Statistical Learning for Computer Experiments - Application to Aeronautics

— Ateliers GdR MASCOT-NUM, 17 of May 2011 —

Nabil Rachdi, PhD student at Institut de Mathématiques de Toulouse Advised by: JC Fort (Paris V), Thierry Klein (Toulouse III) and Fabien Mangeant (EADS IW)

Context

■ From Real life to Simulated Life...

- \blacksquare Y = Variable of Interest (uncertain!)
- $ho^* = ext{Quantity of Interest } (ext{quantile, pdf, exceed. probability } ...)$
- Challenge :

From ref. data
$$Y_1,...,Y_n$$
 or $(\mathbf{X}_1^*,Y_1),...,(\mathbf{X}_n^*,Y_n)$ (n limited !)

 \longrightarrow Choose h and θ to predict ρ^* with simulation model(s) h

Examples

- \blacksquare Y = TOFL (= Take-Off Field Length)
 - Quantity of Interest : $\mathbb{P}(TOFL > tofl_{req})$
 - Ref. data TOFL₁, ..., TOFL_n providing from tests, former aircrafts etc...
 - \Rightarrow n too small for evaluating $\mathbb{P}(\mathit{TOFL} > \mathit{tofl}_{req})$
 - h= aeronautic model with parameters & uncertainties
- \blacksquare Y = Range (= distance an aircraft can travel)
 - Quantity of Interest : $\mathbb{P}(Range < range_{req})$
 - Ref. data Range₁, ..., Range_n providing from tests, former aircrafts etc...
 - h = aeronautic model with parameters & uncertainties

- Reference data : $Z_1 = (\mathbf{X}_1, Y_1), ..., Z_n = (\mathbf{X}_n, Y_n)$ with (unknown) dist. Q^z and denote by Q the marginal dist. of Y
 - $X_1, ..., X_n$ may be unobserved (too complex, \neq input codes etc...)
- Models : $\{\mathbf{x} \in \mathcal{X} \mapsto h(\mathbf{x}, \boldsymbol{\theta}) \in \mathcal{Y}, \quad \boldsymbol{\theta} \in \Theta\}$
 - mathematical models : $h(\mathbf{x}, \boldsymbol{\theta}) = \sum_{i=1}^{l=q} \phi(\mathbf{x}) \boldsymbol{\theta}$ etc ...
 - physical/simulation models : $h(\mathbf{x}, oldsymbol{ heta})$ is the result of a computer code
- lacksquare Uncertainty : equip ${\mathcal X}$ with a prob. measure $P^{{\mathsf x}}$ ${\mathsf x} o {\mathsf X} \in ({\mathcal X}, P^{{\mathsf x}})$
 - stochastic codes, Monte-Carlo codes, uncertain variables etc...

- Reference data : $Z_1 = (\mathbf{X}_1, Y_1), ..., Z_n = (\mathbf{X}_n, Y_n)$ with (unknown) dist. Q^z and denote by Q the marginal dist. of Y
 - $X_1, ..., X_n$ may be unobserved (too complex, \neq input codes etc...)
- Models : $\{\mathbf{x} \in \mathcal{X} \mapsto h(\mathbf{x}, \boldsymbol{\theta}) \in \mathcal{Y}, \quad \boldsymbol{\theta} \in \Theta\}$
 - mathematical models : $h(\mathbf{x}, \boldsymbol{\theta}) = \sum_{i=1}^{l=q} \phi(\mathbf{x}) \boldsymbol{\theta}$ etc ...
 - physical/simulation models : $h(\mathbf{x}, oldsymbol{ heta})$ is the result of a computer code
- lacksquare Uncertainty : equip ${\mathcal X}$ with a prob. measure $P^{{\mathsf x}}$ ${\mathsf x} o {\mathsf X} \in ({\mathcal X}, P^{{\mathsf x}})$
 - stochastic codes, Monte-Carlo codes, uncertain variables etc...
- Goal : Predict a feature of the output Y

- Reference data : $Z_1 = (\mathbf{X}_1, Y_1), ..., Z_n = (\mathbf{X}_n, Y_n)$ with (unknown) dist. Q^z and denote by Q the marginal dist. of Y
 - $X_1, ..., X_n$ may be unobserved (too complex, \neq input codes etc...)
- Models : $\{\mathbf{x} \in \mathcal{X} \mapsto h(\mathbf{x}, \boldsymbol{\theta}) \in \mathcal{Y}, \quad \boldsymbol{\theta} \in \Theta\}$
 - mathematical models : $h(\mathbf{x}, \boldsymbol{\theta}) = \sum_{i=1}^{l=q} \phi(\mathbf{x}) \boldsymbol{\theta}$ etc ...
 - physical/simulation models : $h(\mathbf{x}, oldsymbol{ heta})$ is the result of a computer code
- lacksquare Uncertainty : equip ${\mathcal X}$ with a prob. measure $P^{{\mathsf x}}$ ${\mathsf x} o {\mathsf X} \in ({\mathcal X}, P^{{\mathsf x}})$
 - stochastic codes, Monte-Carlo codes, uncertain variables etc...
- Goal: Predict a feature of the output Y 2 kind of predictions ...
 - Given a new input ${f X}$, predict the output Y

- Reference data : $Z_1 = (\mathbf{X}_1, Y_1), ..., Z_n = (\mathbf{X}_n, Y_n)$ with (unknown) dist. $Q^{\mathbf{z}}$ and denote by Q the marginal dist. of Y
 - $X_1, ..., X_n$ may be unobserved (too complex, \neq input codes etc...)
- Models : $\{\mathbf{x} \in \mathcal{X} \mapsto h(\mathbf{x}, \boldsymbol{\theta}) \in \mathcal{Y}, \quad \boldsymbol{\theta} \in \Theta\}$
 - mathematical models : $h(\mathbf{x}, \boldsymbol{\theta}) = \sum_{i=1}^{l=q} \phi(\mathbf{x}) \boldsymbol{\theta}$ etc ...
 - physical/simulation models : $h(\mathbf{x}, oldsymbol{ heta})$ is the result of a computer code
- lacksquare Uncertainty : equip ${\mathcal X}$ with a prob. measure $P^{{\mathsf x}}$ ${\mathsf x} o {\mathsf X} \in ({\mathcal X}, P^{{\mathsf x}})$
 - stochastic codes, Monte-Carlo codes, uncertain variables etc...
- Goal: Predict a feature of the output Y 2 kind of predictions ...
 - Given a new input ${f X}$, predict the output Y
 - probabilistic feature on Y (mean, quantile, pdf, exceedance prob., etc...)

Remark:

prediction = param. estimation + computation under the param.

Motivations

- Consider the classical modeling
 - $Y_i = h(\mathbf{X}_i, \boldsymbol{\theta}^*) + \varepsilon_i$, i = 1, ..., n
 - $\varepsilon_i \sim \mathcal{N}(0,1)$ independent of \mathbf{X}_i ,
- Suppose $X_1, ..., X_n$ observed
 - ightarrow classical statistical learning (regression etc...)

Motivations

- Consider the classical modeling
 - $Y_i = h(X_i, \theta^*) + \varepsilon_i$, i = 1, ..., n
 - $arepsilon_i \sim \mathcal{N}(0,1)$ independent of \mathbf{X}_i ,
- Suppose $X_1, ..., X_n$ observed
 - → classical statistical learning (regression etc...)
 - Questions –
- If the \mathbf{X}_i 's are not observed? How to calibrate? (e.g Monte-Carlo codes, input code \neq experimental conditions etc...)
- even if they are observed, should we always use regression parameters for prediction?
- meaning of ...

for example
$$\mathbb{P}(h(\mathbf{X}, \widehat{\boldsymbol{\theta}}_{reg}) > s), pdf_{h(\mathbf{X}, \widehat{\boldsymbol{\theta}}_{reg})}$$

... duality between estimation procedure and target prediction

Motivations

- Consider the classical modeling
 - $Y_i = h(X_i, \theta^*) + \varepsilon_i$, i = 1, ..., n
 - $arepsilon_i \sim \mathcal{N}(0,1)$ independent of \mathbf{X}_i ,
- Suppose $X_1, ..., X_n$ observed
 - → classical statistical learning (regression etc...)
 - Questions –
- If the \mathbf{X}_i 's are not observed? How to calibrate? (e.g Monte-Carlo codes, input code \neq experimental conditions etc...)
- even if they are observed, should we always use regression parameters for prediction?
- meaning of ...

for example
$$\mathbb{P}(h(\mathbf{X}, \widehat{\boldsymbol{\theta}}_{reg}) > s), pdf_{h(\mathbf{X}, \widehat{\boldsymbol{\theta}}_{reg})}$$

duality between estimation procedure and target prediction

■ Robust Prediction

Calibration - Parameter estimation

- Feature Space \mathcal{F} associated to a feature of $Q^{\mathbf{z}}$:
 - $(\mathbf{x} \mapsto \mathbb{E}(Y/\mathbf{X} = \mathbf{x})) \in \mathcal{F} \subset \{\rho : \mathcal{X} \to \mathcal{Y}\}$
 - $\mathbb{E}(Y) \in \mathcal{F} \subset \mathbb{R}$
 - (pdf of Y) $\in \mathcal{F} \subset \{\rho : \mathcal{Y} \to \mathbb{R}\}$
 - etc ...
- \blacksquare \mathcal{F} -Contrast function Ψ :

$$\begin{array}{ccc} \Psi \,:\, \mathcal{F} & \longrightarrow & L_1(Q^{\mathbf{z}}) \\ \rho & \longmapsto & \Psi(\rho, \cdot) \,:\, (\mathbf{x}, \mathbf{y}) \in \mathcal{X} \times \mathcal{Y} \longmapsto \Psi(\rho, (\mathbf{x}, \mathbf{y})) \end{array}$$

■ Ψ-Risk (to be minimized!) :

$$\mathcal{R}_{\Psi}(\rho) := \mathbb{E}_{Q^{\mathbf{z}}} \, \Psi(\rho \,,\, Z) \underset{\rho = \rho(\boldsymbol{\theta})}{\rightarrow} \, \mathcal{R}_{\Psi}(\boldsymbol{\theta}) := \mathbb{E}_{Q^{\mathbf{z}}} \, \Psi(\rho(\boldsymbol{\theta}) \,,\, Z)$$

 $\mathsf{Rm} k$: think \mathcal{R}_Ψ as a "distance" between model and true features

$$\mathcal{R}_{m{\Psi}}(m{ heta}) pprox \mathcal{D}_{m{\Psi}}(
ho(m{ heta}),
ho^*)$$

ex.
$$\mathcal{D}(\mathbb{E}(h(\mathbf{X}, \boldsymbol{\theta})), \mathbb{E}(Y)), \mathcal{D}(pdf_{h(\mathbf{X}, \boldsymbol{\theta})}, pdf_Y), \mathcal{D}(h(\cdot, \boldsymbol{\theta}), \mathbb{E}(Y/\mathbf{X} = \cdot)) \dots$$

Example of contrasts ("the way of minimizing")

- $\mathcal{F} \subset \{ \rho : \mathcal{X} \to \mathcal{Y} \}$ regression contrast

$$\Psi(\rho,(\mathbf{x},y)) = (y - \rho(\mathbf{x}))^2$$

- $\mathcal{F} \subset \mathbb{R}$: $ho = \mathbb{E}(Y)$, $\mathbb{P}(Y > s)$ etc...

mean contrast

$$\Psi(\rho,(\mathbf{x},y)) = \Psi(\rho,y) = (y-\rho)^2$$

- $\mathcal{F} \subset \{\text{density functions on } \mathcal{Y}\}$

log-contrast

$$\Psi(\rho, (\mathbf{x}, y)) = \Psi(\rho, y) = -\log \rho(y)$$

 L_2 —contrast

$$\Psi(\rho, (\mathbf{x}, y)) = \Psi(\rho, y) = ||\rho||_2^2 - 2\rho(y)$$

- etc...

Recall: $(\mathbf{X}_i, Y_i)_{1..n}, \{\mathbf{x} \in \mathcal{X} \mapsto h(\mathbf{x}, \theta) \in \mathcal{Y}, \theta \in \Theta\}, \mathbf{X} \sim P^{\mathbf{x}} \rightarrow \theta$?

Recall: $("\mathbf{X}_i", Y_i)_{1..n}, \{\mathbf{x} \in \mathcal{X} \mapsto h(\mathbf{x}, \theta) \in \mathcal{Y}, \theta \in \Theta\}, \mathbf{X} \sim P^{\mathbf{x}} \rightarrow \theta$?

- Learning Procedures
 - Regression: $\theta_{reg} = \operatorname{Argmin}_{\theta \in \Theta} \mathbb{E}_{Q^{\mathbf{z}}} (Y h(\mathbf{X}, \boldsymbol{\theta}))^{2}$

```
Recall: ("\mathbf{X}_i", Y_i)_{1..n}, \{\mathbf{x} \in \mathcal{X} \mapsto h(\mathbf{x}, \boldsymbol{\theta}) \in \mathcal{Y}, \boldsymbol{\theta} \in \Theta\}, \mathbf{X} \sim P^{\mathbf{x}} \rightarrow \boldsymbol{\theta}?

Learning Procedures

- Regression: \boldsymbol{\theta}_{reg} = \operatorname{Argmin}_{\boldsymbol{\theta} \in \Theta} \mathbb{E}_{Q^{\mathbf{z}}} (Y - h(\mathbf{X}, \boldsymbol{\theta}))^2

- Density (log-)contrast: \boldsymbol{\theta}_{log} = \operatorname{Argmin}_{\boldsymbol{\theta} \in \Theta} - \mathbb{E}_{Q}(\log(\rho_{\boldsymbol{\theta}}(Y)))

"\mathcal{D}(pdf_{h(\mathbf{X}, \boldsymbol{\theta})}, pdf_{Y})"

(where Y \sim Q and \rho_{\boldsymbol{\theta}} = pdf of h(\mathbf{X}, \boldsymbol{\theta}) both unknown!)
```

```
Recall: ("\mathbf{X}_i", Y_i)_{1...n}, \{\mathbf{x} \in \mathcal{X} \mapsto h(\mathbf{x}, \boldsymbol{\theta}) \in \mathcal{Y}, \boldsymbol{\theta} \in \Theta\}, \mathbf{X} \sim P^{\mathbf{x}} \rightarrow \boldsymbol{\theta}?

Learning Procedures

Regression: \boldsymbol{\theta}_{reg} = \operatorname{Argmin}_{\boldsymbol{\theta} \in \Theta} \mathbb{E}_{Q^{\mathbf{z}}} (Y - h(\mathbf{X}, \boldsymbol{\theta}))^2

Density (log-)contrast: \boldsymbol{\theta}_{log} = \operatorname{Argmin}_{\boldsymbol{\theta} \in \Theta} - \mathbb{E}_{Q}(\log(\rho_{\boldsymbol{\theta}}(Y)))

(where Y \sim Q and \rho_{\boldsymbol{\theta}} = pdf of h(\mathbf{X}, \boldsymbol{\theta}) both unknown!)

Learning Algorithms (depend on database: (\mathbf{X}_i, Y_i)_{1...n} or Y_1, ..., Y_n)

Regression (if \mathbf{X}_i observed!):

\widehat{\boldsymbol{\theta}}_{reg} = \operatorname{Argmin}_{\boldsymbol{\theta} \in \Theta} \frac{1}{n} \sum_{i=1}^{n} (Y_i - h(\mathbf{X}_i, \boldsymbol{\theta}))^2 (well studied)
```

Recall:
$$("\mathbf{X}_i", Y_i)_{1..n}, \{\mathbf{x} \in \mathcal{X} \mapsto h(\mathbf{x}, \boldsymbol{\theta}) \in \mathcal{Y}, \boldsymbol{\theta} \in \Theta\}, \mathbf{X} \sim P^{\mathbf{x}} \rightarrow \boldsymbol{\theta}$$
?

- Learning Procedures
 - Regression: $\theta_{reg} = \operatorname{Argmin}_{\theta \in \Theta} \mathbb{E}_{Q^z} (Y h(X, \theta))^2$
 - Density (log-)contrast: $\theta_{log} = \operatorname{Argmin}_{\theta \in \Theta} \mathbb{E}_{Q}(\log(\rho_{\theta}(Y)))$ " $\mathcal{D}(p^{df}_{h(X,\theta)}, p^{df}_{Y})$ "

 (where $Y \sim Q$ and $\rho_{\theta} = \operatorname{pdf}$ of $h(X,\theta)$ both unknown!)
- Learning Algorithms (depend on database: $(\mathbf{X}_i, Y_i)_{1..n}$ or $Y_1, ..., Y_n$)
 - Regression (if X_i observed !): $\widehat{\theta}_{reg} = \operatorname{Argmin}_{\theta \in \Theta} \frac{1}{n} \sum_{i=1}^{n} (Y_i - h(X_i, \theta))^2$ (well studied)
 - Density contrast for computer experiments (N. Rachdi et al. 2010):

$$\widehat{\boldsymbol{\theta}}_{\log} = \operatorname{Argmin}_{\boldsymbol{\theta} \in \Theta} - \sum_{i=1}^{n} \log \left(\sum_{j=1}^{m} K_b(Y_i - h(\mathbf{X}_j, \boldsymbol{\theta})) \right)$$

where $X_1, ..., X_m$ i.i.d from P^x , K() is a kernel, b bandwidth $(\rho_\theta$ was estimated by a kernel smoothing)

Consider the general procedure

$$\widehat{\boldsymbol{\theta}} = \underset{\boldsymbol{\theta} \in \Theta}{\operatorname{Argmin}} \sum_{i=1}^{n} \Psi(\rho^{m}(\boldsymbol{\theta}), Y_{i}) \left(\approx \underset{\boldsymbol{\theta} \in \Theta}{\operatorname{Argmin}} \mathcal{D}_{\Psi}(\rho^{m}(\boldsymbol{\theta}), \rho^{n}) \right)$$

- $\rho^m(\theta) = \text{emp. feature of } h(\mathbf{X}, \theta) \text{ based on } \mathbf{X}_{1..m}$
- and $ho^n=$ emp. feature of Y based on $Y_{1...n}$

Consider the general procedure

$$\widehat{\boldsymbol{\theta}} = \underset{\boldsymbol{\theta} \in \Theta}{\operatorname{Argmin}} \sum_{i=1}^{n} \Psi(\rho^{m}(\boldsymbol{\theta}), Y_{i}) \left(\approx \underset{\boldsymbol{\theta} \in \Theta}{\operatorname{Argmin}} \mathcal{D}_{\Psi}(\rho^{m}(\boldsymbol{\theta}), \rho^{n}) \right)$$

- $\rho^m(\theta) = \text{emp.}$ feature of $h(\mathbf{X}, \theta)$ based on $\mathbf{X}_{1..m}$
- and $\rho^n=$ emp. feature of Y based on $Y_{1..n}$

- In blue: Simulated data
- In red: Reference data

Consider the general procedure

$$\widehat{\boldsymbol{\theta}} = \underset{\boldsymbol{\theta} \in \Theta}{\operatorname{Argmin}} \sum_{i=1}^{n} \Psi(\rho^{m}(\boldsymbol{\theta}), Y_{i}) \left(\approx \underset{\boldsymbol{\theta} \in \Theta}{\operatorname{Argmin}} \mathcal{D}_{\Psi}(\rho^{m}(\boldsymbol{\theta}), \rho^{n}) \right)$$

- $\rho^m(\theta) = \text{emp. feature of } h(\mathbf{X}, \theta) \text{ based on } \mathbf{X}_{1..m}$
- and $\rho^{\it n}={\rm emp.}$ feature of ${\it Y}$ based on ${\it Y}_{1..\it n}$

- In blue: Simulated data
- In red: Reference data

Consider the general procedure

$$\widehat{\boldsymbol{\theta}} = \underset{\boldsymbol{\theta} \in \Theta}{\operatorname{Argmin}} \sum_{i=1}^{n} \Psi(\rho^{m}(\boldsymbol{\theta}), Y_{i}) \left(\approx \underset{\boldsymbol{\theta} \in \Theta}{\operatorname{Argmin}} \mathcal{D}_{\Psi}(\rho^{m}(\boldsymbol{\theta}), \rho^{n}) \right)$$

- $\rho^m(\theta) = \text{emp. feature of } h(\mathbf{X}, \theta) \text{ based on } \mathbf{X}_{1..m}$
- and $\rho^n=$ emp. feature of Y based on $Y_{1...n}$

Theorem: Oracle Inequality (N. Rachdi *et al* 2010)

Under some conditions on the contrast Ψ and under tightness conditions, for all $\varepsilon>0$, with probability at least $1-2\varepsilon$ it holds

$$\mathcal{R}_{\Psi}(\widehat{\theta}) \leq \inf_{\theta \in \Theta} \left(\mathcal{R}_{\Psi}(\theta) \right) + \frac{K_{(\widetilde{\rho}, \Psi)}^{\varepsilon}}{\sqrt{n}} \left(1 + \sqrt{\frac{n}{m}} (K_{(\widetilde{\rho}, h)}^{\varepsilon} + B_{m}) \right)$$

where $K^{\varepsilon}_{(\widetilde{\rho},\Psi)}, K^{\varepsilon}_{(\widetilde{\rho},h)}$ some concentration constants and B_m a bias factor

EADS

Resume

- From experimental data (" \mathbf{X}_i ", Y_i)_{i=1..n} and simulated data $h(\mathbf{X}_1, \boldsymbol{\theta}), ..., h(\mathbf{X}_m, \boldsymbol{\theta})$, we propose others estimation procedures adapted to the *quantity of interest* we want to predict.
- In practice, regression parameters $(\widehat{\boldsymbol{\theta}}_{reg})$ may be used to predict a lot of quantities:
 - quantile
 - exceedance probability
 - density function
 - etc ...

Resume

- From experimental data (" \mathbf{X}_i ", Y_i)_{i=1..n} and simulated data $h(\mathbf{X}_1, \boldsymbol{\theta}), ..., h(\mathbf{X}_m, \boldsymbol{\theta})$, we propose others estimation procedures adapted to the *quantity of interest* we want to predict.
- In practice, regression parameters $(\widehat{\theta}_{reg})$ may be used to predict a lot of quantities:
 - quantile
 - exceedance probability
 - density function
 - etc ...

Question: How to quantify the estimation procedure error?

Resume

- From experimental data (" \mathbf{X}_i ", Y_i)_{i=1...n} and simulated data $h(\mathbf{X}_1, \theta), ..., h(\mathbf{X}_m, \theta)$, we propose others estimation procedures adapted to the *quantity of interest* we want to predict.
- In practice, regression parameters $(\widehat{\theta}_{reg})$ may be used to predict a lot of quantities:
 - quantile
 - exceedance probability
 - density function
 - etc ...

Question: How to quantify the estimation procedure error?

- It can be investigated in terms of "distance between contrasts"
 - (N. Rachdi "A note about predicting with computer experiments" (In preparation))
 - \Rightarrow key point: each quantity of interest is viewed as an Argmin of some $\Psi\text{-Risk }\mathcal{R}_{\Psi}$

Academic example

■ Let consider

$$Y_i = \sin(X_i) + 0.01 \,\varepsilon_i \quad i = 1, ..., n$$

- $X_i \sim \mathcal{N}(0,1)$ - $\varepsilon_i \sim \mathcal{N}(0,1)$ independent of X_i
- Model

$$h(\mathbf{X}, \boldsymbol{\theta}) = \theta_0 + \theta_1 X + \theta_2 X^3, \quad \mathbf{X} \sim \mathcal{N}(0, 1)$$

- Goal: Predict the pdf of Y
- \Rightarrow for this
 - lacksquare Compute some $\widehat{m{ heta}}$
 - Compute the prediction propagating Uncertainties of **X** through the model $\mathbf{x} \mapsto h(\mathbf{x}, \widehat{\boldsymbol{\theta}})$

Predictions

■ We compute density predictions by propagating uncertainties through models

 $h(\mathbf{x}, \widehat{\boldsymbol{\theta}}_{pdf})$ (solid line), $h(\mathbf{x}, \widehat{\boldsymbol{\theta}}_{reg})$ (dashed line), $h(\mathbf{x}, \widehat{\boldsymbol{\theta}}_{mean})$ (dotted line)

Perspectives

- Academic
 - Constants improvement in inequalities
 - Central Limit Theorems for the calibration parameter $\widehat{m{ heta}}_{\Psi}$
 - Functional analysis of contrast functions
- Industrial Applications
 - Run the learning algorithms with real computer codes...
 - EADS Applications
 - → Non Destructive Testing (*Prediction*) combine reference data and simulated data for POD estimation
 - → Electromagnetism (Inverse problem)

 Characterize slot parameters from sensors data and uncertain numerical models

Statistical Learning for Computer Experiments - Application to Aeronautics May 4, 2011

Thank you for your attention !

