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Intro : uncertainties and optimization

Models and working conditions are partially unknown → uncertainties.
These uncertainties need to be taken into account during design.

Working assumption : uncertainties can be described by random 
parameters of the models.

Ex : a +/- 1mm dispersion in the manufacturing of 
the air admission line  can degrade the engine's 
performance (g CO2/km) by +20% (worst case).
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Optimization terminology (1)

Model or « simulator », y , (analytical, finite elements, 
coupled sub-models …) of the object you need to optimize.

Formulation of the optimization problem

min
x∈S

f ( y (x))

g( y (x))⩽0

x : optimization variables
f : objective functions

g : optimization constraints
f , g : optimization (performance) criteria
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Optimization terminology (2) :
the double (x,U) parameterization for uncertainties

x is a vector of deterministic optimization (controlled) variables.
x in S, the search space.
Without loss of generality, introduce U, a vector of uncertain 
(random) parameters that affect the simulator y.

y(x)  →  y(x,U)    ,  therefore f(x) → f(y(x,U)) = f(x,U)  
and  g(x) → g(y(x,U)) = g(x,U)

U used to describe
 noise (as in identification with noise measurement)
 model error (epistemic uncertainty)
 uncertainties on the values of some parameters of y. 

G. Pujol, R. Le Riche, O. Roustant and X. Bay, L'incertitude en conception: formalisation, estimation, 
Chapter 3 of the book Optimisation Multidisciplinaire en Mécaniques : réduction de modèles, robustesse, 
fiabilité, réalisations logicielles, Hermes, 2009.

U : (Ω ,C , P) → SU
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Ideal formulation of optimization with uncertainties 

Replace the noisy optimization criteria by statistical measures

OK (x)  is the random event "all constraints are satisfied" , 

OK (x) =∩
i
{gi(x ,U )⩽0}

min
x∈S

qα
c (x) (conditional α -quantile)

such that  P (OK (x)) ⩾ 1−ε

where  P (f (x ,U )⩽qα
c (x) | OK (x)) = α

ε>0 , small
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Outline of the talk 

Two sub-problems addressed in this talk.

1. Estimation of reliability constraints

2. Optimization with uncertainties

Unifying thread : iterative kriging strategies. Start by 
introducing kriging.

Failure probability : Pf = Prob( g(U ) > T )

(notation here : x  fixed so g(x , U )≤0 → g(U )≤T )

Average minimization  : min
x∈S⊂ℝn

EU ( f (x ,U ))
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Kriging : quick intro (1)
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underlying true 
functions.
They are instances of 
stationary Gaussian 
processes Y(x) → 
fully characterized by 
their average μ and 
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Cov (Y (x),Y (x ' ))=Fctθ (dist(x , x '))

θ  learned from data , (x
i
, f (x
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Kriging : quick intro (2)

Kriging average  : mK (x) = μ+c
T (x)CΔ

−1(f−μ1)

Kriging variance  : sK

2 (x) = σ2−c
T (x)CΔ

−1
c(x)

f (x) represented by Y
t (x) = [ Y (x)∣ f (x

1),…, f (x
t) ]

Y
t (x) ∼ N (mK (x), sK

2 (x)) (simple kriging)

c (x) = [Cov (Y (x),Y (x
i)) ]i=1, t

CΔ = C+Δ

C = [Cov (Y (x
i),Y (x

j))] i , j

Δ = diag [δ1

2
, … , δt

2]

where
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Iterative sampling based on kriging 
for reliability estimation

1. Build a kriging-based approximation to g(.) → mK (.)

2. Use it in a MC procedure :   P̂ f = 1

N
∑

i=1

N

I (mK (ui)>T) ,

where u
i ∼ pdf of U

Goal : estimate the failure probability , Pf = Prob( g(U ) > T )
 while sparingly calling g(.)  ( g  is expensive)

Question : how to choose a small number of u 's to
  approximate well Pf  ?
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target region

non-target 
regions

T

Approximation of a target region

Idea : a global accuracy of the metamodel, mk (), is not needed.

It needs to be accurate when g(u)≈ T

[  V. Picheny, D. Ginsbourger, O. Roustant, R.T. Haftka and N.-H. Kim, Adaptive 
designs of experiments for accurate approximation of a target region », Journal of 
Mechanical Design, 2010.  ]
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Approximation of a target region – Example (1/2)

Kriging based on a uniform design of experiments : 
● reasonable variance everywhere,
● large errors in the target region.

T
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Approximation of a target region – Example (2/2)

Customized design
● large variance in non target regions,
● good accuracy in the target region.

T
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T+ε
T

T−ε

Approximation of a target region – Criterion (1/2)

Target region :  UT = { u∈SU  s. t. ∣g(u)−T∣≤ ε }
Ideal criterion : integration of variance over U T  only, 

∫ sK

2
(u) I (U T )du

BUT  UT   is unknown !
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Approximation of a target region – Criterion (2/2)

Replace I (UT) by E (I (UT )) = Prob(u∈UT ) = Prob(∣Y (u)−T∣≤ ε)
           where Y (.) is the conditional Gaussian process.

The weight in the integral becomes 

W ε(u) ≡ Prob(u∈UT ) = Φ(T+ε−mK (u)

sK (u) )−Φ(T−ε−mK (u)

sK (u) )
The criterion : IMSET =

1

2ε ∫ sK

2
(u)W ε(u)du

W (.)  is large when 1)  Y  is near the target region;

2) sK () is large.

AN :  W (x) ≡ lim
ε→0

W ε(u)
2ε

= d
N (mK (u) , sK

2 (u))(T )   , the kriging density.
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Approximation of a target region – Illustration
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Approximation of a target region – Algorithm

● Create an initial design (u's), compute the associated g's.

● Do

- Estimate the kriging parameters,

- Find the next iterate, minimizer of the one step ahead IMSE
T

- Calculate g(u*), add (u*,g(u*))  to  (u,g(u)) .

● Until max iterations reached

u
* = arg min

v∈S
U

∫ sk

2(u ∣ v ,u) W (u ∣u , g(u)) du
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Approximation of a target region – 2D example

A 2D example (Camelback function)
Target region g(u

1
,u

2
) = 1.3

Look at the DoE after 11 iterations
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Approximation of a target region – 2D example

Evolution of kriging target contour lines



19

Approximation of a target region – 2D example

Prob (g(u1 , u2)>1.3)  with u1 ,u2  i.i.d. N (0, 0.028
2)

Application to the estimation of a failure probability :
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Approximation of a target region – other results

A 6D example (GP sample with linear trend and Gaussian covariance)

Good results in a numerical comparison of 4 methods (Ling Li, UCM 
2010, Sheffield) along with Stepwise Uncertainty Reduction method.
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2nd part of the talk 

1. Estimation of reliability constraints

2. Optimization with uncertainties

     2.1. Preamble : expected improvement, ...
     2.2. Estimation of the average
     2.3. Simultaneous optimization and sampling

Failure probability : Pf = Prob( g(U ) > T )

Average minimization  : min
x∈S⊂ℝn

EU ( f (x ,U ))
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A sampling criterion for global optimization 
without noise :

2.1. kriging-based average optimization : preamble

Expected Improvement criterion (1)

Improvement at x  , I (x)=max( ymin−Y (x),0)
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improvement instance, i

The expected improvement, EI(x) , can be 
analytically calculated. 

EI increases when m
K
 decreases and when 

s
K
 increases. EI(x) quantifies the 

exploration-exploitation compromise of 
global optimization.

EI (x) = s(x) [ a(x)Φ (a(x)) + ϕ ( a(x)) ] ,

a(x)=
ymin−mK (x)

sK (x)
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improvement instance, i

while computation budget not exhausted

Next iterate :    xt+1 = max
x
EI(x)

Update kriging with xt+1

EGO algorithm (Efficient Global 
Optimization), D. Jones, 1998 :

2.1.  kriging-based average optimization : preamble

Expected Improvement criterion (2)

(cannot be applied directly to noisy functions)
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xu

f

2.1. kriging-based average minimization : preamble

the direct approach to average minimization

simulator

f  
x

u
f(x,u)

x and u can be chosen before calling the simulator and calculating the 
objective function. This is the general case.

Optimization : loop on x

Estimation of the performance 
(average, std dev, percentile of 
f(x,U)  ) : loop on u , Monte Carlo

Direct approaches to optimization with uncertainties have a double 
loop : propagate uncertainties on U, optimize on x. 

Such a double loop is very costly (more than only propagating 
uncertainties or optimizing, which are already considered as costly) ! 
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2.1. kriging-based average minimization : preamble 

bibliography

Based on 

J. Janusevskis and R. Le Riche, Simultaneous kriging-based estimation and 
optimization of mean response, J. of Global Optimization, Springer, published 
online in Jan. 2012

Other related works :

D. Jones, M. Schonlau and W. J. Welch, Efficient global optimization of expensive 
functions, J. of Global Optimization, 1998.

Dubourg, V., Sudret, B. and Bourinet, J.-M., Reliability-based design optimization using 
kriging and subset simulation, Struct. Multidisc. Optim, accepted for publication, 2011.

E. Vazquez, J. Villemonteix, M. Sidorkiewicz and E. Walter, Global optimization based 
on noisy evaluations: an empirical study of two statistical approaches, 6th Int. Conf. on 
Inverse Problems in Engineering, 2010.

J. Bect, IAGO for global optimization with noisy evaluations, workshop on noisy kriging-
based optimization (NKO), Bern, 2010.
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2.1. kriging-based average minimization : preamble 

Avoiding the double loop scenario

Assumptions : x and U controlled

Only one loop of f

(x,u) surrogate based 
approach

STAT [Y (x ,U )]

Y (x ,u)

f (x , u)(x , u)

Simulator

Optimizer

Direct approach

Multiplicative cost of two loops involving f

Monte Carlo
simulations

f x ,uu

Simulator

Y (x )

STAT [ f (x ,U )]+εx

Optimizer of 
noisy functions

Y :  surrogate model
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2.2. kriging-based average minimization : 

Estimation of the average

E [Y  x ,U ]

Y x , u

f  x ,u  x , u

Simulator

1. Building internal representation of 
the objective (mean performance) by 
«integrated» kriging.

Optimizer

Assumptions : x and U controlled, U normal. 

Y :  kriging model
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2.2. kriging-based average minimization : average estimation

Integrated kriging (1)

: objective

 objective

E[Z x ]

EU [ f x ,U ]

u

x

u approximation

integrate 

: kriging approximation to deterministic

:   integrated process 
  approximation to 
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2.2. kriging-based average minimization : average estimation

Integrated kriging (2)

-probability measure on U

The integrated process over U is defined as

Because it is a linear transformation of a Gaussian process, it is Gaussian, 
and fully described by its mean and covariance

Analytical expressions of m
Z
 and cov

Z
 for Gaussian U's are given in 

J. Janusevskis, R. Le Riche.  Simultaneous kriging-based sampling for optimization and 
uncertainty propagation, HAL report: hal-00506957
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2.3. kriging-based average minimization :

Simultaneous optimization and sampling (2)

E [Y  x ,U ]

Y x , u

f  x ,u  x , u

Simulator

1. Building internal representation of 
the objective (mean performance) by 
«projected» kriging.

Optimizer

2. Simultaneous sampling and 
optimization criterion for x and u
(both needed by the simulator to calculate f)
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2.3. kriging-based average minimization : simult. opt. and sampling

EI on the integrated process (1)

Z is a process approximating the objective function 

Optimize with an Expected Improvement criterion,

where,

I Z(x)=max (zmin−Z (x),0) , but zmin not observed (in integrated space).

⇒  Define zmin = min
x

1,… , x
t

E ( Z (x))
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2.3. kriging-based average minimization : simult. opt. and sampling

EI on the integrated process (2)

zmin

E[Z x ]

EU [ f x ,U ]

E[Z x ]STD [Z x]
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2.3. kriging-based average minimization : simult. opt. and sampling

EI on the integrated process (3)

x ok. What about u ? (which we need to call the simulator)

EU
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2.3. kriging-based average minimization : simult. opt. and sampling

Method

xnext gives a region of interest from an optimization of the expected f 
point of view. 

One simulation will be run to improve our knowledge of this region 
of interest → one choice of (x,u).

Choose (xt+1,ut+1) that provides the most information, i.e., which 
minimizes the variance of the integrated process at xnext

(no calculation details, cf. article. Note that VAR of a Gaussian process 
does not depend on f values but only on x's ).
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2.3. kriging-based average minimization : simult. opt. and sampling

Illustration

EU
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2.3. kriging-based average minimization : simult. opt. and sampling

Algorithm

( 4 sub-optimizations, solved with CMA-ES )

Create initial DOE in (x,u) space;

While stopping criterion is not met:

● Create kriging approximation Y in the joint space 

● Calculate the mean and covariance of Z from those of Y 

● Minimize EI of Z to choose

● Minimize       to obtain the next point                   for 
simulation

● Calculate simulator response at the next point 

x
next 

VAR Z x
next 

f x
t 1

, u
t1

x ,u 

x
t1

, u
t 1
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2.3. kriging-based average minimization : simult. opt. and sampling

2D Example

 DOE and E [Y x ,u]

EU [ f x ,U ]

VARΩ[Z (x)(ω)]

test function

E[Z x ]

EI Z x 
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2.3. kriging-based average minimization : simult. opt. and sampling

1st iteration

 DOE and E [Y x , u]

− x
t 1

, u
t1

− x
next

,

EU [ f x ,U ]

E[Z x ]

VAR [Z x]

EI Z x 
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2.3. kriging-based average minimization : simult. opt. and sampling

2nd iteration

 DOE and E [Y x ,u]

− x
t 1

, u
t1

− x
next

,

EU [ f x ,U ]

E[Z x ]

VAR [Z x]

EI Z x 
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2.3. kriging-based average minimization : simult. opt. and sampling

3rd iteration

 DOE and E [Y x ,u]

VAR [Z xnext] x , u

EU [ f x ,U ]

E[Z x ]

VAR [Z x]

EI Z x 
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2.3. kriging-based average minimization : simult. opt. and sampling

5th iteration

 DOE and E [Y x , u]

− x
t 1

, u
t1

− x
next

,

EU [ f x ,U ]

E[Z x ]

VAR [Z x]

EI Z x 
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2.3. kriging-based average minimization : simult. opt. and sampling

17th iteration

 DOE and E [Y x ,u]

EU [ f x ,U ]  and E [Z x]

VAR [Z x]
EI Z x 
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2.3. kriging-based average minimization : simult. opt. and sampling

50th iteration

 DOE and E [Y x ,u]

EU [ f x ,U ]  and E [Z x]

VAR [Z x]EI Z x 
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2.3. kriging-based average minimization : simult. opt. and sampling

Comparison tests

Compare « simultaneous opt and sampling » method to

1. A direct MC based approach : 
EGO based on MC simulations in f with fixed number of runs, s. 
Kriging with homogenous nugget to filter noise.

2. An MC-surrogate based approach : 
the MC-kriging algorithm.
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2.3. kriging-based average minimization : simult. opt. and sampling

Test functions

f (x)=−∑
i=1

n

sin(x i)[sin(ix i

2/π)]2

f x ,u=f x f u

Test cases based on Michalewicz function 

nx=1 nu=1 μ=1.5 σ=0.2

nx=2 nu=2 μ=[1.5 , 2.1] σ=[0.2, 0.2]

nx=3 nu=3 μ=[1.5 , 2.1 , 2] σ=[0.2 , 0.2 , 0.3]

2D:

4D:

6D:
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2.3. kriging-based average minimization : simult. opt. and sampling

Test results

6D Michalewicz test case, n
x
 =3 , n

U
 =3 .

Initial DOE: RLHS , m=(n
x
+n

U
)*5 = (3+3)*5 = 30;

10 runs for every method.

Simult. opt & sampl.

MC-kriging

EGO + MC on f , s=3 , 5 , 10
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Sequential kriging-based methods for reliability 
estimation and optimization : concluding remarks

Kriging provides a rich framework to define iterative 
sampling strategies for reliability estimation and 
optimization.

Of course, still a long way to go : 

Small step ; properly handle the « ideal formulation » 
(quantiles and coupled reliability constraints).

Large step ; high dimensions, large number of points, 
what is the effect of kriging parameters, instationary kriging.
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