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MIT Uncertainty Quantification (UQ) group

Who we are:

◮ Currently 6 postdoctoral associates, 7 PhD students, 3 SM students

(some co-advised), one PI

◮ Part of the MIT Center for Computational Engineering; the Center

for Statistics within MIT’s new Institute for Data, Systems, and

Society (IDSS); and the MIT Department of Aeronautics and

Astronautics

Problem domains of interest:

1 Statistical inference and inverse problems: large-scale Bayesian
computation; model and dimension reduction for Bayesian inference;
sequential data assimilation and nonlinear filtering; model selection
◮ Applications: subsurface modeling, glaciology and ice-ocean

interactions, atmospheric remote sensing, chemical kinetics
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MIT Uncertainty Quantification (UQ) group

Problem domains of interest (continued):

2 Forward UQ: uncertainty propagation, solution of random ODEs and
PDEs; polynomial chaos, sparse grids, tensor methods;
high-dimensional approximation
◮ Applications: sensitivity analysis and surrogate modeling in many areas,

including aerospace systems; stochastic control

3 Optimal experimental design: Optimal data collection; Bayesian
approaches to model-based batch and sequential experimental design
◮ Applications: combustion kinetics, contaminant source detection, UAV

navigation and path planning

4 Optimization under uncertainty: Derivative-free optimization with
risk/robustness measures or constraints; decision-making under
uncertainty
◮ Applications: chemical process design; energy conversion systems
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MIT Uncertainty Quantification (UQ) group

Open-source codes:

◮ MUQ: http://muq.mit.edu, MIT Uncertainty Quantification
Library
◮ A C++/python library for both modelers and algorithm developers;

many UQ tools

◮ (S)NOWPAC: http://bitbucket.org/fmaugust/nowpac,
(Stochastic) Nonlinear Optimization with Path-Augmented
Constraints
◮ Derivative-free nonlinear constrained optimization with risk and

robustness measures

Support from:

◮ Government agencies: DOE, AFOSR, NSF, DARPA

◮ Industry and others: BP, Eni, United Technologies, KAUST

Collaborations with Sandia, Oak Ridge, UT Austin, Harvard, USC, Duke,

Montana, Colorado, LIMSI-CNRS, . . .
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Inference with large-scale models

Example: ice sheet dynamics in western Antarctica

Western Antarctic Ice Sheet

[Rignot et al. 2011]

Pine Island Glacier

[NASA]
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Bayesian inference setting

Posterior density of the parameters

π(θ) := p(θ|d) ∝ L(d, f(θ))p(θ)

Ingredients:

◮ Parameters θ ∈ Rd ; data d ∈ Rn

◮ Prior density p(θ) : Rd → R+

◮ Forward model f : Rd → Rn

◮ Often a black-box function (the setting for this talk!)
◮ Each evaluation is expensive

◮ Likelihood function L : Rn × Rn → R+

◮ L(d, f(θ)) = p(d|θ); compares model predictions to observed data
◮ Each evaluation requires, in principle, an evaluation of f
◮ Simple example:

d = f(θ) + ǫ, ǫ ∼ N(0,Σ), then d|θ ∼ N(f(θ),Σ)
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Computational challenges

◮ Extract information from the posterior (means, covariances, event

probabilities, predictions) by evaluating posterior expectations:

Eπ[h(θ)] =

∫

h(θ)π(θ)dθ

◮ Key strategies for making this computationally tractable

1 Efficient and structure-exploiting sampling schemes

2 Approximations of the forward model, e.g., spectral expansions, local

interpolants, reduced order models, multi-fidelity approaches
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•  Markov chain Monte Carlo (MCMC) algorithms are the 
workhorse of Bayesian computation 

•  Effective = adapted to the target 

•  Can we transform proposals or targets for better sampling? 

Sampling schemes 



Optimal transport 

•  A different viewpoint: deterministic coupling of two random 
variables  

r

θ

T (r)

•  Monge problem: 

•  A unique and monotone solution exists for quadratic (and other)  

transport costs c(x,y) [Brenier 1991, McCann 1995] 
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•  Useful alternative to the optimal map: triangular (Knothe-
Rosenblatt) transport 

–  Exists and is unique (up to ordering) under mild conditions 

–  Monotonicity:  

–  Jacobian determinant is easy to evaluate 

–  Limit of a weighted L2 - optimal transport [Carlier 2010, Bonnotte 

2013] 
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•  Previous work: directly finding a map from prior to posterior 
[Moselhy & M, JCP 2012] 

–  Reference = prior or a multivariate standard normal 

–  Target = posterior 
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Transport maps: computation 



•  Optimization problem can be costly in high dimensions 

•  Map must be represented in a finite basis (e.g., polynomials) 

and is thus in general approximate. Can we still achieve 

exact posterior sampling?  

•  Key idea: combining map construction with MCMC 

–  Posterior sampling + convex optimization 

–  Transport map “preconditions” MCMC sampling; posterior 

samples enable simpler map construction 

–  Can also be understood in the framework of adaptive MCMC 

Combining transport maps with MCMC 





•  Useful structure: 

–  Seek a monotone lower triangular map (converges to Knothe-

Rosenblatt rearrangement) 

–  Let target p(r) be standard Gaussian 

•  Yields a convex and separable optimization problem: 

 

 

–  Sample-average approximation (SAA) with N samples from π

 

 

–  Linear representation of map     (e.g., polynomial or RBF basis) 
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•  Ingredient #1: static map 

–  Idea: perform MCMC in the reference space, on a 

“preconditioned” density 

–  Simple proposal in reference space (e.g., random walk) 

corresponds to a more complex/tailored proposal on target 

r

θ

p̃(r)

T̃ (θ)
π(θ)

Map-accelerated MCMC 
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•  Ingredient #2: adaptive map 

–  Update the map with each MCMC iteration: 

more samples from π, more accurate      , better 

–  Analogous to adaptive MCMC [Haario 2001, Andrieu 2006] but 

with nonlinear transformation to capture non-Gaussian structure 
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•  Ingredient #3: global proposals 

–  If the map becomes sufficiently accurate, would like to avoid 

random-walk behavior 

reference random walk proposal
qr(r

0|r) = N(r , σ2I )

mapped random walk proposal
qθ(θ

0|θ) = qr

(

T̃ (θ0)|T̃ (θ)
)
∣
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∣
detDT̃ (θ0)

∣

∣

∣

Map-accelerated MCMC 



•  Ingredient #3: global proposals 

–  If the map becomes sufficiently accurate, would like to avoid 

random-walk behavior 

reference independence proposal
qr(r

0|r) = N(0, I )

mapped independence proposal
qθ(θ

0|θ) = qr

(

T̃ (θ0)|T̃ (θ)
)
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Map-accelerated MCMC 



•  Ingredient #3: global proposals 

–  If the map becomes sufficiently accurate, would like to avoid 

random-walk behavior 

–  Solution: delayed rejection MCMC [Mira 2001] 

–  First proposal = independent sample from p (global, more 

efficient); second proposal = random walk (local, more robust) 

•  Entire scheme is provably ergodic with respect to the exact 

posterior measure [Parno & M 2015] 

–  Requires enforcing a bi-Lipschitz condition on maps, to preserve 

reasonable tail behavior of target 

–  With polynomial maps: revert to linear beyond a certain distance from 
the origin 

Map-accelerated MCMC 



Example #1: Biological oxygen demand (BOD) model

◮ Small inference problem

◮ Likelihood model:

d = θ1(1− exp (−θ2x)) + ǫ

ǫ ∼ N
(

0, 2× 10−4
)

◮ 20 noisy observations at

x =

{

5

5
,
6

5
, . . . ,

25

5

}

◮ Third order Hermite polynomial map

True posterior density

θ1
θ 2
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Results: MCMC chain
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Results: autocorrelation
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Results: effective sample size (ESS)
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Results: ESS per computational effort
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Map-induced distribution

Recall the acceptance ratio:

α =
π(T̃−1(r ′))|∇T̃−1|r ′ qr (r |r

′)

π(T̃−1(r))|∇T̃−1|r qr (r ′|r)

To the standard proposal mechanism,

the target looks like:

p̃(r) = π(T̃−1(r))|∇T̃−1|

Posterior density π(θ)

θ1

θ 2
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Map-induced distribution

Recall the acceptance ratio:

α =
π(T̃−1(r ′))|∇T̃−1|r ′ qr (r |r

′)

π(T̃−1(r))|∇T̃−1|r qr (r ′|r)

To the standard proposal mechanism,

the target looks like:

p̃(r) = π(T̃−1(r))|∇T̃−1|

Pushforward of posterior through

map p̃(r)

r1

r 2
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Example #2: predator-prey model

◮ Six parameter ODE population model
dP

dt
= rP

(

1−
P

K

)

− s
PQ

a + P

dQ

dt
= u

PQ

a + P
− vQ

◮ Ten noisy observations of both populations

◮ Uniform priors
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Predator-prey posterior

P(0)

Q(0)

r

K

s

a

u

v
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Results: ESS per computational effort
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Example #3: maple sap dynamics model

◮ Coupled PDE system for

ice, water, and gas

locations [Ceseri &

Stockie 2013]

◮ Measure gas pressure in

vessel

◮ Infer 10 physical model

parameters

◮ Very challenging

posterior!
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Maple posterior distribution
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Results: ESS per computational effort
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Comments on MCMC with transport maps

Useful characteristics of the algorithm:

◮ Map construction is easily parallelizable

◮ Requires no gradients from posterior density

Generalizes many current MCMC techniques:

◮ Adaptive Metropolis: map enables non-Gaussian proposals and a

natural mixing between local and global moves

◮ Manifold MCMC [Girolami & Calderhead 2011]: map defines a

Riemannian metric; linear paths in on reference are geodesics on

target

Map construction from samples:

◮ Links with density estimation approaches of [Tabak 2011–14] and

iterative Gaussianization/ICA of [Laparra et al. 2011]
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Next steps

◮ Maps in high dimensions
◮ Use notion of a likelihood-informed subspace, cf. dimension

independent likelihood-informed (DILI) MCMC [Cui, Law, & M 2015];

map departs from the identity only in data-informed directions
◮ Compose rotations and diagonal maps: basis representation is more

scalable than triangular (Rosenblatt) maps

◮ More fundamentally: relate structure of transport maps to essential
properties of target distribution
◮ Current work: conditional independence (Markov structure) of the

target distribution π implies minimal sparsity of the inverse map, yields

efficient algorithms for ordering and decomposition
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Asymptotically exact MCMC via local approximations

Sampling from the exact posterior:

◮ Delayed-acceptance schemes [Christen & Fox 2005]: at least one full

model evaluation per accepted sample

◮ We take a different approach: asymptotically exact MCMC, via

incremental and infinite refinement of surrogates

◮ Posterior exploration and surrogate construction occur simultaneously
◮ Asymptotic exactness: convergence of surrogate tied to stationarity of

the MCMC chain
◮ Joint work with Patrick Conrad (MIT), Natesh Pillai (Harvard), Aaron

Smith (Ottawa)
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MCMC with a surrogate and posterior adaptation

Given X0, initialize a sample set S0, then simulate chain {Xt} with kernel:

MH Kernel Kt(x , ·)

1 Given Xt , draw qt ∼ Q(Xt , ·) from kernel Q with (symmetric)

translation invariant density q(x , ·)

2 Compute acceptance ratio

α = min

(

1,
L(d, f̃t(qt))p(qt)

L(d, f̃t(Xt))p(Xt)

)

3 As needed, select new samples near qt or Xt , yielding St ⊆ St+1.

Refine f̃t → f̃t+1.

4 Draw u ∼ U(0, 1). If u < α, let Xt+1 = qt , otherwise Xt+1 = Xt .

◮ Approximation f̃t built from sample set St = {θi : f(θi) has been run}

◮ Continue adaptation forever (as t →∞)
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Local approximations

◮ To compute the approximation f̃(θ), construct a model over the ball

BR(θ)

◮ Use samples θi ∈ S at distance r = ‖θ − θi‖ with weight

w(r) =

{

0 < w ′(r) ≤ 1 r ≤ R

0 else

◮ Approximations converge locally under loose conditions
◮ For example, quadratic approximations over BR(θ) [Conn et al.]:

‖f −QR f‖ ≤ κ(ν, λ, d)R3

◮ Choose R so that M(d) samples have non-zero weight, e.g., where

M(d) ensures that a quadratic is fully determined
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Experimental design: triggering refinement

1 Random refinement βt

◮ With probability βt , such that
∑

t
βt =∞, refine near Xt or qt

2 Acceptance probability error indicator γt
◮ Estimate error in acceptance ratio using cross-validation

α+
i
= min

(

1,
L(d, f̃∼i

t
(qt))p(qt)

L(d, f̃t(Xt))p(Xt)

)

α−
i
= min

(

1,
L(d, f̃t(qt))p(qt)

L(d, f̃∼i
t (Xt))p(Xt)

)

◮ Compute error indicators

ǫ+ = max
i

|α− α+
i
| ǫ− = max

i

|α− α−
i
|

◮ Refine if ǫ+ > γt or ǫ− > γt

Marzouk et al. MIT 27 / 40





Ergodicity of approximate samplers

Theorem (Conrad, M, Pillai, Smith 2014)

Assume the log-posterior is approximated with local quadratic models and

that θ ∈ X ⊆ Rd for compact X , or that p(θ|d) obeys a Gaussian

envelope condition

lim
r→∞

sup
|θ|=r

| log p(θ|d)− log p∞(θ)| = 0

for some quadratic form log p∞ with negative definite coefficient matrix.

Then under standard regularity assumptions for geometrically ergodic

kernel K∞ and posterior p(θ|d), the chain Xt is ergodic for the exact

posterior:

lim
t→∞

‖P(Xt)− p(θ|d)‖TV = 0
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A framework for approximate samplers

Many algorithmic variations:

◮ Target of approximation
◮ Forward model: f(θ)
◮ Log-likelihood: logL(d, f(θ))

◮ Types of local approximations
◮ Regression with low-order polynomials
◮ Gaussian process regression
◮ Quadratic regression given derivatives ∂f/∂θ

◮ MCMC kernels
◮ Random-walk Metropolis, adaptive Metropolis
◮ Gradient-based proposals (e.g., MALA, manifold MALA, stochastic

Newton)

◮ Parallel chains, sharing a common pool of model evaluations S
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Implementing approximation across parallel chains

◮ Build a common pool of model runs S across parallel workers

◮ Since approximation targets the correct distribution, use effective

sample size (ESS) to measure efficiency

◮ ESS per (CPU-second) would be constant with a naïve

implementation

◮ Run N chains of 100,000 steps each

◮ Discard 10% of each chain as burn-in; evaluate ESS
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Conclusions

◮ Combining transport maps with MCMC to accelerate Bayesian
computation in non-Gaussian settings
◮ Underlying idea: Approximate complex distributions via deterministic

transformations of a Gaussian distribution

◮ Introduced a new framework for using local approximations within
MCMC; proved that the framework produces asymptotically exact
samples
◮ Underlying idea: Regularity of the likelihood enables far fewer model

evaluations than direct MCMC

◮ Much ongoing work. . .
◮ Scaling local approximations to high dimensions
◮ Building maps in high dimensions
◮ Scalable direct map (MCMC-free) approaches
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