Learning of multi-fidelity data with a mixture of Gaussian processes

Matthias De Lozzo^{1,2} & Loïc Le Gratiet^{3,4}

¹ONERA (DTIM), Toulouse

²EPSILON - ALCEN, Toulouse

³Université Paris Diderot, Paris

⁴CEA, DAM, DIM, Arpajon

Discussion on multi-fidelity simulators, GdR MASCOT-NUM May 17th, 2013, Institut Henri Poincaré, Paris

1 Surrogate modelling with low and high fidelity data

2 Mixture of Gaussian processes

-

1 Surrogate modelling with low and high fidelity data

2 Mixture of Gaussian processes

3 Perspectives

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Surrogate modelling with multi-fidelity data I

The goal

Predict the output of a high fidelity but time-consuming input-output system $z(\mathbf{x})$.

/□ ▶ < 글 ▶ < 글

Surrogate modelling with multi-fidelity data I

The goal

Predict the output of a high fidelity but time-consuming input-output system $z(\mathbf{x})$.

The way

Statistical learning of inputs-output observations coming from sources with **different levels of fidelity**:

- fine models ;
- degraded versions of the fine models;
- physical reduced models;
- experimental measurements; ...

 \Rightarrow one of them is the reference model z(x) to replace.

イロト イポト イヨト イヨト

Surrogate modelling with multi-fidelity data II

Industrial application (EPSILON - ALCEN)

- A switchgear cubicle with:
 - electrical and electronic components warming up;
 - a cooling system \Rightarrow 2 main types of behavior: forced and free convections.

Surrogate modelling with multi-fidelity data II

Industrial application (EPSILON - ALCEN)

- A switchgear cubicle with:
 - electrical and electronic components warming up;
 - a cooling system \Rightarrow 2 main types of behavior: forced and free convections.
- 1 output = Temperature of the three phase coil

4 inputs = Pression + Ambient temperature + Intensity + Airflow

Surrogate modelling with multi-fidelity data II

Industrial application (EPSILON - ALCEN)

- A switchgear cubicle with:
 - electrical and electronic components warming up;
 - a cooling system \Rightarrow 2 main types of behavior: forced and free convections.
- $1 \ output = {\sf Temperature of the three phase coil}$

4 inputs = Pression + Ambient temperature + Intensity + Airflow

 High-Fidelity Model = 3D numerical model based upon physical equations
 Low-Fidelity Models = compact thermal models based upon a thermal-electrical analogy

Surrogate modelling with multi-fidelity data III

Relative errors in % of the Compact Thermal Models (CTM)

Matthias De Lozzo & Loïc Le Gratiet Learning of multi-fidelity data with a mixture of GP

< 17 >

★ 3 → < 3</p>

Surrogate modelling with multi-fidelity data III

Relative errors in % of the Compact Thermal Models (CTM)

Matthias De Lozzo & Loïc Le Gratiet Learning of multi-fidelity data with a mixture of GP

< 一型

Toy example: $z(\mathbf{x}) : [0, 1]^2 \mapsto \mathbb{R}$

1 high-fidelity function $z(\mathbf{x}) \rightarrow$ function visualization

2 low-fidelity functions $z_1(\mathbf{x})$ and $z_2(\mathbf{x}) \rightarrow$ functions visualization

Matthias De Lozzo & Loïc Le Gratiet Learning of multi-fidelity data with a mixture of GP

Toy example: $z(\mathbf{x}) : [0,1]^2 \mapsto \mathbb{R}$

1 high-fidelity function $z(\mathbf{x}) \rightarrow$ function visualization

2 low-fidelity functions $z_1(\mathbf{x})$ and $z_2(\mathbf{x}) \rightarrow$ functions visualization

Matthias De Lozzo & Loïc Le Gratiet

Toy example: $z(\mathbf{x}) : [0,1]^2 \mapsto \mathbb{R}$

1 high-fidelity function $z(\mathbf{x}) \rightarrow$ function visualization

2 low-fidelity functions $z_1(\mathbf{x})$ and $z_2(\mathbf{x}) \rightarrow$ errors visualization

Matthias De Lozzo & Loïc Le Gratiet

Toy example: $z(\mathbf{x}) : [0,1]^2 \mapsto \mathbb{R}$

1 high-fidelity function $z(\mathbf{x}) \rightarrow$ function visualization

2 low-fidelity functions $z_1(\mathbf{x})$ and $z_2(\mathbf{x}) \rightarrow$ difference visualization

Matthias De Lozzo & Loïc Le Gratiet Learning of multi-

Toy example: two LHS such that $\mathcal{D}_{HF} \subset \mathcal{D}_{BF}$

1 high-fidelity function $z(\mathbf{x})$ with $n_{HF} = 10$ runs

2 low-fidelity functions $z_1(\mathbf{x})$ and $z_2(\mathbf{x})$ with $n_{LF,\{1,2\}} = 100$ runs

Matthias De Lozzo & Loïc Le Gratiet

Toy example: two LHS such that $\mathcal{D}_{HF} \subset \mathcal{D}_{BF}$

1 high-fidelity function $z(\mathbf{x})$ with $n_{HF} = 10$ runs

2 low-fidelity functions $z_1(\mathbf{x})$ and $z_2(\mathbf{x})$ with $n_{LF,\{1,2\}} = 100$ runs

Matthias De Lozzo & Loïc Le Gratiet

Kriging model fo $z(\mathbf{x})$ [Rasmussen & Williams, 2006]

Design of experiments: $\mathbf{D}_{HF} = (\mathbf{x}_1, ..., \mathbf{x}_{n_{HF}})$ Responses of $z(\mathbf{x})$: $\mathbf{z}^{n_{HF}} := z(\mathbf{D}_{HF}) := (z(\mathbf{x}_1), ..., z(\mathbf{x}_{n_{HF}}))^T$

伺 ト イ ヨ ト イ ヨ ト

Kriging model fo $z(\mathbf{x})$ [Rasmussen & Williams, 2006]

Design of experiments: $\mathbf{D}_{HF} = (\mathbf{x}_1, ..., \mathbf{x}_{n_{HF}})$ Responses of $z(\mathbf{x})$: $\mathbf{z}^{n_{HF}} := z(\mathbf{D}_{HF}) := (z(\mathbf{x}_1), ..., z(\mathbf{x}_{n_{HF}}))^T$

Prior

$$Z(\mathbf{x}) \sim \mathcal{GP}\left(\mathbf{f}^{\mathsf{T}}(\mathbf{x})\boldsymbol{\beta}, \sigma^2 r(\mathbf{x}, \tilde{\mathbf{x}})\right)$$

with $r(\mathbf{x}, \tilde{\mathbf{x}})$ the Mátern 5.2 kernel parametrized by $\boldsymbol{\theta} \in \mathbb{R}^d$ and $\mathbf{f}^T(\mathbf{x}) = 1$ by default.

・ 同 ト ・ ヨ ト ・ ヨ ト

Kriging model fo $z(\mathbf{x})$ [Rasmussen & Williams, 2006]

Design of experiments: $\mathbf{D}_{HF} = (\mathbf{x}_1, ..., \mathbf{x}_{n_{HF}})$ Responses of $z(\mathbf{x})$: $\mathbf{z}^{n_{HF}} := z(\mathbf{D}_{HF}) := (z(\mathbf{x}_1), ..., z(\mathbf{x}_{n_{HF}}))^T$

Prior

$$Z(\mathbf{x}) \sim \mathcal{GP}\left(\mathbf{f}^{\mathsf{T}}(\mathbf{x})\boldsymbol{\beta}, \sigma^2 r(\mathbf{x}, \tilde{\mathbf{x}})\right)$$

with $r(\mathbf{x}, \tilde{\mathbf{x}})$ the Mátern 5.2 kernel parametrized by $\boldsymbol{\theta} \in \mathbb{R}^d$ and $\mathbf{f}^T(\mathbf{x}) = 1$ by default.

Posterior

$$\hat{Z}(\mathbf{x}) = [Z(\mathbf{x}) | \mathbf{Z}^{n_{HF}} = \mathbf{z}^{n_{HF}}] \sim \mathcal{GP}\left(\hat{\mu}(\mathbf{x}), \hat{s}^2(\mathbf{x}, \tilde{\mathbf{x}})\right)$$
 where:

Kriging model fo $z(\mathbf{x})$ [Rasmussen & Williams, 2006]

Design of experiments: $\mathbf{D}_{HF} = (\mathbf{x}_1, ..., \mathbf{x}_{n_{HF}})$ Responses of $z(\mathbf{x})$: $\mathbf{z}^{n_{HF}} := z(\mathbf{D}_{HF}) := (z(\mathbf{x}_1), ..., z(\mathbf{x}_{n_{HF}}))^T$

Prior

$$Z(\mathbf{x}) \sim \mathcal{GP}\left(\mathbf{f}^{\mathsf{T}}(\mathbf{x})\boldsymbol{\beta}, \sigma^2 r(\mathbf{x}, \tilde{\mathbf{x}})\right)$$

with $r(\mathbf{x}, \tilde{\mathbf{x}})$ the Mátern 5.2 kernel parametrized by $\boldsymbol{\theta} \in \mathbb{R}^d$ and $\mathbf{f}^T(\mathbf{x}) = 1$ by default.

Posterior with $\hat{\mu}(\mathbf{x})$ the predictor

$$\hat{Z}(\mathbf{x}) = [Z(\mathbf{x})|\mathbf{Z}^{n_{HF}} = \mathbf{z}^{n_{HF}}] \sim \mathcal{GP}\left(\hat{\mu}(\mathbf{x}), \hat{s}^2(\mathbf{x}, \tilde{\mathbf{x}})\right)$$
 where:

$$\hat{\mu}(\mathbf{x}) = \mathbf{f}^{T}(\mathbf{x})\hat{\beta} + r(\mathbf{x}, \mathbf{D}_{HF})\mathbf{R}^{-1}(\mathbf{z}^{n_{HF}} - \mathbf{F}\hat{\beta}) \text{ with } \hat{\beta} \text{ the m.l.e.}$$

$$r(\mathbf{x}, \mathbf{D}_{HF})_i = r(\mathbf{x}, \mathbf{x}_i), \ \mathbf{R}_{i,j} = r(\mathbf{x}_i, \mathbf{x}_j) \ \text{and} \ \mathbf{F}_{i,j} = \mathbf{f}^T(\mathbf{x}_i).$$

Kriging model fo $z(\mathbf{x})$ [Rasmussen & Williams, 2006]

Design of experiments: $\mathbf{D}_{HF} = (\mathbf{x}_1, ..., \mathbf{x}_{n_{HF}})$ Responses of $z(\mathbf{x})$: $\mathbf{z}^{n_{HF}} := z(\mathbf{D}_{HF}) := (z(\mathbf{x}_1), ..., z(\mathbf{x}_{n_{HF}}))^T$

Prior

$$Z(\mathbf{x}) \sim \mathcal{GP}\left(\mathbf{f}^{\mathsf{T}}(\mathbf{x})\boldsymbol{\beta}, \sigma^2 r(\mathbf{x}, \tilde{\mathbf{x}})\right)$$

with $r(\mathbf{x}, \tilde{\mathbf{x}})$ the Mátern 5.2 kernel parametrized by $\boldsymbol{\theta} \in \mathbb{R}^d$ and $\mathbf{f}^T(\mathbf{x}) = 1$ by default.

Posterior with $\hat{\mu}(\mathbf{x})$ the predictor and $\hat{s}^2(\mathbf{x}, \mathbf{x})$ a confidence measure

$$\hat{Z}(\mathbf{x}) = [Z(\mathbf{x})|\mathbf{Z}^{n_{HF}} = \mathbf{z}^{n_{HF}}] \sim \mathcal{GP}\left(\hat{\mu}(\mathbf{x}), \hat{s}^2(\mathbf{x}, \tilde{\mathbf{x}})\right)$$
 where

$$\hat{\mu}(\mathbf{x}) = \mathbf{f}^{T}(\mathbf{x})\hat{\boldsymbol{\beta}} + r(\mathbf{x}, \mathbf{D}_{HF})\mathbf{R}^{-1}(\mathbf{z}^{n_{HF}} - \mathbf{F}\hat{\boldsymbol{\beta}})$$
 with $\hat{\boldsymbol{\beta}}$ the m.l.e.

$$\hat{s}^{2}(\mathbf{x},\tilde{\mathbf{x}}) = \hat{\sigma}^{2} \left(r(\mathbf{x},\tilde{\mathbf{x}}) - \left(\mathbf{f}^{T}(\mathbf{x}) r(\mathbf{x}, \mathbf{D}_{HF}) \right) \begin{pmatrix} \mathbf{0} & \mathbf{F}^{T} \\ \mathbf{F} & \mathbf{R} \end{pmatrix}^{-1} \begin{pmatrix} \mathbf{f}(\tilde{\mathbf{x}}) \\ r(\mathbf{D}_{HF},\tilde{\mathbf{x}}) \end{pmatrix} \right)$$

Toy example: Kriging model with $\mathbf{f}(\mathbf{x})^T = 1$

Kriging predictor

HF Model - Kriging predictor

э

Kriging model : an alternative formulation (K')

$$\mathbf{D}_{HF} = (\mathbf{x}_1, ..., \mathbf{x}_{n_{HF}}) \text{ and } \mathbf{z}^{n_{HF}} := z(\mathbf{D}_{HF}) := (z(\mathbf{x}_1), ..., z(\mathbf{x}_{n_{HF}}))^T.$$

New kriging model [Le Gratiet et al., 2013]

$$Z^{n_{HF}}(\mathbf{x}) = \hat{\mu}(\mathbf{x}) - ilde{\mu}(\mathbf{x}) + ilde{Z}(\mathbf{x}) \sim \mathcal{GP}\left(\hat{\mu}(\mathbf{x}), \hat{s}^2(\mathbf{x}, ilde{\mathbf{x}})
ight)$$

where $\tilde{Z}(\mathbf{x})$ is a $\mathcal{GP}(0, \sigma^2 r(\mathbf{x}, \tilde{\mathbf{x}}))$

伺 ト く ヨ ト く ヨ ト

Kriging model : an alternative formulation (K')

$$\mathbf{D}_{HF} = (\mathbf{x}_1, ..., \mathbf{x}_{n_{HF}}) \text{ and } \mathbf{z}^{n_{HF}} := z(\mathbf{D}_{HF}) := (z(\mathbf{x}_1), ..., z(\mathbf{x}_{n_{HF}}))^T.$$

New kriging model [Le Gratiet et al., 2013]

$$Z^{n_{HF}}(\mathbf{x}) = \hat{\mu}(\mathbf{x}) - ilde{\mu}(\mathbf{x}) + ilde{Z}(\mathbf{x}) \sim \mathcal{GP}\left(\hat{\mu}(\mathbf{x}), \hat{s}^2(\mathbf{x}, ilde{\mathbf{x}})
ight)$$

where $\tilde{Z}(\mathbf{x})$ is a $\mathcal{GP}(0, \sigma^2 r(\mathbf{x}, \tilde{\mathbf{x}}))$ and:

$$\begin{split} \hat{\mu}(\mathbf{x}) &= \mathbf{f}^{T}(\mathbf{x})\hat{\boldsymbol{\beta}} + \mathbf{r}^{T}(\mathbf{x}, \mathbf{D}_{\mathsf{HF}})\mathbf{R}^{-1}(\mathbf{z}^{n_{\mathsf{HF}}} - \mathbf{F}\hat{\boldsymbol{\beta}}) \\ \tilde{\mu}(\mathbf{x}) &= \mathbf{f}^{T}(\mathbf{x})\tilde{\boldsymbol{\beta}} + \mathbf{r}^{T}(\mathbf{x}, \mathbf{D}_{\mathsf{HF}})\mathbf{R}^{-1}(\tilde{\mathbf{Z}}^{n_{\mathsf{HF}}} - \mathbf{F}\tilde{\boldsymbol{\beta}}) \end{split}$$

with $\tilde{\mathbf{Z}}^{n_{HF}} := \tilde{Z}(\mathbf{D}_{HF})$

同 ト イヨ ト イヨト

Kriging model : an alternative formulation (K')

$$\mathbf{D}_{HF} = (\mathbf{x}_1, ..., \mathbf{x}_{n_{HF}}) \text{ and } \mathbf{z}^{n_{HF}} := z(\mathbf{D}_{HF}) := (z(\mathbf{x}_1), ..., z(\mathbf{x}_{n_{HF}}))^T.$$

New kriging model [Le Gratiet et al., 2013]

$$Z^{n_{HF}}(\mathbf{x}) = \hat{\mu}(\mathbf{x}) - ilde{\mu}(\mathbf{x}) + ilde{Z}(\mathbf{x}) \sim \mathcal{GP}\left(\hat{\mu}(\mathbf{x}), \hat{s}^2(\mathbf{x}, ilde{\mathbf{x}})
ight)$$

where $\tilde{Z}(\mathbf{x})$ is a $\mathcal{GP}(0, \sigma^2 r(\mathbf{x}, \tilde{\mathbf{x}}))$ and:

$$\begin{split} \hat{\mu}(\mathbf{x}) &= \mathbf{f}^{T}(\mathbf{x})\hat{\boldsymbol{\beta}} + \mathbf{r}^{T}(\mathbf{x}, \mathbf{D}_{\mathsf{HF}})\mathbf{R}^{-1}(\mathbf{z}^{n_{\mathsf{HF}}} - \mathbf{F}\hat{\boldsymbol{\beta}}) \\ \tilde{\mu}(\mathbf{x}) &= \mathbf{f}^{T}(\mathbf{x})\tilde{\boldsymbol{\beta}} + \mathbf{r}^{T}(\mathbf{x}, \mathbf{D}_{\mathsf{HF}})\mathbf{R}^{-1}(\tilde{\mathbf{Z}}^{n_{\mathsf{HF}}} - \mathbf{F}\tilde{\boldsymbol{\beta}}) \end{split}$$

with $\tilde{\mathbf{Z}}^{n_{HF}} := \tilde{Z}(\mathbf{D}_{HF})$ and:

$$\hat{\boldsymbol{\beta}} = (\mathbf{F}^{T} \mathbf{R}^{-1} \mathbf{F})^{-1} \mathbf{F}^{T} \mathbf{R}^{-1} \mathbf{z}^{n_{HF}}$$
$$\tilde{\boldsymbol{\beta}} = (\mathbf{F}^{T} \mathbf{R}^{-1} \mathbf{F})^{-1} \mathbf{F}^{T} \mathbf{R}^{-1} \tilde{\mathbf{Z}}^{n_{HF}}$$

Co-Kriging (CK) I

Low-fidelity level = Kriging model (K')

$$Z_{LF}^{n_{LF}}(\mathbf{x}) = \hat{\mu}_{LF}(\mathbf{x}) - \tilde{\mu}_{LF}(\mathbf{x}) + \tilde{Z}_{LF}(\mathbf{x}) \sim \mathcal{GP}\left(\hat{\mu}_{LF}(\mathbf{x}), \hat{s_{LF}}^{2}(\mathbf{x}, \tilde{\mathbf{x}})\right)$$

where $\tilde{Z}_{LF}(\mathbf{x})$ is a $\mathcal{GP}(0, \sigma_{LF}^2 r_{LF}(\mathbf{x}, \tilde{\mathbf{x}}))$ and:

$$\hat{\mu}_{LF}(\mathbf{x}) = \mathbf{f}_{LF}^{T}(\mathbf{x})\hat{\boldsymbol{\beta}}_{LF} + \mathbf{r}_{LF}^{T}(\mathbf{x}, \mathbf{D}_{LF})\mathbf{R}_{LF}^{-1}\left(\mathbf{z}_{LF}^{n_{LF}} - \mathbf{F}_{LF}\hat{\boldsymbol{\beta}}_{LF}\right)$$
$$\tilde{\mu}_{LF}(\mathbf{x}) = \mathbf{f}_{LF}^{T}(\mathbf{x})\tilde{\boldsymbol{\beta}}_{LF} + \mathbf{r}_{LF}^{T}(\mathbf{x}, \mathbf{D}_{LF})\mathbf{R}_{LF}^{-1}\left(\tilde{\mathbf{Z}}_{LF}^{n_{LF}} - \mathbf{F}_{LF}\tilde{\boldsymbol{\beta}}_{LF}\right)$$

with:

$$\hat{\boldsymbol{\beta}}_{LF} = (\mathbf{F}_{LF}^{T} \mathbf{R}_{LF}^{-1} \mathbf{F}_{LF})^{-1} \mathbf{F}_{LF}^{T} \mathbf{R}_{LF}^{-1} \mathbf{z}_{LF}^{n_{LF}}$$
$$\tilde{\boldsymbol{\beta}}_{LF} = (\mathbf{F}_{LF}^{T} \mathbf{R}_{LF}^{-1} \mathbf{F}_{LF})^{-1} \mathbf{F}_{LF}^{T} \mathbf{R}_{LF}^{-1} \mathbf{\tilde{Z}}_{LF}^{n_{LF}}$$

Co-Kriging (CK) II

High-fidelity level = Kriging model (K') for the residuals

 $Z_{HF}^{n_{HF}}(\mathbf{x}) = \rho Z_{LF}^{n_{LF}}(\mathbf{x}) + \mu_{\delta}(\mathbf{x}) - \tilde{\mu}_{\delta}(\mathbf{x}) + \tilde{\delta}(\mathbf{x}) \sim \mathcal{GP}\left(\hat{\mu}_{HF}(\mathbf{X}), \hat{s}_{HF}^{2}(\mathbf{x}, \tilde{\mathbf{x}})\right)$

where $\tilde{\delta}(\mathbf{x})$ is a $\mathcal{GP}(0, \sigma_{\delta}^2 r_{\delta}(\mathbf{x}, \tilde{\mathbf{x}}))$.

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Co-Kriging (CK) II

High-fidelity level = Kriging model (K') for the residuals

 $Z_{HF}^{n_{HF}}(\mathbf{x}) = \rho Z_{LF}^{n_{LF}}(\mathbf{x}) + \mu_{\delta}(\mathbf{x}) - \tilde{\mu}_{\delta}(\mathbf{x}) + \tilde{\delta}(\mathbf{x}) \sim \mathcal{GP}\left(\hat{\mu}_{HF}(\mathbf{X}), \hat{s}_{HF}^{2}(\mathbf{x}, \tilde{\mathbf{x}})\right)$

where $\tilde{\delta}(\mathbf{x})$ is a $\mathcal{GP}(0, \sigma_{\delta}^2 r_{\delta}(\mathbf{x}, \tilde{\mathbf{x}}))$.

$$\mu_{\delta}(\mathbf{x}) = \mathbf{f}_{\delta}^{T}(\mathbf{x})\boldsymbol{\beta}_{\delta} + \mathbf{r}_{\delta}^{T}(\mathbf{x}, \mathbf{D}_{HF})\mathbf{R}_{\delta}^{-1}(\mathbf{z}_{HF}^{n_{HF}} - \mathbf{F}_{\delta}\boldsymbol{\beta}_{\delta} - \rho \mathbf{z}_{LF}^{n_{HF}})$$
$$\tilde{\mu}_{\delta}(\mathbf{x}) = \mathbf{r}_{\delta}^{T}(\mathbf{x}, \mathbf{D}_{HF})\mathbf{R}_{\delta}^{-1}\tilde{\boldsymbol{\delta}}^{n_{HF}}$$

伺 ト く ヨ ト く ヨ ト

Co-Kriging (CK) II

High-fidelity level = Kriging model (K') for the residuals

$$Z_{HF}^{n_{HF}}(\mathbf{x}) = \rho Z_{LF}^{n_{LF}}(\mathbf{x}) + \mu_{\delta}(\mathbf{x}) - \tilde{\mu}_{\delta}(\mathbf{x}) + \tilde{\delta}(\mathbf{x}) \sim \mathcal{GP}\left(\hat{\mu}_{HF}(\mathbf{X}), \hat{s}_{HF}^{2}(\mathbf{x}, \tilde{\mathbf{x}})\right)$$

where $\tilde{\delta}(\mathbf{x})$ is a $\mathcal{GP}(0, \sigma_{\delta}^2 r_{\delta}(\mathbf{x}, \tilde{\mathbf{x}}))$.

$$\mu_{\delta}(\mathbf{x}) = \mathbf{f}_{\delta}^{T}(\mathbf{x})\boldsymbol{\beta}_{\delta} + \mathbf{r}_{\delta}^{T}(\mathbf{x}, \mathbf{D}_{HF})\mathbf{R}_{\delta}^{-1}(\mathbf{z}_{HF}^{n_{HF}} - \mathbf{F}_{\delta}\boldsymbol{\beta}_{\delta} - \rho \mathbf{z}_{LF}^{n_{HF}})$$
$$\tilde{\mu}_{\delta}(\mathbf{x}) = \mathbf{r}_{\delta}^{T}(\mathbf{x}, \mathbf{D}_{HF})\mathbf{R}_{\delta}^{-1}\tilde{\boldsymbol{\delta}}^{n_{HF}}$$

with:

$$(
ho, oldsymbol{eta}_{\delta}^{\mathsf{T}})^{\mathsf{T}} \sim \mathcal{N}\left(\mathbf{\Sigma}_{
ho, oldsymbol{eta}_{\delta}} \mathsf{H}^{\mathsf{T}} \mathsf{R}_{\delta}^{-1} \mathsf{z}^{n_{HF}}, \sigma_{\delta}^{2} \mathbf{\Sigma}_{
ho, oldsymbol{eta}_{\delta}}
ight) ext{ and } (
ho, oldsymbol{eta}_{\delta})^{\mathsf{T}} \perp Z_{LF}^{n_{LF}}(\mathsf{x}), \tilde{\delta}(\mathsf{x})$$

 $\mathbf{\Sigma}_{
ho, oldsymbol{eta}_{\delta}} = (\mathsf{H}^{\mathsf{T}} \mathsf{R}_{\delta}^{-1} \mathsf{H})^{-1}, \ \mathsf{H} = [\mathsf{z}_{LF}^{n_{LF}} \ \mathsf{F}_{\delta}]$

Toy example: Co-Kriging model with $\mathbf{f}_{\delta}(\mathbf{x})^{T} = 1$

1st Co-Kriging variance

Learning of multi-fidelity data with a mixture of GP

Leave-One-Out Co-Kriging (LOOCK) I

High-fidelity model when n_{HF} is very small

Leave-one-out aggregation (e.g. [Lecué, 2012])

$$\bar{Z}_{HF}^{n_{HF}}(\mathbf{x}) = \rho Z_{LF}^{n_{LF}}(\mathbf{x}) + \frac{1}{n_{HF}} \sum_{i=1}^{n_{HF}} \delta_{-i}^{n_{HF}}(\mathbf{x}) \sim \mathcal{GP}\left(\hat{\mu}_{HF}(\mathbf{x}), \hat{s}_{HF}^{2}(\mathbf{x}, \tilde{\mathbf{x}})\right)$$

where:

$$\delta_{-i}^{n_{HF}}(\mathbf{x}) = \mu_{\delta,-i}(\mathbf{x}) - \tilde{\mu}_{\delta,-i}(\mathbf{x}) + \tilde{\delta}(\mathbf{x})$$

→ 3 → 4 3

Leave-One-Out Co-Kriging (LOOCK) I

High-fidelity model when n_{HF} is very small

Leave-one-out aggregation (e.g. [Lecué, 2012])

$$\bar{Z}_{HF}^{n_{HF}}(\mathbf{x}) = \rho Z_{LF}^{n_{LF}}(\mathbf{x}) + \frac{1}{n_{HF}} \sum_{i=1}^{n_{HF}} \delta_{-i}^{n_{HF}}(\mathbf{x}) \sim \mathcal{GP}\left(\hat{\mu}_{HF}(\mathbf{x}), \hat{s}_{HF}^{2}(\mathbf{x}, \tilde{\mathbf{x}})\right)$$

where:

$$\delta_{-i}^{n_{HF}}(\mathbf{x}) = \mu_{\delta,-i}(\mathbf{x}) - \tilde{\mu}_{\delta,-i}(\mathbf{x}) + \tilde{\delta}(\mathbf{x})$$

with:

$$\mu_{\delta,-i}(\mathbf{x}) = \mathbf{f}_{\delta}^{T}(\mathbf{x})\boldsymbol{\beta}_{\delta} + \mathbf{r}_{\delta,-i}^{T}(\mathbf{x}, \mathbf{D}_{HF})\mathbf{R}_{\delta,-i,-i}^{-1}(\mathbf{z}_{HF,-i}^{n_{HF}} - \mathbf{F}_{\delta,-i}\boldsymbol{\beta}_{\delta} - \rho z_{LF,-i}^{n_{HF}})$$
$$\tilde{\mu}_{\delta,-i}(\mathbf{x}) = \mathbf{r}_{\delta,-i}^{T}(\mathbf{x}, \mathbf{D}_{HF})\mathbf{R}_{\delta,-i,-i}^{-1}\tilde{\delta}_{-i}^{n_{HF}}$$

Leave-One-Out Co-Kriging (LOOCK) II

CK predictor [Kennedy & O'Hagan, 2000]

$$\begin{split} \hat{\mu}_{HF}(\mathbf{x}) &= \hat{\rho}\hat{\mu}_{LF}(\mathbf{x}) + \mathbf{f}_{\delta}'(\mathbf{x})\hat{\boldsymbol{\beta}}_{\delta} \\ &+ \mathbf{r}_{\delta}'(\mathbf{x}, \mathbf{D}_{HF})\mathbf{R}_{\delta}^{-1}\left(\mathbf{z}_{HF}^{n_{HF}} - \mathbf{F}_{\delta}\hat{\boldsymbol{\beta}}_{\delta} - \hat{\rho}\mathbf{z}_{LF}^{n_{HF}}\right) \end{split}$$

where $(\hat{\rho} \ \hat{\beta}_{\delta}^{T})^{T} = \Sigma_{\rho,\beta_{\delta}} \mathbf{H}^{T} \mathbf{R}_{\delta}^{-1} \mathbf{z}^{n_{HF}}$ with $\Sigma_{\rho,\beta_{\delta}} = (\mathbf{H}^{T} \mathbf{R}_{\delta}^{-1} \mathbf{H})^{-1}$ and $\mathbf{H} = [\mathbf{z}_{LF}^{n_{LF}} \mathbf{F}_{\delta}]$.

伺 ト イヨト イヨト

Leave-One-Out Co-Kriging (LOOCK) II

CK predictor [Kennedy & O'Hagan, 2000]

$$\begin{split} \hat{\mu}_{HF}(\mathbf{x}) &= \hat{\rho}\hat{\mu}_{LF}(\mathbf{x}) + \mathbf{f}_{\delta}'(\mathbf{x})\hat{\boldsymbol{\beta}}_{\delta} \\ &+ \mathbf{r}_{\delta}'(\mathbf{x}, \mathbf{D}_{HF})\mathbf{R}_{\delta}^{-1}\left(\mathbf{z}_{HF}^{n_{HF}} - \mathbf{F}_{\delta}\hat{\boldsymbol{\beta}}_{\delta} - \hat{\rho}\mathbf{z}_{LF}^{n_{HF}}\right) \end{split}$$

where
$$(\hat{\rho} \ \hat{\beta}_{\delta}^{T})^{T} = \mathbf{\Sigma}_{\rho, \beta_{\delta}} \mathbf{H}^{T} \mathbf{R}_{\delta}^{-1} \mathbf{z}^{n_{HF}}$$
 with $\mathbf{\Sigma}_{\rho, \beta_{\delta}} = (\mathbf{H}^{T} \mathbf{R}_{\delta}^{-1} \mathbf{H})^{-1}$
and $\mathbf{H} = [\mathbf{z}_{LF}^{n_{LF}} \mathbf{F}_{\delta}]$.

LOOCK predictor when n_{HF} is very small

$$\begin{aligned} \hat{\mu}_{HF}(\mathbf{x}) &= \hat{\rho}\hat{\mu}_{LF}(\mathbf{x}) + \mathbf{f}_{\delta}'(\mathbf{x})\hat{\boldsymbol{\beta}}_{\delta} \\ &+ \frac{1}{n_{HF}}\sum_{i=1}^{n_{HF}} \left(\mathbf{r}_{\delta,-i}'(\mathbf{x},\mathbf{D}_{HF})\mathbf{R}_{\delta,-i,-i}^{-1}(\mathbf{z}_{HF,-i}^{n_{HF}} - \mathbf{F}_{\delta,-i}\hat{\boldsymbol{\beta}}_{\delta} - \hat{\rho}\mathbf{z}_{LF,-i}^{n_{LF}}\right) \end{aligned}$$

< ロ > < 同 > < 回 > < 回 >

э

LOO Co-Kriging (LOOCK) III

$$\bar{Z}_{HF}^{n_{HF}}(\mathbf{x}) = \rho Z_{LF}^{n_{LF}}(\mathbf{x}) + \frac{1}{n_{HF}} \sum_{i=1}^{n_{HF}} \delta_{-i}^{n_{HF}}(\mathbf{x})$$

Properties

• $\bar{Z}_{HF}^{n_{HF}}(\mathbf{x})$ is a Gaussian process, consequently:

- 4 同 6 4 日 6 4 日 6

LOO Co-Kriging (LOOCK) III

$$\bar{Z}_{HF}^{n_{HF}}(\mathbf{x}) = \rho Z_{LF}^{n_{LF}}(\mathbf{x}) + \frac{1}{n_{HF}} \sum_{i=1}^{n_{HF}} \delta_{-i}^{n_{HF}}(\mathbf{x})$$

Properties

- $\bar{Z}_{HF}^{n_{HF}}(\mathbf{x})$ is a Gaussian process, consequently:
 - $\hat{\mu}_{HF}(\mathbf{x})$ is an **estimator** of $z(\mathbf{x})$;
 - $\hat{s}_{HF}^2(\mathbf{x}, \mathbf{x})$ is a confidence measure for $\hat{\mu}_{HF}(\mathbf{x})$.

・ 同 ト ・ ヨ ト ・ ヨ ト

LOO Co-Kriging (LOOCK) III

$$\bar{Z}_{HF}^{n_{HF}}(\mathbf{x}) = \rho Z_{LF}^{n_{LF}}(\mathbf{x}) + \frac{1}{n_{HF}} \sum_{i=1}^{n_{HF}} \delta_{-i}^{n_{HF}}(\mathbf{x})$$

Properties

- $\bar{Z}_{HF}^{n_{HF}}(\mathbf{x})$ is a Gaussian process, consequently:
 - $\hat{\mu}_{HF}(\mathbf{x})$ is an **estimator** of $z(\mathbf{x})$;
 - $\hat{s}_{HF}^2(\mathbf{x}, \mathbf{x})$ is a confidence measure for $\hat{\mu}_{HF}(\mathbf{x})$.
- The estimator µ̂_{HF}(x) is a regressive function → an alternative to the nugget effect when n_{HF} is very small.

同 ト イ ヨ ト イ ヨ ト

LOO Co-Kriging (LOOCK) III

$$\bar{Z}_{HF}^{n_{HF}}(\mathbf{x}) = \rho Z_{LF}^{n_{LF}}(\mathbf{x}) + \frac{1}{n_{HF}} \sum_{i=1}^{n_{HF}} \delta_{-i}^{n_{HF}}(\mathbf{x})$$

Properties

- $\bar{Z}_{HF}^{n_{HF}}(\mathbf{x})$ is a Gaussian process, consequently:
 - $\hat{\mu}_{HF}(\mathbf{x})$ is an **estimator** of $z(\mathbf{x})$;
 - $\hat{s}_{HF}^2(\mathbf{x}, \mathbf{x})$ is a confidence measure for $\hat{\mu}_{HF}(\mathbf{x})$.
- The estimator $\hat{\mu}_{HF}(\mathbf{x})$ is a regressive function \rightarrow an alternative to the nugget effect when n_{HF} is very small.
- The learning mean squared error is equal to the leave-one-out error of the co-kriging model obtained with the *n_{HF}* observations.

- 4 同 6 4 日 6 4 日 6

LOO Co-Kriging (LOOCK) III

$$\bar{Z}_{HF}^{n_{HF}}(\mathbf{x}) = \rho Z_{LF}^{n_{LF}}(\mathbf{x}) + \frac{1}{n_{HF}} \sum_{i=1}^{n_{HF}} \delta_{-i}^{n_{HF}}(\mathbf{x})$$

Properties

- $\bar{Z}_{HF}^{n_{HF}}(\mathbf{x})$ is a Gaussian process, consequently:
 - $\hat{\mu}_{HF}(\mathbf{x})$ is an **estimator** of $z(\mathbf{x})$;
 - $\hat{s}_{HF}^2(\mathbf{x}, \mathbf{x})$ is a confidence measure for $\hat{\mu}_{HF}(\mathbf{x})$.
- The estimator $\hat{\mu}_{HF}(\mathbf{x})$ is a regressive function \rightarrow an alternative to the nugget effect when n_{HF} is very small.
- The learning mean squared error is equal to the leave-one-out error of the co-kriging model obtained with the *n_{HF}* observations.

Possibility to extend these results to the case where some parameters are re-estimated for the n_{HF} sub-co-kriging models.

Toy example: LOO Co-Kriging Model

HI Model - 1st LCO Co-Kriging predictor

1st LOO Co-Kriging predictor with re-estimation

1st Co-Kriging predictor

Matthias De Lozzo & Loïc Le Gratiet Learning of multi-fidelity data with a mixture of GP

Toy example: LOO Co-Kriging Model

Hi Model - 1st Co-Kriging predictor

Ht Model - 1st LCO Co-Kriging predictor

Hi Model - 1st LOO Co-Kriging predictor with re-estim

Industrial application: results

	1	Tamb	īamb P		T	
1	300	70	1013	40	156	
2	300	45	812	32	136	
3	265	45	812	16	138	
4	175	55	812	0	142	
5	155	70	1013	0	142	
6	300	30	1013	25	127	
7	265	70	1013	20	159	
8	265	30	1013	12.5	128	
9	150	40	812	0	113	
10	85	55	812	0	100	

$\mathbf{f}_{\delta}(\mathbf{x}) = (1 \text{ I Tamb Q}) \text{ and } \mathbf{f}(\mathbf{x}) = (1 \text{ I Tamb Q})$

Model	1	2	3	4	5	6	7	8	9	10
CTM1	-165.21	-169.05	-89.67	-2.68	-3.66	-165.53	-89.55	-85.92	2.86	4.74
CTM2	-0.88	-4.14	-9.28	-563.39	-330.23	-0.69	-3.45	-9.03	-374.56	-334.69
K-LOO	5.44	0.31	-2.22	6.14	-2.21	-0.93	-3.58	-0.80	2.38	-10.36
CK1-LOO	3.77	-0.20	-1.65	6.00	-2.98	0.23	-2.25	0.16	-10.58	-18.04
CK2-LOO	2.79	-1.42	-0.10	1.77	-2.35	-2.41	0.75	2.16	1.43	-0.96

Relative errors in % of the Compact Thermal Models (CTM), Kriging model (K) and Co-Kriging models (CK)

Matthias De Lozzo & Loïc Le Gratiet Learning of multi-fidelity data with a mixture of GP

Surrogate modelling with low and high fidelity data

2 Mixture of Gaussian processes

3 Perspectives

/□ ▶ < 글 ▶ < 글

Two LOO co-kriging models and now ?

HF Model

1st Cross-Validation Co-Kriging predictor

2nd Cross-Validation Co-Kriging predictor

error(1)-error(2)

error(1st Cross-Validation Co-Kriging predictor)

error(2nd Cross-Validation Co-Kriging predictor)

<ロト <部ト < 注ト < 注ト

Э

Soft or "randomly hard" mixture of LOOCK models ? I

Soft mixture

$$ar{Z}(\mathbf{x}) = rac{w_1(\mathbf{x})ar{Z}_{HF,1}^{n_{HF}}(\mathbf{x}) + w_2(\mathbf{x})ar{Z}_{HF,2}^{n_{HF}}(\mathbf{x})}{w_1(\mathbf{x}) + w_2(\mathbf{x})}$$

where $w_1(\mathbf{x})$ and $w_2(\mathbf{x})$ are positive weights. **But** the confidence measure Var $(\overline{Z}(\mathbf{x}))$ is undefined.

伺 ト イヨト イヨト

Soft or "randomly hard" mixture of LOOCK models ? I

Soft mixture

$$\bar{Z}(\mathbf{x}) = \frac{w_1(\mathbf{x})\bar{Z}_{HF,1}^{n_{HF}}(\mathbf{x}) + w_2(\mathbf{x})\bar{Z}_{HF,2}^{n_{HF}}(\mathbf{x})}{w_1(\mathbf{x}) + w_2(\mathbf{x})}$$

where $w_1(\mathbf{x})$ and $w_2(\mathbf{x})$ are positive weights. But the confidence measure $Var(\overline{Z}(\mathbf{x}))$ is undefined.

A solution...

Hard mixture

$$\bar{Z}(\mathbf{x}) = \bar{Z}_{HF,1}^{n_{HF}}(\mathbf{x})\mathbb{I}_{\mathbf{x}\in C_1} + \bar{Z}_{HF,2}^{n_{HF}}(\mathbf{x})\mathbb{I}_{\mathbf{x}\in C_2}$$

where (C_1, C_2) is a partition of \mathcal{D}_x , $[0, 1]^2$ in our case. $\operatorname{Var}\left[\bar{Z}(\mathbf{x})\right] = \operatorname{Var}\left[\bar{Z}_{HF,1}^{n_{HF}}(\mathbf{x})\right] \mathbb{I}_{\mathbf{x}\in C_1} + \operatorname{Var}\left[\bar{Z}_{HF,2}^{n_{HF}}(\mathbf{x})\right] \mathbb{I}_{\mathbf{x}\in C_2}$

・ロト ・同ト ・ヨト ・ヨト

Soft or "randomly hard" mixture of LOOCK models ? II

Hard mixture

$$ar{Z}(\mathbf{x}) = ar{Z}_{HF,1}^{n_{HF}}(\mathbf{x})\mathbb{I}_{\mathbf{x}\in C_1} + ar{Z}_{HF,2}^{n_{HF}}(\mathbf{x})\mathbb{I}_{\mathbf{x}\in C_2}$$

where (C_1, C_2) is a partition of \mathcal{D}_x , $[0, 1]^2$ in our case. **But** the estimator of $z(\mathbf{x})$ which is equal to:

$$\mathbb{E}\left[\bar{Z}(\mathbf{x})\right] = \hat{\bar{\mu}}_{HF,1}(\mathbf{x})\mathbb{I}_{\mathbf{x}\in C_1} + \hat{\bar{\mu}}_{HF,2}(\mathbf{x})\mathbb{I}_{\mathbf{x}\in C_2}$$

is clearly discontinuous.

Soft or "randomly hard" mixture of LOOCK models ? II

Hard mixture

$$ar{Z}(\mathbf{x}) = ar{Z}_{HF,1}^{n_{HF}}(\mathbf{x})\mathbb{I}_{\mathbf{x}\in C_1} + ar{Z}_{HF,2}^{n_{HF}}(\mathbf{x})\mathbb{I}_{\mathbf{x}\in C_2}$$

where (C_1, C_2) is a partition of \mathcal{D}_x , $[0, 1]^2$ in our case. **But** the estimator of $z(\mathbf{x})$ which is equal to:

$$\mathbb{E}\left[\bar{Z}(\mathbf{x})\right] = \hat{\bar{\mu}}_{HF,1}(\mathbf{x})\mathbb{I}_{\mathbf{x}\in C_1} + \hat{\bar{\mu}}_{HF,2}(\mathbf{x})\mathbb{I}_{\mathbf{x}\in C_2}$$

is clearly discontinuous.

A solution...

"Randomly hard" mixture

$$\bar{Z}(\mathbf{x};\omega) = \bar{Z}_{HF,1}^{n_{HF}}(\mathbf{x})\mathbb{I}_{\mathbf{x}\in\tilde{C}_{1}(\omega)} + \bar{Z}_{HF,2}^{n_{HF}}(\mathbf{x})\mathbb{I}_{\mathbf{x}\in\tilde{C}_{2}(\omega)}$$

where $(\tilde{C}_1(\omega), \tilde{C}_2(\omega))$ is a realization of the partition (C_1, C_2) .

Soft or "randomly hard" mixture of LOOCK models ? III

"Randomly hard" mixture

$$ar{Z}(\mathsf{x};\omega) = ar{Z}_{HF,1}^{n_{HF}}(\mathsf{x})\mathbb{I}_{\mathsf{x}\in ilde{C}_{1}(\omega)} + ar{Z}_{HF,2}^{n_{HF}}(\mathsf{x})\mathbb{I}_{\mathsf{x}\in ilde{C}_{2}(\omega)}$$

where $(\tilde{C}_1(\omega), \tilde{C}_2(\omega))$ is a realization of the partition (C_1, C_2) . In this case, the estimator of $z(\mathbf{x})$ is:

$$\mathbb{E}\left[\bar{Z}(\mathbf{x})\right] = \mathbb{E}\left[\mathbb{E}\left[\bar{Z}(\mathbf{x})|(C_1, C_2)\right]\right] \\ = \mathbb{P}\left[C_1 \ni \mathbf{x}\right]\hat{\bar{\mu}}_{HF,1}(\mathbf{x}) + \mathbb{P}\left[C_2 \ni \mathbf{x}\right]\hat{\bar{\mu}}_{HF,2}(\mathbf{x})$$

with
$$\mathbb{P}[C_2 \ni \mathbf{x}] = 1 - \mathbb{P}[C_1 \ni \mathbf{x}]$$
. Moreover:

$$\operatorname{Var}[\bar{Z}(x)] = \mathbb{E}\left[\operatorname{Var}[\bar{Z}(x)|(C_1, C_2)]\right] + \operatorname{Var}\left[\mathbb{E}\left[\bar{Z}(x)|(C_1, C_2)\right]\right]$$

$$= \mathbb{P}[C_1 \ni \mathbf{x}]\hat{s}_{HF,1}^2(\mathbf{x}) + (1 - \mathbb{P}[C_1 \ni \mathbf{x}])\hat{s}_{HF,2}^2(\mathbf{x})$$

$$+ \mathbb{P}[C_1 \ni \mathbf{x}]\hat{\mu}_{HF,1}^2(\mathbf{x}) + (1 - \mathbb{P}[C_1 \ni \mathbf{x}])\hat{\mu}_{HF,2}^2(\mathbf{x})$$

$$- \left(\mathbb{P}[C_1 \ni \mathbf{x}]\hat{\mu}_{HF,1}(\mathbf{x}) + (1 - \mathbb{P}[C_1 \ni \mathbf{x}])\hat{\mu}_{HF,2}(\mathbf{x})\right)^2$$

Soft or "randomly hard" mixture of LOOCK models ? IV

"Randomly hard" mixture

$$\bar{Z}(\mathbf{x};\omega) = \bar{Z}_{HF,1}^{n_{HF}}(\mathbf{x})\mathbb{I}_{\mathbf{x}\in\tilde{C}_{1}(\omega)} + \bar{Z}_{HF,2}^{n_{HF}}(\mathbf{x})\mathbb{I}_{\mathbf{x}\in\tilde{C}_{2}(\omega)}$$

where $(\tilde{C}_1(\omega), \tilde{C}_2(\omega))$ is a realization of the partition (C_1, C_2) .

$$\mathbb{E}\left[ar{Z}(x)
ight] = \mathbb{P}\left[x \in \mathit{C_1}
ight] \hat{ar{\mu}}_{\mathit{HF},1}(\mathbf{x}) + (1 - \mathbb{P}\left[x \in \mathit{C_1}
ight]) \hat{ar{\mu}}_{\mathit{HF},2}(\mathbf{x})$$

$$\begin{aligned} \mathsf{Var}\left[\bar{Z}(x)\right] &= & \mathbb{P}\left[x \in C_{1}\right]\hat{s}_{HF,1}^{2}(\mathbf{x}) + (1 - \mathbb{P}\left[x \in C_{1}\right])\hat{s}_{HF,2}^{2}(\mathbf{x}) \\ &+ & \mathbb{P}\left[x \in C_{1}\right]\hat{\mu}_{HF,1}^{2}(\mathbf{x}) + (1 - \mathbb{P}\left[x \in C_{1}\right])\hat{\mu}_{HF,2}^{2}(\mathbf{x}) \\ &- & \left(\mathbb{P}\left[x \in C_{1}\right]\hat{\mu}_{HF,1}(\mathbf{x}) + (1 - \mathbb{P}\left[x \in C_{1}\right])\hat{\mu}_{HF,2}(\mathbf{x})\right)^{2} \end{aligned}$$

Possibility to extend this method to the situation where the number of low fidelity models is greather than 2 (\rightarrow multinomial law).

Creation of a hard classification

Recipe

Voronoi diagram + "Robustness estimation"

→ □ → → □ →

Creation of a hard classification

Recipe

Voronoi diagram + "Robustness estimation"

error(2nd Cross-Validation Co-Kriging predictor)

イロン 不聞 とくほとう ほどう

Creation of a hard classification

Recipe

Voronoi diagram + "Robustness estimation"

error1 - error2

<ロ> <同> <同> < 同> < 同>

э

(error1<error2)=beige

Creation of a hard classification

Recipe

Voronoi diagram + "Robustness estimation"

(mean(error1)<mean(error2))=beige

(error1<error2)=beige

<ロト <部ト < 注ト < 注ト

э

Creation of a hard classification

Recipe

Voronoi diagram + LOO errors

(mean(error1)<mean(error2))=beige

(LOO.error.1<LOO.error.2)=beige

<ロト <部ト < 注ト < 注ト

э

Creation of a hard classification

Recipe

Voronoi diagram + "Error estimation"

error(1st Cross-Validation Co-Kriging predictor)

error(2nd Cross-Validation Co-Kriging predictor)

・ロト ・回ト ・ヨト ・ヨト

Creation of a hard classification

Recipe

*

Voronoi diagram + Co-Kriging Variances

1st Co-Kriging Variance

х

2nd Co-Kriging Variance

イロト イポト イヨト イヨト

Creation of a hard classification

Recipe

Voronoi diagram + Co-Kriging Variances

Matthias De Lozzo & Loïc Le Gratiet

 □
 →
 ≥
 →
 ⊇
 →
 ⊒
 →
 ⊒
 →
 ⊒
 →
 ⊒
 →
 ⊒
 →
 ⊒
 →
 ⊒
 →
 ⊒
 →
 ⊒
 →
 ⊒
 →
 ⊒
 →
 ⊒
 →
 ⊒
 →
 ⊒
 →
 ⊒
 →
 ⊒
 →
 ⊒
 →
 ⊒
 →
 ⊒
 →
 ⊒
 →
 ⊒
 →
 ⊒
 →
 ⊒
 →
 ⊒
 →
 ⊒
 →
 ⊒
 →
 ⊒
 →
 ⊒
 →
 ⊒
 →
 ⊒
 →
 ⊒
 →
 ⊒
 →
 ⊒
 →
 ⊒
 →
 ⊒
 →
 ⊒
 →
 ⊒
 →
 ⊒
 →
 ⊒
 →
 ⊒
 →
 ⊒
 →
 ⊒
 →
 ⊒
 →
 ⊒
 →
 ⊒
 →
 ⊒
 →
 ⊒
 →
 ⇒
 ⇒
 ⇒
 ⇒
 ⇒
 ⇒
 ⇒

Creation of a "randomly" hard classification

Recipe

Repeat K times:

 Add a Gaussian noise to the boundary between the beige and the blue classes.

or in an equivalent way

Add the same Gaussian noise to the points of interest.

Q Update the labels of each point of interest, according to the label of its Voronoi cell, *i.e.* x ∈ C₁^(k) or x ∈ C₂^(k)

 $ightarrow \mathbb{P}[C_1 \ni \mathbf{x}] \approx rac{1}{K} \sum_{k=1}^{K} \mathbb{I}(\mathbf{x} \in C_1^{(k)})$

Toy example: randomly hard mixture of LOOCK models I

1st Cross-Validation Co-Kriging predictor

2nd Cross-Validation Co-Kriging predictor

Final model with learning errors

Matthias De Lozzo & Loïc Le Gratiet

Median

Matthias De Lozzo & Loïc Le Gratiet Learning of multi-fidelity data with a mixture of GP

Median

Maximum

Matthias De Lozzo & Loïc Le Gratiet Learning of multi-fidelity data with a mixture of GP

Maximum

Matthias De Lozzo & Loïc Le Gratiet Learning of multi-fidelity data with a mixture of GP

RMSE

RMSE

Perspectives

- Criterion based on the boostrap estimator of the kriging variance [Hertog et al., 2005] for a soft, hard or "randomly" hard mixture
- Choice of another distance for the Voronoï cells
- Validation of the selected method on the industrial application

4 B 6 4 B

Learning of multi-fidelity data with a mixture of Gaussian processes

Matthias De Lozzo & Loïc Le Gratiet

Thank you for your attention.

Discussion on multi-fidelity simulators, GdR MASCOT-NUM May 17th, 2013, Institut Henri Poincaré, Paris