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Initial model

Consider some input X define on a given space : Rp,

L2([0, 1]), L2(Ω× [0, 1])...

Eventually this input is linked to an output Y via an unknown

function f .

Y = f (X )
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How and what for

Goal :

find a sub-space on which the initial input can be projected
without or with a minimum loss of information

- independently of the output (unsupervised learning).

- guided by the output (supervised learning).

Methods :

Selection : eliminate the input dimensions which do not

explain the phenomenon under study (sensitivity analysis,

LASSO...)

Extraction : optimally reorganized the information carried

by the input with regard or not to an observable output

(ACP, SIR,...)
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Context

Crayon après cycle de vie dans le réacteur nucleaire. On

considère le taux de combustion mesuré en

Megawatt-jour/tonnes sur l’axe verticale du crayon
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Context

In nuclear power technology, burnup (also known as fuel

utilization) is a measure of how much energy is extracted from

a nuclear fuel assembly. It is measured both as the actual

energy released per mass of initial fuel in gigawatt-days/metric

ton of heavy metal (GWd/tHM)
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The optimization problem

As the criticality coefficient depends on the combustion rate,

identify the most penalizing rate leads to solve the following

inverse optimization problem :

x∗ = argmax
x∈V

f
(

x
)

. (1)

where V ⊂ L2(Ω× [0, 1]) is a normed linear functional space.

To ensure the existence of the maximum and for the problem

(1) to be well posed, some suitable hypothesis on the functional

f and the set V should be verified (semicontinuity, compacity...).
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Optimal constant piecewise approximation

We need to convert a smooth curve into an optimal piecewise

constant function (L = 12 intervals). What is the optimal time

partition for the following criterion

min
t2,...,tL−1

∥

∥f −
L−1
∑

j=1

mi1[tj ,tj+1]

∥

∥

L2[0,1]

where

mi =
1

ti+1 − ti

∫ ti+1

ti

f (t)dt

(Why L2 ?)
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Burn-up profil treatment

Splines (with optimal knots) are better

de Boor, C. (1973).

Good approximation by spline with variable knots.
Internat. Ser. Numer. Math., 21 :57–72

Nasty non linear problem

Any computational scheme has to be content to find, by

some descent method a locally best approximate (even

quite expensive)

Let’s look to bounds on

dist∞(f ,Sk
n ) = inf

g∈Sk
n

‖f − g‖∞

Sk
n =

⋃

t∈T

Sn
t and Sn

t = {spline of degree < n with knots t}
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Burn-up profil treatment

Splines (with optimal knots) are better

Buchard, H. (1974).

Splines (with optimal knots) are better.
Appl. Anal., 3 :309–319

If f ∈ Cn[0, 1], N ≥ Nf , 1 ≤ p ≤ ∞ then

distp(f ,S
k
n ) ≤ dnk−n‖f (n)‖σ with σ =

1

n + 1/p

Pence, D. and Smith, P. (1982).

Asymptotic properties of best Lp [0, 1] approximation by splines.
SIAM J. Math. Anal., 13(3) :409–420

⇒ A functional proof of optimality.
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Optimal constant piecewise approximation

Under monotony hypothesis the problem has a unique solution.

We don’t have monotony hypothesis, the solution can be

multiple (symmetry). We run a BFGS algorithm with starting

point {ti}i=2,...,L−1

ti = H−1(
i

L
) and H(t) =

∫ t

0

|f ′(s)|2/3ds/

∫ 1

0

|f ′(s)|2/3ds
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The stochastic process

Let X (t) be a mean square continuous process defined on
[0,1], i.e.

X (t) ∈ L2
(

Ω× [0, 1]
)

= {S(t) : Ω → R, t ∈ [0, 1]
∣

∣E

∫ 1

0

S(t)2dt < +∞}

We suppose given a functional sample of size n

{

Xi(t), t ∈ [0, 1]
}

i=1,...,n
and

{

Yi

}

i=1,...,n

known on {t1, ..., tp} a uniform discretization of [0,1] :

{

Xi(tj)
}

i=1,...,n
j=1,...,p
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Smoothing/Projecting Data

The value of the functional samples on {t1, ..., tp} :

{

Xi(tj)
}

i=1,...,n
j=1,...,p

are use to obtain the smooth functions Xi(t) via either B-spline

or wavelet decompositions.
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Smoothing/Pojecting Data : B-spline

X (t) =
(

X1(t), ...,Xn(t)
)t

=
(

K
∑

k=1

c1kφk (t) + ǫ1(t), ...,

K
∑

k=1

cnkφk (t) + ǫn(t)
)t
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Smoothing/Pojecting Data : B-spline

X (t) =
(

X1(t), ...,Xn(t)
)t

=
(

K
∑

k=1

c1kφk (t) + ǫ1(t), ...,
K
∑

k=1

cnkφk (t) + ǫn(t)
)t

= Cφ(t) + ǫ(t)

≃ C̃φ(t)

Where the ǫ’s are zero mean, uncorrelated and C̃ is obtained by

least square or penalized least square on the discretized

sample
{

Xi(tj)
}

i=1,...,n
j=1,...,p

Miguel Munoz Zuniga and Yann Richet



Dimension reduction introduction

The burn-up problem

Hypothesis, data, model and idea

Dimension reduction methods

Efficient Global Optimization

Numerical results

The stochastic process

Smoothing/Projecting data

The model

The algorithm

Smoothing/Projecting Data : Wavelet

Under the considered hypothesis the stochastic process has

the following wavelet decomposition

X (t) =
2j0−1
∑

k=0

ξj0,kφj0,k +
∑

j≥j0

2j−1
∑

k=0

ηj,kψj,k

where ξj0,k =
〈

φj0,k ,X
〉

and ηj,k =
〈

ψj,k ,X
〉

are sequences of

random variables.
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Smoothing/Projecting Data : Wavelet

Under the considered hypothesis the stochastic process has

the following wavelet decomposition

X (t) =
2j0−1
∑

k=0

ξj0,kφj0,k +
∑

j≥j0

2j−1
∑

k=0

ηj,kψj,k

where ξj0,k =
〈

φj0,k ,X
〉

and ηj,k =
〈

ψj,k ,X
〉

are sequences of

random variables. Approximated by it’s ’empirical’ projection

onto VJ

X J(t) =

2j0−1
∑

k=0

ξ̃j0,kφj0,k +

J−1
∑

j=j0

2j−1
∑

k=0

η̃j,kψj,k

with ξ̃j0,k
= p−1 ∑p−1

j=1
X(tj )φj0,k

(tj ), η̃j,k = p−1 ∑p−1
j=1

X(tj )ψj,k (tj ) and p = 2J .

Miguel Munoz Zuniga and Yann Richet



Dimension reduction introduction

The burn-up problem

Hypothesis, data, model and idea

Dimension reduction methods

Efficient Global Optimization

Numerical results

The stochastic process

Smoothing/Projecting data

The model

The algorithm

The model

Y = f
(

X (t)
)

+ ǫ

= g
(

〈β1,X 〉 , ..., 〈βK ,X 〉 , ǫ′
)

+ ǫ

= g
(

θ1, ..., θK , ǫ
′
)

+ ǫ

= τ(θ) + Z (θ) (2)

where ǫ, ǫ′ are centered random variable independent of

X (t), {βi(t), i = 1...K} are K orthonormal functions in L2
(

[0, 1]
)

,

f , g smooth functions, 〈., .〉 the standard inner product on

L2
(

[0, 1]
)

, Z a centered Gaussian process and τ a trend.
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The algorithm

Data as discretized functional data

Smoothing data : B-spline or Wavelet, estimate

decomposition coefficients and parameters

Find, β’s, the reduced space base functions : PCA, MAVE,

SIR

Sample a number of curves in the previous basis, i.e

sample a number of coordinates θ’s

Run EGO algorithm on the model with inputs the θ’s + (∗)

Transpose the found optimal θ∗ onto the ’smooth’ functional

space

(∗) Transform the obtained smooth function into the

considered data (piecewise)
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The empirical approximations

For any s, t ∈ [0, 1] and v ∈ L2[0, 1], we suppose and denote :

µ(t) = E
(

X (t)
)

= 0

σ2(t) = E
(

X (t)2
)

γ(t , s) = E
(

X (t)X (s)
)

(Γv)(t) =
∫ 1

0
γ(t , s)v(s)ds

We consider the empirical estimators :

σ̂2(t) = (n − 1)−1
∑n

i=1 Xi(t)
2 = (n − 1)−1X(t)2

γ̂(t , s) = (n − 1)−1
∑n

i=1 Xi(t)Xi(s) = (n − 1)−1X′(t)X(s)

(Γ̂v)(t) =
∫ 1

0
γ̂(t , s)v(s)ds
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Functional Principal Component analysis (1/2)

X (t) =
+∞
∑

i=1

〈βi ,X 〉βi(t) (Karhunen-Loeve)

Find the β’s functions minimizing E
(

‖X −
∑K

i=1 〈βi ,X 〉βi‖
2
)

The solutions are the K eigenfunctions with largest

eigenvalues of the following eigenequation :

(Γβ)(t) = λβ(t) ∼ (Γ̂β)(t) = λβ(t)

Keep the eigenfunction for which the eigenvalue

correspond to more than 1% of the total variance
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Functional Principal Component analysis (2/2)

Considering a B-spline expansion of the functional inputs

X (t) = C̃φ and the basis eigenfunction β(t) = φ(t)b′ solve the

eigenequation

(Γ̂β)(t) = λβ(t)

is equivalent to solve

(n − 1)−1C̃′C̃Wb = λb

where W =
∫

φ(t)φ′(t)dt and Wij =
∫

φi(t)φj(t)dt
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Multidimensional Sliced Inverse Regression

Find β’s minimizing E

(

‖E(X |Y )−
∑K

i=1 〈βi ,E(X |Y )〉βi‖
2
)
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Wavelet Sliced Inverse Regression (1/2)

Under Generalized Linear Design Condition

Find β’s minimizing E

(

‖E(X |Y )−
∑K

i=1 〈βi ,E(X |Y )〉βi‖
2
)

For any t , consider the BINWAV wavelet estimator of

E(X (t)|Y = y) with design points the Yi ’s : M̂y (t)

Consider Γ̂ and estimate the covariance operator of

E(X |Y ) : Γ̂e = n−1
∑n

i=1 M̂Yi
⊗ M̂Yi
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Wavelet Sliced Inverse Regression (2/2)

Under Generalized Linear Design Condition

Evalute spectral decomposition of Γ̂e and it’s projection Γ̂kn
e

Evaluate spectral decomposition of

Γ̂1/2(Γ̂kn
e )+Γ̂1/2 : (αi , ηi)i=1,...,K

EDR directions are given by βi = α−1
i (Γ̂kn

e )+Γ̂1/2ηi

Use chi-square sequential test for determining the number

of effective dimension
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Wavelet Minimum Average Variance Estimation (1/4)

Find β’s minimizing E

(

[

Y − E
(

Y | 〈β1,X 〉 , ..., 〈βK ,X 〉
)]2

)

Consider a wavelet expansion of the functional inputs

X J(t) =
2j0−1
∑

k=0

ξ̃j0,kφj0,k +
J−1
∑

j=j0

2j−1
∑

k=0

η̃j,kψj,k

and the basis

βJ
i (t) =

2j0−1
∑

k=0

c i
j0,k
φj0,k +

J−1
∑

j=j0

2j−1
∑

k=0

d i
j,kψj,k

Let γ̃J gather X J(t) expansion coefficient and βJ
i gather

βJ
i (t) expansion coefficients then
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Wavelet Minimum Average Variance Estimation (2/4)

E
(

Y | 〈β1,X 〉 , ..., 〈βK ,X 〉
)

= E
(

Y |
〈

βJ
1, γ̃

J
〉

, ...,
〈

βJ
K , γ̃

J
〉

)

= E
(

Y |B′γ̃J
)

≃ a + b′B′(γ̃J − γ̃J
0 )

Solve the minimization problem

min
B:B′B=Id

al ,bl

n
∑

i=1

n
∑

l=1

wil

[

Yi − (al + b′
lB

′(γ̃J
i − γ̃J

l ))
]2
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Wavelet Minimum Average Variance Estimation (4/4)

Estimate weigths wil depending on the distance γ̃J
i − γ̃J

l by

kernel approximation. Can be adaptative : RWMAVE

Find the dimension of the dimension reduction space :

Cross-validation
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Kriging (1/2)

Y = g(θ) + ǫ = τ(θ) + Z (θ)

Consider the trend of the form

τ(θ) =

l
∑

j=1

δj fj(θ)

Consider Gaussian (hyp.) sample (Transform it into uniform)
{

θi

}

i=1,...,N
or

{

θi

}

i=1,...,n

Consider covariance kernel

C(u, v) = σ2R(u − v, ψ)
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Then Y (θ)|θ′
is ∼ N

(

mUK (θ), s
2
UK (θ)

)

where

mUK (θ) = f(θ)
′
δ̂ + c(θ)

′
C
−1

(y − F δ̂)

s
2
UK (θ) = s

2
SK (θ) + (f

′
(θ) − c(θ)

′
C
−1

F )
′
(F

′
C
−1

F )
−1

(f
′
(θ) − c(θ)

′
C
−1

F )

s
2
SK (θ) = C(θ̂, θ̂) − c(θ)

′
C
−1

c(θ)

δ̂ = (F
′
C
−1

F )
−1

F
′
C
−1

y
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Expected improvement criterion

EI(θ) = E

[

(

min(Yi)− Y (θ)
)+

|Yi

]

=
(

min(Yi)− m(θ)
)

Φ
(min(Yi)− m(θ)

s(θ)

)

+ s(θ)φ
(min(Yi)− m(θ)

s(θ)

)
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Expected Improvement

Evaluate Yi = Y (θi) and estimate covariance parameters

by maximum likelihood.

Compute θnew = argmaxEI(θ)

Evaluate Y (θnew )

Re-estimate covariance parameters and update kriging

taking into account the new design point
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