Sequential approaches to reliability estimation and optimization based on kriging

Victor Picheny1, Rodolphe Le Riche^{2,3} and Olivier Roustant³ ¹ CERFACS ;² CNRS ; ³ Ecole des Mines de Saint-Etienne

GDR Mascot Num 2012, Paris

Intro : uncertainties and optimization

Models and working conditions are partially unknown \rightarrow uncertainties. These uncertainties need to be taken into account during design.

Ex : a +/- 1mm dispersion in the manufacturing of the air admission line can degrade the engine's performance (g CO2/km) by +20% (worst case).

Working assumption : uncertainties can be described by random parameters of the models.

Model or « simulator », *y* , (analytical, finite elements, coupled sub-models ...) of the object you need to optimize.

Formulation of the optimization problem

 $\begin{array}{ll} \min_{x \in S} f(y(x)) & x: \text{optimization variables} \\ g(y(x)) \leqslant 0 & f: \text{objective functions} \\ g: \text{optimization constraints} \\ f, g: \text{optimization (performance) criteria} \end{array}$

Optimization terminology (2) : the double (x,U) parameterization for uncertainties

x is a vector of deterministic optimization (controlled) variables. x in S, the search space.

Without loss of generality, introduce *U*, a vector of uncertain (random) parameters that affect the simulator *y*. $U : (\Omega, C, P) \rightarrow S_U$

 $y(x) \rightarrow y(x,U)$, therefore $f(x) \rightarrow f(y(x,U)) = f(x,U)$ and $g(x) \rightarrow g(y(x,U)) = g(x,U)$

U used to describe

- noise (as in identification with noise measurement)
- model error (epistemic uncertainty)
- uncertainties on the values of some parameters of *y*.

G. Pujol, R. Le Riche, O. Roustant and X. Bay, *L'incertitude en conception: formalisation, estimation,* Chapter 3 of the book *Optimisation Multidisciplinaire en Mécaniques : réduction de modèles, robustesse, fiabilité, réalisations logicielles*, Hermes, 2009.

Ideal formulation of optimization with uncertainties

Replace the noisy optimization criteria by statistical measures

OK(x) is the random event "all constraints are satisfied", $OK(x) = \bigcap_{i} \{g_i(x, U) \leq 0\}$

 $\begin{array}{ll} \underset{x \in S}{\min} \ q_{\alpha}^{c}(x) & (\text{conditional } \alpha \text{-quantile}) \\ \text{such that} & P(OK(x)) \geqslant 1 - \varepsilon \\ & \text{where} \quad P(f(x, U) \leqslant q_{\alpha}^{c}(x) \mid OK(x)) = \alpha \\ & \varepsilon > 0 \ , \ \text{small} \end{array}$

Two sub-problems addressed in this talk.

1. Estimation of reliability constraints

Failure probability :
$$P_f = Prob(g(U) > T)$$

(notation here : x fixed so $g(x, U) \le 0 \rightarrow g(U) \le T$)

2. Optimization with uncertainties

Average minimization :
$$\min_{x \in S \subset \mathbb{R}^n} E_U(f(x, U))$$

Unifying thread : iterative kriging strategies. Start by introducing kriging.

Kriging : quick intro (1)

(presentation only with f(x), but generalizes to f(x,u) and g(x) or g(x,u) when needed)

black circles : observed values , $f(x^1)$, ... , $f(x^t)$, with heterogeneous noise (intervals).

Noise is Gaussian and independent at each point (nugget effect),

Assume : the blue curves are possible underlying true functions. They are instances of stationary Gaussian processes $Y(x) \rightarrow$ fully characterized by their average μ and their covariance,

 $Cov(Y(x), Y(x')) = \mathsf{Fct}_{\theta}(\mathsf{dist}(x, x'))$ θ learned from data , $(x^i, f(x^i))$

Kriging : quick intro (2)

$$\begin{split} f(x) \text{ represented by } Y^t(x) &= [Y(x) | f(x^1), \dots, f(x^t)] \\ Y^t(x) &\sim N \big(m_K(x), s_K^2(x) \big) \quad \text{(simple kriging)} \end{split}$$

Iterative sampling based on kriging for reliability estimation

Goal : estimate the failure probability , $P_f = Prob(g(U) > T)$ while sparingly calling g(.) (g is expensive)

1. Build a kriging-based approximation to $g(.) \rightarrow m_{K}(.)$

2. Use it in a MC procedure : $\widehat{P}_f = \frac{1}{N} \sum_{i=1}^N I(m_K(u^i) > T)$, where $u^i \sim \text{pdf of } U$

Question : how to choose a small number of u's to approximate well P_f ?

Approximation of a target region

Idea : a global accuracy of the metamodel, $m_k()$, is not needed. It needs to be accurate when $g(u) \approx T$

[V. Picheny, D. Ginsbourger, O. Roustant, R.T. Haftka and N.-H. Kim, Adaptive designs of experiments for accurate approximation of a target region », Journal of Mechanical Design, 2010.]

Approximation of a target region – Example (1/2)

Kriging based on a uniform design of experiments :

- reasonable variance everywhere,
- large errors in the target region.

Approximation of a target region – Example (2/2)

Customized design

- large variance in non target regions,
- good accuracy in the target region.

Approximation of a target region – Criterion (1/2)

Approximation of a target region – Criterion (2/2)

Replace $I(U_T)$ by $E(I(U_T)) = Prob(u \in U_T) = Prob(|Y(u) - T| \le \varepsilon)$ where Y(.) is the conditional Gaussian process.

The weight in the integral becomes

$$W_{\varepsilon}(u) \equiv Prob(u \in U_{T}) = \Phi\left(\frac{T + \varepsilon - m_{K}(u)}{s_{K}(u)}\right) - \Phi\left(\frac{T - \varepsilon - m_{K}(u)}{s_{K}(u)}\right)$$

The criterion :

$$IMSE_{T} = \frac{1}{2\varepsilon} \int s_{K}^{2}(u) W_{\varepsilon}(u) du$$

AN: $W(x) \equiv \lim_{\epsilon \to 0} \frac{W_{\epsilon}(u)}{2\epsilon} = d_{N(m_{\kappa}(u), s_{\kappa}^{2}(u))}(T)$, the kriging density.

W(.) is large when 1) Y is near the target region; 2) $s_{K}(.)$ is large.

Approximation of a target region – Illustration

Approximation of a target region – Algorithm

- Create an initial design (u's), compute the associated g's.
- Do
 - Estimate the kriging parameters,
 - Find the next iterate, minimizer of the one step ahead $IMSE_{\tau}$

$$u^* = \arg \min_{v \in S_U} \int s_k^2(u \mid v, u) W(u \mid u, g(u)) du$$

- Calculate $g(u^*)$, add $(u^*,g(u^*))$ to (u,g(u)).

• Until max iterations reached

Approximation of a target region – 2D example

A 2D example (Camelback function) Target region $g(u_1, u_2) = 1.3$ Look at the DoE after 11 iterations

Approximation of a target region – 2D example

Evolution of kriging target contour lines

Approximation of a target region – 2D example

Application to the estimation of a failure probability : $Prob(g(u_1, u_2) > 1.3)$ with u_1, u_2 i.i.d. $N(0, 0.028^2)$

DoE	Full Factorial	Optimal without in- put distribution	Optimal with input distribution	Probability esti- mate based on 10 ⁷ MCS
Probability of fail- ure (%)	0.17	0.70	0.77	0.75
Relative error	77 %	7 %	3 %	

Approximation of a target region – other results

A 6D example (GP sample with linear trend and Gaussian covariance)

Good results in a numerical comparison of 4 methods (Ling Li, UCM 2010, Sheffield) along with Stepwise Uncertainty Reduction method.

1. Estimation of reliability constraints

Failure probability : $P_f = Prob(g(U) > T)$

2.1. kriging-based average optimization : preamble **Expected Improvement criterion (1)**

A sampling criterion for global optimization without noise :

Improvement at x , $I(x) = max(y_{min} - Y(x), 0)$

The expected improvement, EI(x), can be analytically calculated.

$$\begin{split} EI(x) &= s(x) \left[\left. a(x) \Phi(a(x)) + \phi(a(x)) \right] \right] , \\ a(x) &= \frac{y_{\min} - m_K(x)}{s_K(x)} \end{split}$$

EI increases when m_{κ} decreases and when s_{κ} increases. *EI(x)* quantifies the exploration-exploitation compromise of global optimization.

2.1. kriging-based average optimization : preamble **Expected Improvement criterion (2)**

EGO algorithm (Efficient Global Optimization), D. Jones, 1998 : while computation budget not exhausted Next iterate : $x^{t+1} = max_x El(x)$ Update kriging with x^{t+1}

(cannot be applied directly to noisy functions)

2.1. kriging-based average minimization : preamble the direct approach to average minimization

x and *u* can be chosen before calling the simulator and calculating the objective function. This is the general case.

Direct approaches to optimization with uncertainties have a double loop : propagate uncertainties on U, optimize on x.

Such a double loop is very costly (more than only propagating uncertainties or optimizing, which are already considered as costly) !

2.1. kriging-based average minimization : preamble bibliography

Based on

J. Janusevskis and R. Le Riche, *Simultaneous kriging-based estimation and optimization of mean response*, J. of Global Optimization, Springer, published online in Jan. 2012

Other related works :

D. Jones, M. Schonlau and W. J. Welch, *Efficient global optimization of expensive functions*, J. of Global Optimization, 1998.

Dubourg, V., Sudret, B. and Bourinet, J.-M., *Reliability-based design optimization using kriging and subset simulation,* Struct. Multidisc. Optim, accepted for publication, 2011.

E. Vazquez, J. Villemonteix, M. Sidorkiewicz and E. Walter, *Global optimization based on noisy evaluations: an empirical study of two statistical approaches*, 6th Int. Conf. on Inverse Problems in Engineering, 2010.

J. Bect, *IAGO for global optimization with noisy evaluations,* workshop on noisy krigingbased optimization (NKO), Bern, 2010.

2.1. kriging-based average minimization : preamble Avoiding the double loop scenario

Assumptions : x and U controlled

Y : surrogate model

2.2. kriging-based average minimization : Estimation of the average

Assumptions : *x* and *U* controlled, *U* normal.

Y : kriging model

1. Building internal representation of the objective (mean performance) by «integrated» kriging.

2.2. kriging-based average minimization : average estimation Integrated kriging (1)

2.2. kriging-based average minimization : average estimation Integrated kriging (2)

The integrated process over U is defined as

$$Z_{(x)}(\omega) = \mathbb{E}_U[Y_{(x,U)}^t(\omega)] = \int_{\mathbb{R}^m} Y_{(x,u)}^t(\omega) d_\mu(u)$$

 $d\mu(u)$ -probability measure on U

Because it is a linear transformation of a Gaussian process, it is Gaussian, and fully described by its mean and covariance

$$m_Z(x) = \int_{\mathbb{R}^m} m_Y(x, u) d\mu(u)$$
$$cov_Z(x; x') = \int_{\mathbb{R}^m} \int_{\mathbb{R}^m} cov_Y(x, u; x'u') d\mu(u) d\mu(u')$$

Analytical expressions of m_z and cov_z for Gaussian U's are given in J. Janusevskis, R. Le Riche. Simultaneous kriging-based sampling for optimization and uncertainty propagation, HAL report: hal-00506957

2.3. kriging-based average minimization : Simultaneous optimization and sampling (2)

1. Building internal representation of the objective (mean performance) by «projected» kriging.

2. Simultaneous sampling and optimization criterion for x and u(both needed by the simulator to calculate f)

2.3. kriging-based average minimization : simult. opt. and sampling El on the integrated process (1)

Z is a process approximating the objective function $\mathbb{E}_U[f(x, U)]$ Optimize with an Expected Improvement criterion,

$$x^{next} = \arg\max_{x} EI_Z(x)$$

where,

 $I_{Z}(x) = max(z_{min} - Z(x), 0)$, but z_{min} not observed (in integrated space). \Rightarrow Define $z_{min} = \min_{x^{1}...,x^{t}} E(Z(x))$

2.3. kriging-based average minimization : simult. opt. and sampling El on the integrated process (2)

2.3. kriging-based average minimization : simult. opt. and sampling El on the integrated process (3)

x ok. What about u ? (which we need to call the simulator)

 x^{next} gives a region of interest from an optimization of the expected f point of view.

One simulation will be run to improve our knowledge of this region of interest \rightarrow one choice of (*x*,*u*).

Choose (x^{t+1}, u^{t+1}) that provides the most information, i.e., which minimizes the variance of the integrated process at x^{next}

$$(x^{t+1}, u^{t+1}) = \arg\min_{x, u} \mathbb{VAR} \ Z^{t+1}_{(x^{next})}(\omega)$$

(no calculation details, cf. article. Note that VAR of a Gaussian process does not depend on f values but only on x's).

2.3. kriging-based average minimization : simult. opt. and sampling Illustration

2.3. kriging-based average minimization : simult. opt. and sampling Algorithm

Create initial DOE in (x,u) space;

While stopping criterion is not met:

- Create kriging approximation Y in the joint space (x, u)
- Calculate the mean and covariance of *Z* from those of *Y*
- Minimize El of Z to choose (x^{next})
- Minimize $VAR(Z(x^{next}))$ to obtain the next point (x^{t+1}, u^{t+1}) for simulation
- Calculate simulator response at the next point $f(x^{t+1}, u^{t+1})$

(4 sub-optimizations, solved with CMA-ES)

2.3. kriging-based average minimization : simult. opt. and sampling **2D Example**

37

2.3. kriging-based average minimization : simult. opt. and sampling 1st iteration

2.3. kriging-based average minimization : simult. opt. and sampling **2nd iteration**

2.3. kriging-based average minimization : simult. opt. and sampling **3rd iteration**

2.3. kriging-based average minimization : simult. opt. and sampling **5th iteration**

41

2.3. kriging-based average minimization : simult. opt. and sampling **17th iteration**

2.3. kriging-based average minimization : simult. opt. and sampling **50th iteration**

Compare « simultaneous opt and sampling » method to

1. A direct MC based approach :

EGO based on MC simulations in *f* with fixed number of runs, *s*. Kriging with homogenous nugget to filter noise.

2. An MC-surrogate based approach : the MC-kriging algorithm.

2.3. kriging-based average minimization : simult. opt. and sampling **Test functions**

Test cases based on Michalewicz function

$$f(x) = -\sum_{i=1}^{n} \sin(x_i) [\sin(ix_i^2/\pi)]^2$$
$$f(x, u) = f(x) + f(u)$$

2D:
$$n_x = 1$$
 $n_u = 1$ $\mu = 1.5$ $\sigma = 0.2$
4D: $n_x = 2$ $n_u = 2$ $\mu = [1.5, 2.1]$ $\sigma = [0.2, 0.2]$
6D: $n_x = 3$ $n_u = 3$ $\mu = [1.5, 2.1, 2]$ $\sigma = [0.2, 0.2, 0.3]$

2.3. kriging-based average minimization : simult. opt. and sampling **Test results**

6D Michalewicz test case, $n_x = 3$, $n_u = 3$. Initial DOE: RLHS, $m=(n_x+n_u)*5 = (3+3)*5 = 30$; 10 runs for every method.

Sequential kriging-based methods for reliability estimation and optimization : concluding remarks

Kriging provides a rich framework to define iterative sampling strategies for reliability estimation and optimization.

Of course, still a long way to go :

Small step ; properly handle the « ideal formulation » (quantiles and coupled reliability constraints).

Large step ; high dimensions, large number of points, what is the effect of kriging parameters, instationary kriging.