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Curse of dimensionality

We wish to approximate a function u(x , ξ1, · · · , ξd) where ξ1, · · · , ξd are
random variables with d very large.

x ∈ X , ξ1 ∈ Ξ1, · · · , ξd ∈ Ξd

Standard (Galerkin methods):
a priori fixed basis functions (φi (x))1≤i≤N , (ψj1(ξ1))1≤j1≤N , ... ,
(ψjd (ξd))1≤jd≤N

u(x , ξ1, · · · , ξd) ≈
∑

1≤i ,j1,··· ,jd≤N

λi ,j1,··· ,jdφi (x)ψj1(ξ1) · · ·ψjd (ξd).

DIM = Nd
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Separated variable representation

Separated variable representation (also called canonical format)

The solution is represented as linear combinations of tensor products of
small-dimensional functions to avoid the curse of dimensionality [Bellman,

1957]:

u(x , ξ1, · · · , xd) ≈

n
∑

k=1

sk(x)r1
k (ξ1) . . . r

d
k (ξd)

=
n
∑

k=1

(

sk ⊗ r1
k . . .⊗ rd

k

)

(x , ξ1, . . . , ξd).

DIM = nNd
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Symmetric problem

u(x , ξ1, · · · , ξd) ∈ V where V = Vx ⊗ Vξ1 ⊗ · · ·Vξd
.

Vx ⊂ L2(X ), Vξ1 ⊂ L2(Ξ1), · · · , Vξd
⊂ L2(Ξd), V ⊂ L2(X×X1×· · ·×Ξd)

∀v ∈ V , a(u, v) = l(v) (1)

where

a is a symmetric , coercive continuous bilinear form on V × V ;
l is a continuous linear form on V .

Typical example:
{

Find u ∈ V = H1(X ) ⊗ L2
p(Ξ),

E
[∫

X
∇xu(x , ξ) · ∇xv(x , ξ) + u(x , ξ)v(x , ξ) dx

]

= E
[∫

X
f (x , ξ)v(x , ξ) dx

]

(2)
with f ∈ L2(X ) ⊗ L2

p(Ξ).

Vx = H1(X ), Vξ = L2
p(Ξ).
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Greedy algorithm - Progressive Generalized Decomposition

We consider an approach proposed by:

Ladevèze et al. to do time-space variable separation

Chinesta et al. to solve high-dimensional Fokker-Planck equations in
the context of kinetic models for polymers [Ammar et al., 2006]

Nouy et al in the context of UQ. [Nouy, 2009]

In the symmetric coercive setting, problem (1) can be rewritten as an
optimization problem

u = argmin
v∈V

E(v)

where E(v) = 1
2a(v , v) − l(v).
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Definition of the greedy algorithm

The idea is to look iteratively for the best tensor product.

(x , ξ) ∈ X × Ξ u(x , ξ) =
∑

k≥1 sk(x)rk(ξ).

��✠ ❄ ❅❅❘

V Vx Vξ

where the solution u is the unique global minimizer of the functional
E : V → R.

Greedy algorithm [Temlyakov, 2008]: We define recursively

(rn, sn) ∈ argmin
(r ,s)∈Vt×Vx

E

(

n−1
∑

k=1

rk ⊗ sk + r ⊗ s

)

(3)

Let us denote un =
∑n

k=1 rk ⊗ sk .

Question: Does un converge towards u? Yes!
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Convergence results

[Le Bris, Lelièvre, Maday, 2009], [Cancès, VE, Lelièvre, 2011] or [Nouy, Falco, 2011]

Σ = {r ⊗ s, (r , s) ∈ Vx × Vξ}

Span(Σ) dense in V ;

Σ is weakly closed in V ;

E is differentiable and E ′ is Lipschitz continuous on bounded sets;

E is elliptic, i.e. there exists α > 0 and s > 1 such that

∀v ,w ∈ V , 〈E ′(v) − E ′(w), v − w〉V ≥ α‖v − w‖s
V ;

un −→
n→∞

u

Remark: E does not necessarily need to be a quadratic functional for the
algorithm to converge.
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Euler equations

How are computed the (sn, rn) ∈ Vx × Vξ in practice? By solving the Euler
equations:

a(un−1 + sn ⊗ rn, sn ⊗ δr + δs ⊗ rn)= l(sn ⊗ δr + δs ⊗ rn),

∀(δs, δr) ∈ Vx × Vξ.

For problem (5),

E
[

rn(ξ)
2
]

(−∆xsn(x) + sn(x)) = E [(f (x , ξ) + ∆xun−1(x , ξ))rn(ξ)] ,
(
∫

X

|∇xsn(x)|2 + |sn(x)|2 dx

)

rn(ξ) =

∫

X

(f (x , ξ) + ∆xun−1(x , ξ))sn(x) dx .

V. Ehrlacher (CERMICS) Greedy non-symmetric MASCOT-NUM, May 2012 10 / 25



Outline

1 Greedy algorithms for symmetric coercive problems

2 Problem in the non-symmetric case

3 Other algorithms

V. Ehrlacher (CERMICS) Greedy non-symmetric MASCOT-NUM, May 2012 11 / 25



Non-symmetric problem

∀v ∈ V , a(u, v) = l(v) (4)

where

a = as + aas where as is a symmetric , coercive continuous bilinear
form on V × V and aas an antisymmetric continuous bilinear form on
V × V ;

l is a continuous linear form on V .

There is no minization problem formulation of the problem as in the
symmetric case!! How can we define the PGD/greedy algorithm?

Naive idea: By solving the Euler equations:

a(un−1 + sn ⊗ rn, sn ⊗ δr + δs ⊗ rn)= l(sn ⊗ δr + δs ⊗ rn),

∀(δs, δr) ∈ Vx × Vξ.
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Convection-diffusion example

Let us denote by A the operator on L2(X × Ξ), with domain D(A) such
that

∀u, v ∈ D(A), 〈Au, v〉L2(X×Ξ) = a(u, v).

Typical example: A = −∆x + b · ∇x + 1 = Ax ⊗ Iξ,
D(A) = H2(X ) ⊗ L2

p(Ξ), with Ax = −∆x + b · ∇x + 1 on L2(X ) and I is
the identity operator on L2

p(ξ).







Find u ∈ V = H1(X ) ⊗ L2
p(Ξ),

E
[∫

X
∇xu(x , ξ) · ∇xv(x , ξ) + b · ∇u(x , ξ)v(x , ξ) + u(x , ξ)v(x , ξ) dx

]

= E
[∫

X
f (x , ξ)v(x , ξ) dx

]

,

(5)
with f ∈ L2(X ) ⊗ L2

p(Ξ).

Vx = H1(X ), Vξ = L2
p(Ξ).
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“Euler” algorithm

For problem (5),

E
[

rn(ξ)
2
]

Axsn(x) = E [(f (x , ξ) + Aun−1(x , ξ))rn(ξ)] ,
(
∫

X

(Axsn(x))sn(x) dx

)

rn(ξ) =

∫

X

(f (x , ξ) + Aun−1(x , ξ))sn(x) dx .

Problem: There are cases where the only solutions of these Euler
equations are (rn, sn) = (0, 0) even if un−1 6= un!!
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Symmetrize the problem: minimization of the L
2 residual

[Falco et al, 2011]

The idea is then to symmetrize the problem by minimizing the L2 residual.
In the convection-diffusion case, perform the symmetric greedy algorithm
on

E(v) = ‖Av − f ‖L2(X×Ξ).
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Euler equations: minimization of the L
2 residual

When f is regular enough for the convection diffusion problem

E
[

rn(ξ)
2
]

A∗
xAxsn(x) = E [(A∗(f (x , ξ) + Aun−1(x , ξ)))rn(ξ)] ,

(
∫

X

〈A∗
xAxsn, sn〉L2(X ) dx

)

rn(ξ) =

∫

X

(A∗(f (x , ξ) + Aun−1(x , ξ)))sn(x) dx .

The Euler equations are the ones associated to the problem

A∗Au = A∗f

The conditining of the discretized problems scales quadratically with the
conditioning of the original problem!!
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Symmetrize the problem: minimization of the H
−1 residual

The idea is then to symmetrize the problem by minimizing the H−1

residual. In the convection-diffusion case, perform the symmetric greedy
algorithm on

E(v) = ‖Av − f ‖H−1(X )⊗L2(Ξ).
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Euler equations: minimization of the L
2 residual

E
[

rn(ξ)
2
]

A∗
x(−∆x)

−1Axsn(x)

= E
[

(A∗(−∆x)
−1(f (x , ξ) + Aun−1(x , ξ)))rn(ξ)

]

,
(
∫

X

〈A∗
x(−∆x)

−1Axsn, sn〉L2(X ) dx

)

rn(ξ)

=

∫

X

(A∗(−∆x)
−1(f (x , ξ) + Aun−1(x , ξ)))sn(x) dx .

The Euler equations are the ones associated to the problem

A∗(−∆x)
−1Au = A∗(−∆x)

−1f

The conditining of the discretized problems scales linearly with the
conditioning of the original problem!!
However, this method needs to solve a lot of small-dimensional Poisson
problems. It takes more time (although it can be done in parallel) and
more memory.
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Explicitation of the antisymmetric part

Idea: Perform the greedy algorithm with the symmetric part as of the
bilinear form a and update the right-hand side at each iteration.

(rn, sn) ∈ argmin
(r ,s)∈Vx×Vξ

En−1(r ⊗ s),

where

En−1(r ⊗ s) =
1

2
as(un−1 + r ⊗ s, un−1r ⊗ s) − l(r ⊗ s) − aas(un−1, r ⊗ s)

with un−1 =
∑n−1

k=1 rk ⊗ sk . In other words, at each iteration, one performs
one greedy iteration on the problem

∀v ∈ V , as(u, v) = l(v) − aas(un−1, v).
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Partial convergence results

Of course, such an algorithm is expected to converge only if the
antisymmetric part is small enough.

Proposition

If Vx and Vξ are finite-dimensional, there exists κ > 0 such that if

‖aas‖L(V ,V ) ≤ κ‖as‖L(V ,V ), then the algorithm converges strongly in V .

Problem: The rate κ depends on the dimension of Vx and Vξ.

Numerically, the rate κ seems not to depend on the dimension...
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Use a symmetric formulation of the antisymmetric problem

Idea: use a symmetric version of the antisymmetric problem [Cohen et al.,

2011]

For the convection diffusion problem:

(

0 A∗

A −∆

)(

u

y

)

=

(

0
f

)

This is a symmetric problem whose solution is (v , y) = (u, 0).
But it is not a coercive problem!!!
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Other algorithms in the literature

Minimax algorithm [Nouy, 2010]

Dual algorithm, X-Greedy algorithm (Lozinski, based on ideas of
Temlyakov)

Good numerical results but no theoretical proof of convergence.
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Thank you for your attention!
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