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Context and Notation

The main problem is to predict and output y given an input x .

Perform well on average:

◮ Output and input modelled by random variables X and Y.

◮ The best prediction is E[Y|Y(X ) = y ]

The given data (X ,Y ) : ((x1, y1), ..., (xn, yn)) are called observations. We
will try to learn from the observations by devicing an strategy and we will
try to determine how good it is.
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We present 2 alternatives to the linear Cokriging method:

◮ One in which we estimate the relationship by local polynomials and

◮ One in which we use adaptive wavelets.
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Learning With Gaussian Processes.

High and Low Accuracy Observations.
The Linear Model.
Non-linear Model.

Coarse to Fine Wavelet Regression
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Learning With Gaussian Processes.

Learning with Gaussian Processes

◮ Observations of the form (X ,Y ) where X is deterministic ,

◮ and Y is modeled by a Gaussian process Y that depends on x .

Sometimes we will note Y(x) instead of Y to highlight this dependence.
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Learning With Gaussian Processes.

Learning with Gaussian Processes

We had that Y(x) ∼ GP(m(x), k(x , x ′)).

The best estimation and error of estimation are

◮ ŷ∗ = E[Y(x∗)|Y(X ) = Y ] and

◮ σ̂2(y∗) = Var [Y(x∗)|Y(X ) = Y ].

With explicit formullas

◮ ŷ∗ = m(x∗)− k(x∗,X )k(X ,X )−1(Y −m(X )) and

◮ σ̂2(y∗) = k(x∗, x∗)− k(x∗,X )k(X ,X )−1k(x∗,X )T .
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Learning With Gaussian Processes.

Learning with Gaussian Processes

The covariance and mean functions are parametrized.

◮ m(x) = µc

◮ k(h) = σ2
∏n

k=1 gk(h
2; θk) for h = (xk − x ′k) and x ∈ R

n.

Estimate all the parameters to build the prediction. Maximize minus the
log-likelihood of Y(X ) at Y - which is a Gaussian Vector.

We note k(h) = σ2g(h).
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Learning With Gaussian Processes.

Learning with Gaussian Processes

To sumarize:

◮ Define a mean and covariance function.

◮ use the likelihood of the parameters of Y(X ) at Y to estimate them.
◮ In our case µ, σ2 are constants and if x ∈ R

n, θ ∈ R
n

◮ make a prediction by using the formulas above.

The problem of learning with Gaussian processes is the problem of learning
the free parameters of the mean and covariance function.
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High and Low Accuracy Observations.

Learning with G.P. when low and high accuracy responses

are available.

The main objectve: predict an output given two sets of observations of the
same type.

For example, we solve

y ′ = sin(x4y2), x ∈ [0, 100] (1)

by using Euler’s method with two different discretization steps hl = 2h and

hh = h to obtain ỹl and ỹh.

9 /
√

π



High and Low Accuracy Observations.

Learning with G.P. when low and high accuracy responses

are available.

ỹl is easier to calculate but less accurate than ỹh. That is why we consider
an observation set as follows:

◮ For hl , Xl : 0, 2h, 4h, ..., 100, Yl : ỹl(0), ỹl(2h), ..., ỹl(100).

◮ For hh, Xh : 0, 6h, 12h, ..., 100, Yh : ỹh(0), ỹh(6h), ..., ỹh(100).

Xl has more elements than Xh. So is Yl with respect to Yh.

Xh is not necessarily a subset of Xl . In fact, Xh 6⊂ Xl is a more general
setting and more convenient in terms of exploration.

We try to learn yh as it is more accurate.
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High and Low Accuracy Observations.

Learning with G.P. when low and high accuracy responses

are available.

We try to make a prediction at a point (xh
∗
, yh

∗
) related to ỹh by using all

the data available.

◮ ŷh
∗
= E[Yh(x

h
∗
)|Yh(Xh) = Yh(Xh),Yl(Xl) = Yl(Xl)]

◮ σ̂2(yh
∗
) = Var(Yh(x

h
∗
)|Yh(Xh) = Yh(Xh),Yl(Xl) = Yl(Xl))
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High and Low Accuracy Observations.

Learning with G.P. when low and high accuracy responses

are available.

As before, the mean and covariance functions of Yl and Yh depend on
µl , σ

2
l and θl and µh, σ

2
h and θh respectively.

To estimate them we would like to maximize the likelihood of
(Yl(Xl),Yh(Xh)) who is Gaussian vector.
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High and Low Accuracy Observations. The Linear Model.

Linear Model.

Once again, the observations are (Xl ,Yl) : (x
l
1, y

l
1), . . . (x

l
n, y

l
nl) and

(Xh,Yh) : (x
h
1 , y

h
1 ), . . . (x

h
nh, y

h
nh)

◮ Xl and Xh are deterministic;

◮ Yl and Yd are modeled by Yl(x) ∼ GP(µl , σ
2
l gl(x , x

′)) and
Yd(x) ∼ GP(µd , σ

2
dgd(x , x

′)).

◮ Yl and Yd are independent;

◮ Yh(x) = rYl(x) + Yd(x).
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High and Low Accuracy Observations. The Linear Model.

Learning with G.P. when low and high accuracy responses

are available: Linear Model.

We can estimate all the parameters. µl , σ
2
l and θl and σ

2
d and θd and

(µd , r) by using

(µ̂d , r̂) = [NT (σ2dgd(Xh,Xh))
−1N]−1[NT (σ2dgd(Xh,Xh))

−1Yh(Xh)]

where N =
(
1length(nh) Yl(Xh)

)T
.

DIn order to estimate (µd , r) we need Yl(Xh).
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High and Low Accuracy Observations. The Linear Model.

Learning with G.P. when low and high accuracy responses

are available: Linear Model.

It turns out that if Yh(x) = rYl(x) + Yd(x), the prediction and prediction
error formulas are

rE[Yl(x
h
∗
)|Yl(Xl) = Yl(Xl)] + E[Yd(x

h
∗
)|Yd(Xl) = Yd(Xl)]

and

r2Var(Yl(x
h
∗
)|Yl(Xl) = Yl(Xl)) + Var(Yd(x

h
∗
)|Yd(Xl) = Yd(Xl)).
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High and Low Accuracy Observations. The Linear Model.

Non-linear model.

Is the linear model a good representation of the relationship between
(Xl ,Yl) and (Xh,Yh)?

Consider the following example in which we try to determine the influence
of some parameters on the solution of a differential equation.
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High and Low Accuracy Observations. Non-linear Model.

Non-linear model.

Is the linear model a good representation of the relationship between
(Xl ,Yl) and (Xh,Yh)?

Consider the following example in which we try to determine the influence
of some parameters on the solution of a differential equation.
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High and Low Accuracy Observations. Non-linear Model.

Non-linear model.

For each t ∈ {1, . . . , n}, solve





a2∇2
xp(th, x) =

p(th, x)− p((t − 1)h, x)

∆t
, ∀x ∈ Ω

∇xp(th, x) · n = 0, ∀x ∈ ∂Ω1 ∪ ∂Ω2 ∪ ∂Ω3

∇xp(th, x) · n = 1, ∀x ∈ ∂Ω0

p(0, x) = 1, ∀x ∈ Ω

(2)

for p(th, x). where a2 = k
γ(nCf +Cs)

and n is orthogonal to the border of the
domain ∂Ω.
The domain Ω is a rectangle with sides ∂Ω1, ∂Ω2, ∂Ω3 and the top side
∂Ω0.
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High and Low Accuracy Observations. Non-linear Model.

Non-linear model.
For each value π̃ = (k̃ , γ̃, C̃f ) and t ∈ {1, . . . , n}, we solve the projected
problem on El and Eh. We consider the maximum value of the response
on space for t = n, that we note maxx p(n, x), as the responses Yl(π̃) and
Yh(π̃).

Figure : El discretization grid.
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High and Low Accuracy Observations. Non-linear Model.

Non-linear model.

Figure : Eh discretization grid.
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High and Low Accuracy Observations. Non-linear Model.

Non-linear model.
The responses Yl(Π) and Yh(Π) are plotted on figure 3 below. The
relationship is clearly non-linear.
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High and Low Accuracy Observations. Non-linear Model.

Local-Polynomial Regression

Use the observed data (Xl ,Yl) and (Xh,Yh) to estimate ϕ by using locally
linear polynomials.

Set Yh = ϕ̂(Yl(x)) + Yd(x).

The estimated relationship ϕ̂, is locally linear.
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High and Low Accuracy Observations. Non-linear Model.

Local-Polynomial Regression

The parameters of Yl are estimated by maximizing the likelihood of the
given observations Yl .

To estimate those of Yd , we first fit ϕ̂ using (Xl ,Yl) and (Xh,Yh).

Once we have a formula for ϕ̂, we set Yd as Yh − ϕ̂(Yl).

We use the likelihood of Yd to build the corresponding parameter
estimators. Finally, we build the prediction and error formulas by plugging
in the estimates on the equations of Proposition 2.
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High and Low Accuracy Observations. Non-linear Model.

Local-Polynomial Regression

For x ∈ [0, 3] let
fl(x) = 3 sin(x) + 1 (3)

fh(x) = sin(3x). (4)
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High and Low Accuracy Observations. Non-linear Model.

Local-Polynomial Regression
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Figure : Locations Xl and Xh used on figures 6, 7 and 5.
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High and Low Accuracy Observations. Non-linear Model.

Local-Polynomial Regression
Figures 6 and 7 show the result obtained by applying the linear and
non-linear learning procedures to the observations made over the points on
figure 4.
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High and Low Accuracy Observations. Non-linear Model.

Local-Polynomial Regression
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Figure : Fit produced by the non parametric learning method.
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Coarse to Fine Wavelet Regression

Coarse to Fine Wavelet Regression

A coarse-to-fine algorithm to build a prediction using adaptive wavelets
when high accuracy and low accuracy inputs are available is proposed as
an alternative to the Gaussian process method. [CnK06, CK03]
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Coarse to Fine Wavelet Regression

Wavelet Regression
Wavelets functions are built from a single compactly supported function Ψ
by scaling and translating it as shown on figure 8.

Figure : Several levels of the Haar wavelet. Each level i is formed by contracting
and translating by a constant the wavelet functions of the previous scale i-1. (The
image was taken from http://cnx.org/content/m10764/latest/) .
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Coarse to Fine Wavelet Regression

Wavelet Regression

Wavelets represent the details of a function at a scale or resolution. To
explain the wavelet transform consider the following example:

Resolution Averages Detail Coefficients

4 [ 9 7 3 5 ]
2 [ 8 4 ] [ 1 -1 ]
1 [ 6 ] [ 2 ]

The wavelet transform of [ 9 7 3 5 ] is [ 6 2 1 -1 ].
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Coarse to Fine Wavelet Regression

Wavelet Regression

Given a set of observations (X ,Y ) : (x1, y1), . . . (xn, yn), we solve the least
squares problem

nj∑

i=1

(yi − f (xi ))
2 (5)

where
f (x) =

∑

λ∈Λ

dλψλ(x) (6)

dλ are unknown constants and ψλ are wavelet functions. To build an
approximation of the unknown function that generated the observations.
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Coarse to Fine Wavelet Regression

Coarse to Fine Wavelet Regression

We will chose the wavelet basis functions ψλ by looking at the size of its
corresponding coefficients dλ and the number of points in their support.

If there are not enough points, we will add observations where needed.
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Coarse to Fine Wavelet Regression

Coarse to Fine Wavelet Regression

Figure : Test function with 20 observation points.
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Coarse to Fine Wavelet Regression

Coarse to Fine Wavelet Regression

Figure : Initial wavelet basis with observation points.
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Coarse to Fine Wavelet Regression

Coarse to Fine Wavelet Regression

Figure : Chosen wavelet functions.
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Coarse to Fine Wavelet Regression

Multi-Fi. Coarse to Fine Wavelet Regression

We will use the low accuracy observations (Xl ,Yl) to help us to determine
where to explore Fh to improve our approximation fh. The idea is that in
order to solve the minimization problem (5) after we added some wavelets
we will need, eventually, to add observations.

Because observations generated by Fl are easier to obtain, we would prefer
to explore Fl where it is similar to Fh. For that, we determine the
coefficients related to each data set. We note them d l

λ and dh
λ

respectively. Then, we determine which wavelets to add as follows:

36 /
√

π



Coarse to Fine Wavelet Regression

Multi-Fi. Coarse to Fine Wavelet Regression

dh
λ

|d l
λ − dh

λ |

dh
λ d l

λ

Stop

d l
λ

|d l
λ − dh

λ |

d l
λ d l

λ and dh
λ

Stop
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Coarse to Fine Wavelet Regression

Multi-Fi. Coarse to Fine Wavelet Regression

Suppose that we start at level -1 on the first plot of figure 13. We see on
the left a small coefficient. The recursive algorithm would stop at level -1.
But, as we can see, there are 3 big coefficients on level -3. The idea is to
design an statistical test to determine when to refine the decomposition
based on the the articles [AG02, AA04].

Also in [AA04, AG02] a method to find the discontinuity points of an
unknown function using wavelets is proposed. Applying such method on
the example would help us to determine the form of the subsets of [0, 1] in
which Fl is similar to Fh.
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Coarse to Fine Wavelet Regression
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