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History matching and implausibility

• Simulation data y is assumed to consist of emulator f (x) plus a
discrepancy term η. This simulation of a physical model is related to
observational data z through an error term e:

z = f (x) + η
︸ ︷︷ ︸

y

+e = y + e.

• Implausibility is a measure of the fit of the modelling scheme to real
data z. For an input value x0, the implausibility can be defined as

I(x0) = (z − E[f (x0)])
T (V ar (z − E[f (x0)]))

−1 (z − E[f (x0)])

High values of implausibility indicate that the model does not agree
with data. Low implausibility values are used together with a
threshold to define regions which have not been ruled out yet
(NROY) from the study:

XNROY = {x ∈ X : |I(x)| ≤ a}.
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A rule of thumb value for the threshold is a = 3, see Williamson and
Vernon (2014). When dealing with several output variables, the
implausibility is usually computed using a worst-case scenario as the
maximum of implausibilities for different outputs.

Starting with an initial design over a region of interest X , an emulator
is built. Unimportant factors are dropped and so are points which do
not match the observed data. This narrows the study, and a second
wave design is created in a smaller region, a model fitted and
implausibility criterion used to update the region XNROY . After a few
waves we end with a good fitting model and a reduced NROY region.

Efficient sampling strategies are important, as the NROY region in
subsequent waves is usually small relative to the initial design, and in
practice it may become disconnected. Simple, space filling designs often
have low efficiency when the NROY region is small.

Our proposal is to build a smooth response surface for implausibility
I(x) and exploit it to obtain new design points.
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Smooth supersaturated models (SSM)

We start with a data set y over a design D of n unique points. Write
the vector of model terms as f (x) = (xα : α ∈ M )T so that

η(x) = f (x)Tθ, (1)

where θ is the vector of coefficients for terms in f (x). The set M
contains exponents of monomial terms xα; satisfies hierarchy and
contains at least one identifiable model. Its size is such that |M | > n.

SSM The polynomial model

Y (x) =
∑

α∈M

θαx
α (2)

is smoothed, subject to interpolation conditions

min

∫

X
tr(H(Y )2)dx such that Xθ = y.
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Exploting the response surface of implausibility I(x)

We start with a synthetic implausibility function. White area is NROY
space, defined when I(x) ≤ 3. The search starts with values of I(x)
less than five (purple area indicates values s.t. 3 < I(x) < 5).
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Wave one: initial fit and locating potential minima

Using 50 design points, a smooth polynomial emulator is produced using
400 smoothing terms. The black dot indicates a local minimum of the
emulator surface, which will be used as starting point.
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The cone method (Bates et al 2007)

The method assumes that the region of interest is star-shaped around
the central point. Starting from a (suspected) central point, the cone
method generates candidate points in different directions.
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Selecting new candidate points for wave two

The lattice points from the cone method can be used for the next wave.
In this case, we wanted only ten new points. These were selected
randomly from ten clusters formed from the lattice points.
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At this stage, only one of this wave of ten points is in NROY and five
points have implausibility below five. This is not entirely surprising as
there must be some burn in.

We progress to wave 2 and the new SSM shows the NROY region
slowly forming.
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In wave 3, only two of the points generated are within NROY and six
points have implausibility less than five.
Not all points in waves 1-3 are shown, but there is heavy clustering of
points in the search area. A global implausibility model for the whole
region might not be appropriate and local models might be required.
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Case study: transport data set

We used a simplified version of the microsimulation model described in
Boukouvalas et al. (2014). Three variables Headway, CarFamiliarity
and MotorwayCost were allowed to vary, and nine locations could be
selected. The implausibility threshold was a = 14.9.
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Implausible (left) and non-implausible (right) configurations.

One step (one wave) application of the methodology described using
SSM produced efficiency of 60%. As a comparison, simple uniform
random sampling has an efficiency of 1%.
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Comments and future challenges

•Moving around the smooth implausibility surface is very easy as it is
polynomial in nature. Gradients are computed instantly and
evaluation of response surface is instantaneous.

• Our proposal can be quite efficient in one wave steps

• however it requires a lot of manual intervention if it is to be applied in
subsequent waves.

•We want to compare the performance of our method against the
implausibility-driven random walk of Williamson and Vernon (2014).
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A closer look at Smooth supersaturated models

Computing effects

All effects, marginal and interactions have closed formulæ, e.g. the
general form for fi, the main effect for the i-th factor, is

fi =

∫

y(x)dx−i − f0 =
∑

α∈M

θα




x
αi
i (αi + 1)− 1
∏d

j=1(αj + 1)



 .

The variations of effects have also closed form. For example, the
variation of main effect xi is

Di =

∫

f2i dxi = θT




1

∏d
j=1(αj + 1)(βj + 1)

·
αiβi

αi + βi + 1





α,β∈M

θ.
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Engine emissions data (Bates et al., 2003)

This data was collected for the analysis of an engine emissions simulator.
One response was available as a function of five input factors. Training
data has 48 observations and validation data set has 49 observations.

Main effects (N,C,A,B,M), engine emissions data set.

A supersaturated model was fit with 50 extra terms. The validation
RMSE was 6.5, within 5% of the data range.
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Engine emissions data 2

◦ Total variance D = 1494.54.
◦ Global sensitivity indices (%)

Univariate Double interactions

Total = 97.93% Total = 1.58%

SN SC SA SB SM SNC SNA SNB SNM SCA SCB SCM SAB SAM SBM

32.68 0.12 1.04 0.16 63.90 0.06 0.13 0.36 0.56 0.07 0.01 0.03 0.02 0.09 0.20

◦Main effects: M and N . Other: A and MN (small).

Interaction plot of main effects
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Borehole model (Morris et al., 1993)

This model quantifies waterflow in two aquifers. Its output y is flow rate
through the borehole, which depends on eight input parameters.

y =
2πTu(Hu −Hl)

ln(r/rw)
(

1 + 2LTu
ln(r/rw)r2wKw

+ Tu
Tl

)

Six of the model inputs are kept fixed so that the model depends only
on two of the input parameters, termed t1 = rw and t8 = Kw.

The design consisted of the following (coded) design points
(0, 0), (0.268, 1) and (1, 0.268). At each design site, model response y
and partial derivatives with respect to the two inputs ∂y/∂t1 and
∂y/∂t8 were evaluated. A smooth Hermite interpolator with 25
(graded) terms was fitted to the data. The value of smoothness
achieved was Ψ∗

2 = 46243.2.
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Borehole model: results
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Dependence of Ψ2 on number of extra terms

Smooth supersaturated models have a close relation with (cubic)
splines, as splines minimize the criterion Ψ2 (Halliday, 1957). We have
observed experimentally that SSM tends to splines as the number of
terms used for smoothing increase.

Extra terms 0 1 2 3 4 5 Spline

Ψ∗
2

76.543 74.698 33.153 33.020 27.767 27.745 26.744

Convergence of minimal roughness Ψ∗
2
to spline, one dimensional simulated data.

In a multivariate setting, we observe reduction of smoothness Ψ2 as
extra terms are introduced. There is no unique way of adding the extra
terms and we currently investigate different forms of doing it.
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Engine emissions data 3
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Each trajectory is created from a starting model and sequentially adding
terms that minimize Ψ2.
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Engine emissions data 4
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RMSE (using validation data) vs. Ψ2. Each point corresponds to a
smooth supersaturated model.
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Smooth supersaturated models and its norm

The smooth model minimizes Ψ2 subject to interpolation conditions.

Univariate version of criterion is Ψ2 =
∫ (

y(x)′′
)2

dx.

For functions f, g, define inner product

〈f, g〉 :=

∫

f ′′g′′dx =

∫
∑

i,j

f ijgijdx

We are interested in polynomial functions for which 〈f, g〉 ≥ 0.
Considering monomial terms only, the inequality is strict if we exclude
the constant and linear terms in which case 〈1, ·〉 = 〈x, ·〉 = 0.

Now consider y(x) = f (x)Tθ and the criterion simplifies to

Ψ2 = ||y(x)||2 = 〈f (x)T θ, f (x)T θ〉 = θT 〈f (x), f (x)T 〉θ = θTKθ

with K := 〈f (x), f (x)T 〉.
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The inner product and representer

We use 〈·, ·〉 to recover functions as 〈R(s, x), f (x)T θ〉 = f (s)T θ. The
representer R(s, t) we build from the inner product is nonparametric

R(s, t) = f (s)TK−1f (t) = f (s)T 〈f (x), f (x)T 〉−1f (t),

and only depends on the number of monomial terms involved
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Eigendecomposition of R(s, t)

We decompose K−1 = UTU and with its eigenvalues let
Λ = diag(λ1, . . . , λN ) so that R(s, t) = f (s)TK−1f (t) = g(s)TΛg(t),
i.e.

R(s, t) = f (s)TUTΛ−1/2
︸ ︷︷ ︸

g(s)T

Λ Λ−1/2Uf (t)
︸ ︷︷ ︸

g(t)

=

N∑

i=1

λigi(s)
Tgi(t).
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Final comments and future challenges

•We have developed a methodology which produces model arbitrarily
close to splines. We estimate error using validation.

• The methodology allows use of derivative information and it is easy to
exploit as a response surface.

• Simple proof of convergence to splines (Bates et al, 2014).

• New developments allow formalization of material in Sobolev spaces,
we have given representer R(s, t). Further properties of the
representer to be explored.

•Model using representer y(x) = θ0 + θ1x +
∑n

i=1 βiR(x, xi)
potentially more efficient without need to invert large matrix(
X 0

K −XT

)

currently at the core of the method.
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