound the evidence for different depths.

◮ For 150 6s, 0s and 1s from MNIST we found at least 5
layers are required.





Summary

◮ Deep Gaussian Processes allow unsupervised and
supervised deep learning.

◮ They can be easily adapted to handle multitask learning.

◮ Data dimensionality turns out to not be a computational
bottleneck.

◮ Variational compression algorithms show promise for
scaling these models to massive data sets.
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