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Gaussian process model for design of experiments
→ Framework

How to approximate f : D ⊂ R
d → R expensive to evaluate?

Bayesian approach:

◮ f assumed to be a realization of
a Gaussian Process (GP)
Y ∼ GP (µ(·), C(·, ·)).

◮ n points evaluated
An = (y1:n, X1:n).

◮ Model given by the posterior
distribution GP (µn(·), Cn(·, ·)).

Initial design
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How to choose the next evaluations Xn+1:n+q ?
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Gaussian process model for design of experiments
→ Variance-based criteria for sequential design

Next evaluations maximize a criterion function:

JMSE
n (x) = Cn (x,x) ,

J IMSE
n (x) = −

∫

u∈D

Cn,x (u,u)du,

Jq-IMSE
n ( X

∩
Rd×q

) = −

∫

u∈D

Cn,X (u,u)du.

with Cn,X(u,v) = E (cov (Yu, Yv|Y X)) = cov (Yu, Yv|Y X) .

→ cov (Yu, Yv|Y X) is deterministic : it depends only on X (not on Y X).
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Gaussian process model for design of experiments
→ Sequential design of experiments with the MSE criterion
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Gaussian process model for design of experiments
→ Sequential design of experiments with the MSE criterion
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Gaussian process model for design of experiments
→ Sequential design of experiments with the MSE criterion

Variance-based criteria fill the space but do not focus on a specific region...
→ How to deal with functions exhibiting heterogeneous variations?

◮ Take a non-stationary model,

◮ define a criterion that intensifies exploration in high variation regions.
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Non-stationary Gaussian process models

Input space warping:

◮ Non-linear input space warping T : D → T (D) ⊂ R
d creates

non-stationary GP [Sampson and Guttorp, 1992].

C(x,x′) = k(T (x), T (x′)).

◮ T can be decomposed with basis functions [Gibbs, 1997].
→ Many parameters to estimate.

◮ T can be simplified as a tensor product T (x) = (Ti(xi))i=1,...,d

[Xiong et al., 2007].
→ irrelevant when high variations occur along unknown
non-canonical directions.

Treed Gaussian Process (TGP):

◮ different GPs are independently build on several partitions of the
input space [Gramacy, 2005].
→ not a GP model.
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Warped Multiple Index Gaussian Process (WaMI-GP)
Definition

C(x,x′) = k(T (x), T (x′)), with T (x) =
(

Ti

(

a⊤
i x; τ i

))

i=1,...,p
. (1)

Composition of warping T

1. Linear transformation of input space,
x → Ax, A ∈ R

p×d;
→ reduces dimension (p ≤ d),
→ changes canonical axis.

2. Axial warping, Ax → (Ti ((Ax)i; τ i))i=1,...,d

→ produces non-stationarity.

Parameters
A = (ai)i=1,...,p and (τ i)i=1,...,p.

T1

T2
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Proposed covariance kernel family
→ Example

◮ Stationary
isotropic

k(x,x′).

◮ Stationary
anisotropic

k(Ax, Ax
′).

◮ WaMI

k(T (x), T (x′)).
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Proposed covariance kernel family
→ Results on a mechanical test case

◮ test case in dimension d = 2,

◮ n = 20 initial evaluations (optimized Latin hypercube
design),

◮ comparison between stationary GP, TGP, WaMI-GP,

◮ 100 repetitions of the calculation from different
maximin LHS designs optimized,

◮ parameter estimations by maximum likelihood
(R package kergp).
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Proposed covariance kernel family

→ Properties

◮ Strict positive definiteness, Appendix 1

◮ mean-squared differentiability, Appendix 2

◮ sample path differentiability. Appendix 3
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Sampling criteria
→ Gradient random field

◮ ∇Y is a vector-valued GP with ∀x,x′ ∈ D

E (∇Y (x)| An) = ∇µn(x), and

cov

(

∂

∂xi

Y (x) ,
∂

∂xj

Y
(

x
′
)

∣

∣

∣

∣

An

)

=
∂2

∂ti∂t
′
j

Cn(t, t
′)

∣

∣

∣

∣

∣

t=x,t′=x′

.

→ Proposed criteria

◮ Gradient Norm (power η) Variance (GNV):

JGNV,η
n (x) = var ( ||∇Yx||

η| An) .

◮ The corresponding integrated form:

J IGNV,η
n ( X

∩
Rd×q

) = −

∫

u∈D

E (var ( ||∇Yu||
η| An,Y X))du.
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Sampling criteria

→ Calculation of JGNV,η
n (x) and E (var ( ||∇Yu||

η| An,Y X)):

◮ η = 1, semi-analytic (requires an reduced integral quadrature),

◮ η = 2, analytic.

Proposition

Let x ∈ D and denote by (λi(x))1≤i≤d the eigenvalues of ∇2cn(x,x). Then, the

GNV(2) criterion can be written as follows:

JGNV,η=2
n (x) = 4 ∇mn(x)

⊤∇2cn(x,x)∇mn(x) + 2

d
∑

i=1

λi(x)
2,

where λi,x(u) are the eigenvalues of ∇2cn,x(u,u).
Furthermore, the GNV(1) criterion can be expanded as follows:

JGNV,η=1
n (x) = ||∇mn(x)||

2 + tr
(

∇2cn(x,x)
)

− E (||Yx|| |An)
2
.
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Application
→ IRSN test case

◮ test case in dimension d = 2,

◮ n = 20 initial evaluations (optimized Latin hypercube design),

◮ comparison between several sequential design strategies under
stationary GP, TGP, WaMI-GP,

◮ 100 repetitions of the calculation from different initial designs,

◮ parameter estimation by maximum likelihood (R package kergp).

◮ sequential sampling of r = 10 points with the different criteria.
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Application
→ NASA fuild mechanics test case

◮ test case in dimension d = 3,

◮ n = 50 initial evaluations (optimized Latin hypercube design),

◮ comparison between several sequential design strategies under
stationary GP, TGP, WaMI-GP,

◮ 50 repetitions of the calculation from different initial designs,

◮ parameter estimation by maximum likelihood (R package kergp).

◮ sequential sampling of r = 20 points with the different criteria.
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Conclusion
For sampling functions with heterogeneous variations:

◮ We propose a new class of non-stationary GP models (WaMI-GP).

◮ In a generic GP framework (notably with stationary kernels), we define and
provide analytical formulas for gradient-based criteria, GNV and IGNV.

Numerical applications:

◮ On a first test case, WaMI-GP reduces prediction errors compared to stationary
GP and TGP. With a stationary model, we observe better performance of the
IGNV criterion compared to classical variance-based criteria. Overall best
performance is obtained with WaMI-GP combined with MSE.

◮ On a second test-case in higher dimension, TGP offers better performances at the
initial design stage but is outperformed by WaMI-GP along sequential design
based on the MSE criterion.

Currently under development:

◮ Definition and derivation of new criteria,

◮ open source R implementation,

◮ parameter estimation procedures for higher dimension cases.
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Processus gaussiens déformés pour l’apprentissage de zones instationnaires.
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Appendix

Proposition

Positive definiteness: Assume that k is strictly positive definite,

that the Ti(·; τ i) are injective and that the rank of A is equal to d.

Then the WaMI kernel of equation (1) is strictly positive definite.
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Appendix

Proposition

Mean-squared differentiability. The centred Gaussian process

with the covariance c defined in (1) is mean-squared differentiable in

all canonical direction under the following conditions:

◮ Ti(·; τ i), i = 1, . . . , q, have regularity C1 on R. We write

T ′
i (·; τ i) the univariate and continuous derivatives.

◮ ∀j, j′ ∈ {1, . . . , q}, ∀u ∈ R
q,

∂2k(v,v′)
∂vj∂v

′
j′

∣

∣

∣

∣

(u,u)

exists and is finite.
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Appendix

Proposition

Sample path differentiability. With the same assumptions on

Ti(·; τ i)’s and k as in the previous proposition, and assuming in

addition that

◮ D is compact,

◮ there exist C0, η0, ε0 > 0 such that ∀j, j′ ∈ {1, . . . , q}, and
∀u,u′ ∈ R

q, ||u− u′|| < ε0, we have
∂2k(v,v′)

∂vj∂v′
j′

∣

∣

∣

∣

∣

(u,u)

+
∂2k(v,v′)

∂vj∂v′
j′

∣

∣

∣

∣

∣

(u′,u′)

− 2
∂2k(v,v′)

∂vj∂v′
j′

∣

∣

∣

∣

∣

(u,u′)

≤
C0

|ln ||u−u
′|||1+η0

,

then the covariance c gives rise to a centred Gaussian Process

possessing a version with differentiable sample paths.
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