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Intro : uncertainties and optimization

Models and working conditions are partially unknown → uncertainties.
These uncertainties need to be taken into account during design.

Working assumption : uncertainties can be described by random 
parameters of the models.

Ex : a +/- 1mm dispersion in the manufacturing of 
the air admission line  can degrade the engine's 
performance (g CO2/km) by +20% (worst case).
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Optimization terminology (1)

Model or « simulator », y , (analytical, finite elements, 
coupled sub-models …) of the object you need to optimize.

Formulation of the optimization problem

min
x∈S

f ( y (x))

g( y (x))⩽0

x : optimization variables
f : objective functions

g : optimization constraints
f , g : optimization (performance) criteria
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Optimization terminology (2) :
the double (x,U) parameterization for uncertainties

x is a vector of deterministic optimization (controlled) variables.
x in S, the search space.
Without loss of generality, introduce U, a vector of uncertain 
(random) parameters that affect the simulator y.

y(x)  →  y(x,U)    ,  therefore f(x) → f(y(x,U)) = f(x,U)  
and  g(x) → g(y(x,U)) = g(x,U)

U used to describe
 noise (as in identification with noise measurement)
 model error (epistemic uncertainty)
 uncertainties on the values of some parameters of y. 

G. Pujol, R. Le Riche, O. Roustant and X. Bay, L'incertitude en conception: formalisation, estimation, 
Chapter 3 of the book Optimisation Multidisciplinaire en Mécaniques : réduction de modèles, robustesse, 
fiabilité, réalisations logicielles, Hermes, 2009.

U : (Ω ,C , P) → SU
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Ideal formulation of optimization with uncertainties 

Replace the noisy optimization criteria by statistical measures

OK (x)  is the random event "all constraints are satisfied" , 

OK (x) =∩
i
{gi(x ,U )⩽0}

min
x∈S

qα
c (x) (conditional α -quantile)

such that  P (OK (x)) ⩾ 1−ε

where  P (f (x ,U )⩽qα
c (x) | OK (x)) = α

ε>0 , small
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Outline of the talk 

Two sub-problems addressed in this talk.

1. Estimation of reliability constraints

2. Optimization with uncertainties

Unifying thread : iterative kriging strategies. Start by 
introducing kriging.

Failure probability : Pf = Prob( g(U ) > T )

(notation here : x  fixed so g(x , U )≤0 → g(U )≤T )

Average minimization  : min
x∈S⊂ℝn

EU ( f (x ,U ))
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Kriging : quick intro (1)
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needed)
 
black circles : observed values , f(x1), … , f(xt), with heterogeneous noise 
(intervals). 
Noise is Gaussian and independent at each point (nugget effect), 
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1
2 , … , δ

t
2 .

Assume : the blue 
curves are possible 
underlying true 
functions.
They are instances of 
stationary Gaussian 
processes Y(x) → 
fully characterized by 
their average μ and 
their covariance, 

Cov (Y (x),Y (x ' ))=Fctθ (dist(x , x '))

θ  learned from data , (x
i
, f (x
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Kriging : quick intro (2)

Kriging average  : mK (x) = μ+c
T (x)CΔ

−1(f−μ1)

Kriging variance  : sK

2 (x) = σ2−c
T (x)CΔ

−1
c(x)

f (x) represented by Y
t (x) = [ Y (x)∣ f (x

1),…, f (x
t) ]

Y
t (x) ∼ N (mK (x), sK

2 (x)) (simple kriging)

c (x) = [Cov (Y (x),Y (x
i)) ]i=1, t

CΔ = C+Δ

C = [Cov (Y (x
i),Y (x

j))] i , j

Δ = diag [δ1

2
, … , δt

2]

where
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Iterative sampling based on kriging 
for reliability estimation

1. Build a kriging-based approximation to g(.) → mK (.)

2. Use it in a MC procedure :   P̂ f = 1

N
∑

i=1

N

I (mK (ui)>T) ,

where u
i ∼ pdf of U

Goal : estimate the failure probability , Pf = Prob( g(U ) > T )
 while sparingly calling g(.)  ( g  is expensive)

Question : how to choose a small number of u 's to
  approximate well Pf  ?



10

target region

non-target 
regions

T

Approximation of a target region

Idea : a global accuracy of the metamodel, mk (), is not needed.

It needs to be accurate when g(u)≈ T

[  V. Picheny, D. Ginsbourger, O. Roustant, R.T. Haftka and N.-H. Kim, Adaptive 
designs of experiments for accurate approximation of a target region », Journal of 
Mechanical Design, 2010.  ]
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Approximation of a target region – Example (1/2)

Kriging based on a uniform design of experiments : 
● reasonable variance everywhere,
● large errors in the target region.

T
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Approximation of a target region – Example (2/2)

Customized design
● large variance in non target regions,
● good accuracy in the target region.

T
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T+ε
T

T−ε

Approximation of a target region – Criterion (1/2)

Target region :  UT = { u∈SU  s. t. ∣g(u)−T∣≤ ε }
Ideal criterion : integration of variance over U T  only, 

∫ sK

2
(u) I (U T )du

BUT  UT   is unknown !



14

Approximation of a target region – Criterion (2/2)

Replace I (UT) by E (I (UT )) = Prob(u∈UT ) = Prob(∣Y (u)−T∣≤ ε)
           where Y (.) is the conditional Gaussian process.

The weight in the integral becomes 

W ε(u) ≡ Prob(u∈UT ) = Φ(T+ε−mK (u)

sK (u) )−Φ(T−ε−mK (u)

sK (u) )
The criterion : IMSET =

1

2ε ∫ sK

2
(u)W ε(u)du

W (.)  is large when 1)  Y  is near the target region;

2) sK () is large.

AN :  W (x) ≡ lim
ε→0

W ε(u)
2ε

= d
N (mK (u) , sK

2 (u))(T )   , the kriging density.
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Approximation of a target region – Illustration
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Approximation of a target region – Algorithm

● Create an initial design (u's), compute the associated g's.

● Do

- Estimate the kriging parameters,

- Find the next iterate, minimizer of the one step ahead IMSE
T

- Calculate g(u*), add (u*,g(u*))  to  (u,g(u)) .

● Until max iterations reached

u
* = arg min

v∈S
U

∫ sk

2(u ∣ v ,u) W (u ∣u , g(u)) du
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Approximation of a target region – 2D example

A 2D example (Camelback function)
Target region g(u

1
,u

2
) = 1.3

Look at the DoE after 11 iterations
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Approximation of a target region – 2D example

Evolution of kriging target contour lines
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Approximation of a target region – 2D example

Prob (g(u1 , u2)>1.3)  with u1 ,u2  i.i.d. N (0, 0.028
2)

Application to the estimation of a failure probability :
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Approximation of a target region – other results

A 6D example (GP sample with linear trend and Gaussian covariance)

Good results in a numerical comparison of 4 methods (Ling Li, UCM 
2010, Sheffield) along with Stepwise Uncertainty Reduction method.



21

2nd part of the talk 

1. Estimation of reliability constraints

2. Optimization with uncertainties

     2.1. Preamble : expected improvement, ...
     2.2. Estimation of the average
     2.3. Simultaneous optimization and sampling

Failure probability : Pf = Prob( g(U ) > T )

Average minimization  : min
x∈S⊂ℝn

EU ( f (x ,U ))
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A sampling criterion for global optimization 
without noise :

2.1. kriging-based average optimization : preamble

Expected Improvement criterion (1)

Improvement at x  , I (x)=max( ymin−Y (x),0)
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improvement instance, i

The expected improvement, EI(x) , can be 
analytically calculated. 

EI increases when m
K
 decreases and when 

s
K
 increases. EI(x) quantifies the 

exploration-exploitation compromise of 
global optimization.

EI (x) = s(x) [ a(x)Φ (a(x)) + ϕ ( a(x)) ] ,

a(x)=
ymin−mK (x)

sK (x)
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while computation budget not exhausted

Next iterate :    xt+1 = max
x
EI(x)

Update kriging with xt+1

EGO algorithm (Efficient Global 
Optimization), D. Jones, 1998 :

2.1.  kriging-based average optimization : preamble

Expected Improvement criterion (2)

(cannot be applied directly to noisy functions)
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xu

f

2.1. kriging-based average minimization : preamble

the direct approach to average minimization

simulator

f  
x

u
f(x,u)

x and u can be chosen before calling the simulator and calculating the 
objective function. This is the general case.

Optimization : loop on x

Estimation of the performance 
(average, std dev, percentile of 
f(x,U)  ) : loop on u , Monte Carlo

Direct approaches to optimization with uncertainties have a double 
loop : propagate uncertainties on U, optimize on x. 

Such a double loop is very costly (more than only propagating 
uncertainties or optimizing, which are already considered as costly) ! 
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2.1. kriging-based average minimization : preamble 
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J. Janusevskis and R. Le Riche, Simultaneous kriging-based estimation and 
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D. Jones, M. Schonlau and W. J. Welch, Efficient global optimization of expensive 
functions, J. of Global Optimization, 1998.

Dubourg, V., Sudret, B. and Bourinet, J.-M., Reliability-based design optimization using 
kriging and subset simulation, Struct. Multidisc. Optim, accepted for publication, 2011.

E. Vazquez, J. Villemonteix, M. Sidorkiewicz and E. Walter, Global optimization based 
on noisy evaluations: an empirical study of two statistical approaches, 6th Int. Conf. on 
Inverse Problems in Engineering, 2010.

J. Bect, IAGO for global optimization with noisy evaluations, workshop on noisy kriging-
based optimization (NKO), Bern, 2010.



26

2.1. kriging-based average minimization : preamble 

Avoiding the double loop scenario

Assumptions : x and U controlled

Only one loop of f

(x,u) surrogate based 
approach

STAT [Y (x ,U )]

Y (x ,u)

f (x , u)(x , u)

Simulator

Optimizer

Direct approach

Multiplicative cost of two loops involving f

Monte Carlo
simulations

f x ,uu

Simulator

Y (x )

STAT [ f (x ,U )]+εx

Optimizer of 
noisy functions

Y :  surrogate model
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2.2. kriging-based average minimization : 

Estimation of the average

E [Y  x ,U ]

Y x , u

f  x ,u  x , u

Simulator

1. Building internal representation of 
the objective (mean performance) by 
«integrated» kriging.

Optimizer

Assumptions : x and U controlled, U normal. 

Y :  kriging model
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2.2. kriging-based average minimization : average estimation

Integrated kriging (1)

: objective

 objective

E[Z x ]

EU [ f x ,U ]

u

x

u approximation

integrate 

: kriging approximation to deterministic

:   integrated process 
  approximation to 
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2.2. kriging-based average minimization : average estimation

Integrated kriging (2)

-probability measure on U

The integrated process over U is defined as

Because it is a linear transformation of a Gaussian process, it is Gaussian, 
and fully described by its mean and covariance

Analytical expressions of m
Z
 and cov

Z
 for Gaussian U's are given in 

J. Janusevskis, R. Le Riche.  Simultaneous kriging-based sampling for optimization and 
uncertainty propagation, HAL report: hal-00506957
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2.3. kriging-based average minimization :

Simultaneous optimization and sampling (2)

E [Y  x ,U ]

Y x , u

f  x ,u  x , u

Simulator

1. Building internal representation of 
the objective (mean performance) by 
«projected» kriging.

Optimizer

2. Simultaneous sampling and 
optimization criterion for x and u
(both needed by the simulator to calculate f)
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2.3. kriging-based average minimization : simult. opt. and sampling

EI on the integrated process (1)

Z is a process approximating the objective function 

Optimize with an Expected Improvement criterion,

where,

I Z(x)=max (zmin−Z (x),0) , but zmin not observed (in integrated space).

⇒  Define zmin = min
x

1,… , x
t

E ( Z (x))
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2.3. kriging-based average minimization : simult. opt. and sampling

EI on the integrated process (2)

zmin

E[Z x ]

EU [ f x ,U ]

E[Z x ]STD [Z x]
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2.3. kriging-based average minimization : simult. opt. and sampling

EI on the integrated process (3)

x ok. What about u ? (which we need to call the simulator)

EU
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2.3. kriging-based average minimization : simult. opt. and sampling

Method

xnext gives a region of interest from an optimization of the expected f 
point of view. 

One simulation will be run to improve our knowledge of this region 
of interest → one choice of (x,u).

Choose (xt+1,ut+1) that provides the most information, i.e., which 
minimizes the variance of the integrated process at xnext

(no calculation details, cf. article. Note that VAR of a Gaussian process 
does not depend on f values but only on x's ).
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2.3. kriging-based average minimization : simult. opt. and sampling

Illustration

EU
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2.3. kriging-based average minimization : simult. opt. and sampling

Algorithm

( 4 sub-optimizations, solved with CMA-ES )

Create initial DOE in (x,u) space;

While stopping criterion is not met:

● Create kriging approximation Y in the joint space 

● Calculate the mean and covariance of Z from those of Y 

● Minimize EI of Z to choose

● Minimize       to obtain the next point                   for 
simulation

● Calculate simulator response at the next point 

x
next 

VAR Z x
next 

f x
t 1

, u
t1

x ,u 

x
t1

, u
t 1
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2.3. kriging-based average minimization : simult. opt. and sampling

2D Example

 DOE and E [Y x ,u]

EU [ f x ,U ]

VARΩ[Z (x)(ω)]

test function

E[Z x ]

EI Z x 
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2.3. kriging-based average minimization : simult. opt. and sampling

1st iteration

 DOE and E [Y x , u]

− x
t 1

, u
t1

− x
next

,

EU [ f x ,U ]

E[Z x ]

VAR [Z x]

EI Z x 



39

2.3. kriging-based average minimization : simult. opt. and sampling

2nd iteration

 DOE and E [Y x ,u]

− x
t 1

, u
t1

− x
next

,

EU [ f x ,U ]

E[Z x ]

VAR [Z x]

EI Z x 
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2.3. kriging-based average minimization : simult. opt. and sampling

3rd iteration

 DOE and E [Y x ,u]

VAR [Z xnext] x , u

EU [ f x ,U ]

E[Z x ]

VAR [Z x]

EI Z x 
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2.3. kriging-based average minimization : simult. opt. and sampling

5th iteration

 DOE and E [Y x , u]

− x
t 1

, u
t1

− x
next

,

EU [ f x ,U ]

E[Z x ]

VAR [Z x]

EI Z x 
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2.3. kriging-based average minimization : simult. opt. and sampling

17th iteration

 DOE and E [Y x ,u]

EU [ f x ,U ]  and E [Z x]

VAR [Z x]
EI Z x 
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2.3. kriging-based average minimization : simult. opt. and sampling

50th iteration

 DOE and E [Y x ,u]

EU [ f x ,U ]  and E [Z x]

VAR [Z x]EI Z x 
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2.3. kriging-based average minimization : simult. opt. and sampling

Comparison tests

Compare « simultaneous opt and sampling » method to

1. A direct MC based approach : 
EGO based on MC simulations in f with fixed number of runs, s. 
Kriging with homogenous nugget to filter noise.

2. An MC-surrogate based approach : 
the MC-kriging algorithm.
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2.3. kriging-based average minimization : simult. opt. and sampling

Test functions

f (x)=−∑
i=1

n

sin(x i)[sin(ix i

2/π)]2

f x ,u=f x f u

Test cases based on Michalewicz function 

nx=1 nu=1 μ=1.5 σ=0.2

nx=2 nu=2 μ=[1.5 , 2.1] σ=[0.2, 0.2]

nx=3 nu=3 μ=[1.5 , 2.1 , 2] σ=[0.2 , 0.2 , 0.3]

2D:

4D:

6D:
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2.3. kriging-based average minimization : simult. opt. and sampling

Test results

6D Michalewicz test case, n
x
 =3 , n

U
 =3 .

Initial DOE: RLHS , m=(n
x
+n

U
)*5 = (3+3)*5 = 30;

10 runs for every method.

Simult. opt & sampl.

MC-kriging

EGO + MC on f , s=3 , 5 , 10
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Sequential kriging-based methods for reliability 
estimation and optimization : concluding remarks

Kriging provides a rich framework to define iterative 
sampling strategies for reliability estimation and 
optimization.

Of course, still a long way to go : 

Small step ; properly handle the « ideal formulation » 
(quantiles and coupled reliability constraints).

Large step ; high dimensions, large number of points, 
what is the effect of kriging parameters, instationary kriging.
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