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Intro : uncertainties and optimization

Models and working conditions are partially unknown - uncertainties.
These uncertainties need to be taken into account during design.

Ex : a +/- Imm dispersion in the manufacturing of
the air admission line can degrade the engine's
performance (g CO2/km) by +20% (worst case).

Working assumption : uncertainties can be described by random
parameters of the models.




Optimization terminology (1)

Model or « simulator », y, (analytical, finite elements,
coupled sub-models ...) of the object you need to optimize.

Formulation of the optimization problem

, x : optimization variables
min f(y(x)) f : objective functions
g(y(x))<0 g : optimization constraints
f ,g : optimization (performance) criteria




Optimization terminology (2) :
the double (x,U) parameterization for uncertainties

X is a vector of deterministic optimization (controlled) variables.

x in S, the search space.

Without loss of generality, introduce U, a vector of uncertain

(random) parameters that affect the simulator y. U (Q,C,P) — 5,

y(x) - y(xU) , therefore f(x) - f(y(x,U)) = f(x,U)
and g(x) - g(v(x,U)) = g(x,U)

U used to describe
= noise (as in identification with noise measurement)

= model error (epistemic uncertainty)
= uncertainties on the values of some parameters of y.

G. Pujol, R. Le Riche, O. Roustant and X. Bay, L'incertitude en conception: formalisation, estimation,
Chapter 3 of the book Optimisation Multidisciplinaire en Mécaniques : réduction de modeles, robustesse,

fiabilité, réalisations logicielles, Hermes, 2009.




Ideal formulation of optimization with uncertainties

Replace the noisy optimization criteria by statistical measures

OK (x) is the random event "all constraints are satisfied"
OK(x) = N{g;(x,U)<0]

min g5(x) (conditional a-quantile)

xXeS

such that P(OK(x)|> 1—¢
where P|f(x,U)<qi(x)| OK(x)| = o
e>0 , small




Outline of the talk

Two sub-problems addressed in this talk.

1. Estimation of reliability constraints

Failure probability : P, = Prob(g(U)>T)

(notation here : x fixed so g(x,U)<0—g(U)<T)

2. Optimization with uncertainties

Average minimization : min E,[f(x,U)|

xeScRR"

Unifying thread : iterative kriging strategies. Start by
Introducing kriging.




Kriging : quick intro (1)

(presentation only with f(x) , but generalizes to f(x,u) and g(x) or g(x,u) when
needed)

i 5 _black circles : observed values , f(x%), ..., f(x}), with heterogeneous noise
(intervals).

Noise is Gaussian and independent at each point (nugget effect),
variances 0%, ... , 07°.

Assume : the blue
curves are possible
underlying true
functions.

They are instances of
stationary Gaussian
processes Y(x) -
fully characterized by
their average uy and
their covariance,

Cov|Y (x),Y (x')|=Fct,|dist(x,x"))

0 0.1 0.2 0.3 0.4 0.9 0.6 0.7

0 learned from data , (x',f(x'))
space x




Kriging : quick intro (2)

[Y(X)If(x),. f ()]
Y'(x) ~ N(mK(x),si(x)) (simple kriging)

Kriging average : my(x)=u+c (x)C, '(f—u1l)
. . 5 57 where
Kriging variance : si(x) = o0°—c' (x)C, 'c(x)
c(x) = |Cov(Y (x),Y (x)|_,,
C,=C+A

C = {Cov(Y(xi),Y(xj))]i,j
A = diag[d; , ..., §/]

1 1 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

space x




Iterative sampling based on kriging
for reliability estimation

Goal : estimate the failure probability, P, = Prob( g(U) > T)
while sparingly calling g(.) (g is expensive)

1. Build a kriging-based approximation to g(.) — m,/(.)

> _ 1

2. Use itin a MC procedure : P, = g I(m,(u')>T) ,

where u' ~ pdf of U

Question : how to choose a small number of u's to
approximate well P, ?




Approximation of a target region

Idea : a global accuracy of the metamodel, m,(), is not needed.
It needs to be accurate when g(u)~T

[ V. Picheny, D. Ginsbourger, O. Roustant, R.T. Haftka and N.-H. Kim, Adaptive
designs of experiments for accurate approximation of a target region », Journal of
Mechanical Design, 2010. ]
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Approximation of a target region - Example (1/2)

i O Observations

Kriging based on a uniform design of experiments :
* reasonable variance everywhere,
e large errors in the target region.

True function

— Kriging mean
— - — Confidence intervals ‘*\

----- Threshold o
l I I l l l I l I

0.1 0.2 0.3 0.4 0.5 0.b 0.7 0. 0.9 1
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Approximation of a target region — Example (2/2)

Customized design
e large variance in non target regions,
e good accuracy in the target region.
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Approximation of a target region - Criterion (1/2)

Target region: U, = |u€S, s.t. |g(u)-T|<¢|
Ideal criterion : integration of variance over U, only,

[ st(u)r(u,)du

251 True function
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BUT U, is unknown ! .




Approximation of a target region - Criterion (2/2)

Replace I(U

) by E(I(U,)) = Prob(ueU,) = Prob(|Y (u)—T| < ¢)
where Y(.)

IS the conditional Gaussian process.

The weight in the integral becomes

T+e— T—e—
W.(u) = Prob(ueU,) = ® e —m(u) _ e —my (u)
Sic(u) s (u)
i - 1 2
The criterion : IMSE . = 2_ef SK(U)WS(UMU

W, (u)
: = |im —&
AN : W (x) lim =

W (.) islarge when 1) Y is near the target region;
2) s.() is large.

=dy (.52 T) -+ the kriging density.
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Approximation of a target region - lllustration

True process and Kriging predictar

True process
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Approximation of a target region — Algorithm

 Create an initial design (u's), compute the associated g's.
* Do

- Estimate the kriging parameters,

- Find the next iterate, minimizer of the one step ahead IMSE_

u' = arg min [ si(u|v,u) W(u|u,g(u)) du
VESU —

- Calculate g(u*), add (u*,g(u*)) to (u,g(u)) .

e Until max iterations reached

16




Approximation of a target region — 2D example

A 2D example (Camelback function)
Target region g(u,,u,) = 1.3
Look at the DoE after 11 iterations

Camelback function Kriging expectation
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Approximation of a target region — 2D example

Evolution of kriging target contour lines
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Approximation of a target region — 2D example

Application to the estimation of a failure probability :
Prob|g(u,,u,)>1.3] with u,,u, i.i.d. N(0,0.028°)

-0.5 <
=1

=1 -0.5 0 0.5

DoE Full Factorial Optimal without in- Optimal with input Probability  esti-
put distribution distribution mate based on 10’
MCS
Probability of fail- 0.17 0.70 0.77 0.75
ure (%)
Relative error 77 % T % 3 %
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Kriging error

Good results in a numerical comparison of 4 methods (Ling Li, UCM
2010, Sheffield) along with Stepwise Uncertainty Reduction method.

0.4}

Approximation of a target region — other results
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A 6D example (GP sample with linear trend and Gaussian covariance)
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2nd part of the talk

1. Estimation of reliability constraints
Failure probability : P, = Prob(g(U)>T)

2. Optimization with uncertainties

Average minimization : min E,[f(x,U)|

xe€ScRR"

2.1. Preamble : expected improvement, ...
2.2. Estimation of the average
2.3. Simultaneous optimization and sampling

21



2.1. kriging-based average optimization : preamble
Expected Improvement criterion (1)

A sampling criterion for global optimization
without noise :

Improvement at x , I(x)=max(y,. —Y(x),0)

The expected improvement, E/(x) , can be
analytically calculated.

El increases when m, decreases and when
S, Increases. El(x) quantifies the

exploration-exploitation compromise of
global optimization.

. U‘IW ufz O‘IS -0‘I4 0‘I5 0‘I6 | 0.I7 U,IB U,I9 II
|mprovement mstance, |
Elcriterion




2.1. kriging-based average optimization : preamble
Expected Improvement criterion (2)

EGO algorithm (Efficient Global
Optimization), D. Jones, 1998 :

while computation budget not exhausted

Next iterate :  x"** = max El(x)

Update kriging with x™*!

(cannot be applied directly to noisy functions)

. U‘IW ufz U‘IS -0‘I4 0‘I5 0‘I6 | 0.I7 U,IB U,IQ II
|mprovement mstance, |
Elcriterion




2.1. kriging-based average minimization : preamble
the direct approach to average minimization

x and u can be chosen before calling the simulator and calculating the
objective function. This is the general case.

f
> simulator > f(x,u)

X
u

Direct approaches to optimization with uncertainties have a double
loop : propagate uncertainties on U, optimize on x.
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e

—» Optimization : loop on x

— Estimation of the performance f “
(average, std dev, percentile of
— f(x,U) ):looponu, Monte Carlo "

Such a double loop is very costly (more than only propagating
uncertainties or optimizing, which are already considered as costly) !
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2.1. kriging-based average minimization : preamble
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2.1. kriging-based average minimization : preamble
Avoiding the double loop scenario

Assumptions : x and U controlled
Y : surrogate model

(x,u) surrogate based

Direct approach approach
Optimizer of Optimizer
noisy functions
N ~ Y(x,u)
Y (x) |
X | [ Wonte cario STAT[f (x,U)]+e STAT[Y (x,U)]
simulations
o Treew x| [
Simulator Simulator

Multiplicative cost of two loops involving f Only one loop of f ”




2.2. kriging-based average minimization :
Estimation of the average

Assumptions : x and U controlled, U normal.
Y : kriging model

Optimizer

| Y (x,u) I

| l | 1. Building internal representation of
| | the objective (mean performance) by
l E|Y(x,U)] , «integrated» kriging.

Simulator

27




2.2. kriging-based average minimization : average estimation

Integrated kriging (1)

min Ey | f(z, U)]: objective

Z

Y(‘;’u)(w) : kriging approximation to deterministic  f(z,u)

ZE“L{L,) (w) =Ey [EQZU)(w)] : integrated process [ [f(xz,U)]
approximation to

integrate
e,

E () 2.51
approximation > gl
E,lZ —
ol (x)<(’0)] 1 5
/ Z
1.07

Q [z, u) 0'5{\ .

N / objective E,[f(x,U)] %7
100 0806 0402 00 02 04 06 08 10 -0.5 _

X 71.0-0.8-0.6-0.4-0.2 0.0 0.2 0.4 0.6 0.8 1.0
€T




2.2. kriging-based average minimization : average estimation

Integrated kriging (2)

The integrated process over U is defined as
(" )

\

dp(w) -probability measure on U

Because it is a linear transformation of a Gaussian process, it is Gaussian,
and fully described by its mean and covariance

ma(a) = [ my (@ u)duu)
covg(x;x') = /m /m covy (x,u; x'u ) dp(uw)dp(u’)

Analytical expressions of m, and cov, for Gaussian U's are given in

J. Janusevskis, R. Le Riche. Simultaneous kriging-based sampling for optimization and

uncertainty propagation, HAL report: hal-00506957 -




[
I
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|

2.3. kriging-based average minimization :

Simultaneous optimization and sampling (2)

Optimizer

Y(x,u)

'

E|Y(x,U)]

f

(x,u) f(x,U):

Simulator

2. Simultaneous sampling and
optimization criterion for x and u
(both needed by the simulator to calculate f)
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2.3. kriging-based average minimization : simult. opt. and sampling
El on the integrated process (1)

Z is a process approximating the objective function E¢|f(x, U)]
Optimize with an Expected Improvement criterion,

[ 2" = arg max EIZ(x)]

where,

Iz(x)zmax( z,. —Z(x),0) , butz_ notobserved (in integrated space).
= Define z,,, = min E( X))
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2.3. kriging-based average minimization : simult. opt. and sampling
El on the integrated process (2)

3.5
30;
25;
20;
15;
LO;
Zpnin 2]
0.0

-0.5

1.0-0.8-0.6-0.4-0.2 0.0 0.2 0.4 0.6 0.8 1.0
€T

l?[z(x)

X

L-.0—0.8-0.6-0.4—0.2 0.0 0.2 0.4 0.6 0.8 1.0

next
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2.3. kriging-based average minimization : simult. opt. and sampling
El on the integrated process (3)

-1 -0.8-0.6-0.4-0.2 D 02040008 1
< 'E> next

""" = argmax EIL(x)

x ok. What about u ? (which we need to call the simulator)
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2.3. kriging-based average minimization : simult. opt. and sampling

Method

x"t gives a region of interest from an optimization of the expected f
point of view.

One simulation will be run to improve our knowledge of this region
of interest — one choice of (x,u).

Choose (x**,u**!) that provides the most information, i.e., which
minimizes the variance of the integrated process at x™

[(a;tH, w't) = argmin VAR Zf;nlewt)(w)]

(no calculation details, cf. article. Note that VAR of a Gaussian process
does not depend on f values but only on x's ).
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2.3. kriging-based average minimization : simult. opt. and sampling
lllustration

1" = argmax ET,(x)
£

(z* ) = argmin VAR Z74L L (w)

(mnemt)

1-080604-02 0 02040608 1

QS
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2.3. kriging-based average minimization : simult. opt. and sampling

Algorithm

Create initial DOE in (Xx,u) space;
While stopping criterion is not met:

 Create kriging approximation Y in the joint space (x,u)

Calculate the mean and covariance of Z from those of Y

Minimize EIl of Z to choose (x"™)

for

t+1 t+1)

Minimize VAR(Z(x™")) to obtain the next point (x'"",u
simulation

Calculate simulator response at the next point f(x'"',u™")

( 4 sub-optimizations, solved with CMA-ES) 36
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2.3. kriging-based average minimization : simult. opt. and sampling

2D Example

DOE and E|Y (x,u)]

0.967
0.941
0.92]
0.901
0.88]
0.861

0.841

u

O.8_2i

.0-0.8-0.6-0.4-0.20.0 0.2 0.4 0.6 0.8 1.0

3.0
2.5
2.0]
1.5]
1.0
0.5
0.0

03508060402 o('.o 0.2 0.4 0.6 0.8 1.0

r

test function

1.07 foow
0_87 052

0.6
0.4
0.2
0.0
-0.24
0.41
0.6
-0.8 N

-1.0 : : ‘ : : : : : : -
1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
€Xr

/
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U

Q.57

U.tS‘_
0.7
0.6
0.5
0.4
0.31
0.2
0.1+,
0.0-

2.3. kriging-based average minimization : simult. opt. and sampling

1st iteration

DOE and E{\%
o N

1.0-08-06-04-02000204 0608 1.0
T

3.0
2.5
2.0
1.5]
1.01
0.5-

0.0

0 08.060402000204 0608 L0
.£r

VAR, [Z(x)<(0)]
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2.3. kriging-based average minimization : simult. opt. and sampling

2nd iteration

DOE and E[Y (x,u)]

U

-0.57

-1.0

0.257
0.20]
0.15-
0.101

0.051

000 8060402000204 0608 1.0
T

02 0208-06-040.2 0.0 0.2 0.4 0.6 0.8 1.0

2.5

1.5]

0.5

2.0
1.0-

0.0

r

% . (Xnext’u)
* . (XHl,qu)
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2.3. kriging-based average minimization : simult. opt. and sampling
3rd iteration

DOE and E|[Y (x,u)] 2.5
2.0
1.5
= 1.0
0.5
0.0
71.0-0.8-0.6-0.4-0.2 0.0 0.2 0.4 0.6 0.8 1.0
X
0.7, VAR|Z (xnext)](x,u)
0.6
0.5 ,.0006
0.4l 1.0005
T .0004
0.3 1.0003
0.2 .0002
] .0G 35
0.1 0
0.0+ e —
-1.0-0.8-0.6-0.4-0.2 0.0 0.2 0.4 0.6 0.8 1.0
xr
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2.3. kriging-based average minimization : simult. opt. and sampling
5th iteration

DOE and E[Y (x,u)]

2.5
2.0
1.5]
= 1.0
0.5
0.0
] \ EU[f<X)U)]
1.0 0.5 o}o 05 1.0 03 008.06-04-02000204060810
€I xr
0.6
0.5
0'4_: next
0.3 <= (X"
T * t+1 t+1
0.2_' _ (X ,u )
0.1]
0.0

71.0-0.8-0.6-0.4-0.2 0.0 0.2 0.4 0.6 0.8 1.0
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2.3. kriging-based average minimization : simult. opt. and sampling

17th iteration

DOE and E[Y (x,u)]

U

-0.57 \/\_/
-1.01m , , =

0.045 |
0.0401 I
0.035;
0.030; i
)

0.025;

0.0201
0.015 |

0.010f
0.005- li
0.000

T T —T T

51.0-0.8-0.6-0.4-020.0 0.2 0.4 0.6 0.8 1.0
r

-0.51

1.07

0.51

0.0

-1.0-0.8-0.6-0.4-0.20.0 0.2 0.4 0.6 0.8 1.0
€T
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1.0

0.57

U

0.0

-0.57

-1.01m”

2.3. kriging-based average minimization : simult. opt. and sampling

50th iteration

DOE and E|Y (x,u)]

0.0050
0.0045-
0.00401
0.00351
0.0030;
0.00251
0.00201
0.00151
0.00101
0.0005

VAI

0.0000

L

-1.0-0.8-0.6-0.4-0.20.0 0.2 0.4 0.6 0.8 1.0

-0.57

1.07

0.5

0.0

-1.0-0.8-0.6-0.4-0.20.0 0.2 0.4 0.6 0.8 1.0
€T
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2.3. kriging-based average minimization : simult. opt. and sampling
Comparison tests

Compare « simultaneous opt and sampling » method to

1. A direct MC based approach :
EGO based on MC simulations in f with fixed number of runs, s.
Kriging with homogenous nugget to filter noise.

2. An MC-surrogate based approach :
the MC-kriging algorithm.
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2.3. kriging-based average minimization : simult. opt. and sampling
Test functions

Test cases based on Michalewicz function
f(x)==2,_, sin(x)[sin(ix;/x)}
f(x,u)=f(x)+f(u)

2D: n,=1 n=1 u=15 ¢=0.2

AD: n =2 n,=2 u=[15, 2.1] 0=[0.2, 0.2]

6D: n,=3 n,=3 u=[15, 2.1, 2] 0=[0.2, 0.2, 0.3]

0.0 -0.0 -0.0;
0.1 -0.11 -0.1
02 03 03
02 0.4 0.4
0'5' = -0.51 = -0.5
e -0.6; -0.6;
0.6 -0.7] 0.7
0.7 -0.8 -0.8;
0.8 -0.9; -0.9;
03005101520253035 '18005101520253035 '18005101520253035
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2.3. kriging-based average minimization : simult. opt. and sampling
Test results

6D Michalewicz test case, n =3 ,n,=3.
Initial DOE: RLHS , m=(n_+n )*5 = (3+3)*5 = 30;
10 runs for every method.

2.5
h
20
* e ] rc
8 RN EGO+MConf,s=3,5,10
| 1.5 !,‘
E i :‘?ﬁ
SARR o -
o "W MC-kriging
0 07 | - - — Simult. opt & sampl.
' 50 100 150 200 250 300

number of simulator calls
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Sequential kriging-based methods for reliability
estimation and optimization : concluding remarks

Kriging provides a rich framework to define iterative
sampling strategies for reliability estimation and
optimization.

Of course, still a long way to go :

Small step ; properly handle the « ideal formulation »
(quantiles and coupled reliability constraints).

Large step ; high dimensions, large number of points,
what is the effect of kriging parameters, instationary kriging.
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