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All exposed to ionizing radiations (IR)
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Radiation dose and heath effects
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Current issues on stochastic effects

Non-threshold linearity of the dose-response
relationship for cancers : discrepancy between
epidemiology and radiobiology

Multi-exposure situations
Taking into account the complexity of biological
mechanisms

Variability factors, individual susceptibility

Tissue sensitivity, integration of new cancers

Validity of the assessment of heritable effects,
consideration of epigenetic mechanisms
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International Radiological Protection system
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International Commission on Radiological Protection (ICRP)

Aim
▶ "To contribute to an appropriate level of protection for people and the

environment from the adverse effects of radiation exposure, without unduly limiting
the desirable human actions that may be associated with such exposure"

▶ Avoiding deterministic effects and limiting stochastic effects
Management tool
▶ Strong simplification necessary for the practical application of radiation protection
▶ Radiological detriment computed from weighted nominal risk coefficients of a given

terminal event (ex : death by cancer) on a given organ over the entire life
▶ Nominal risk coefficients estimated from dose-response analysis

Some priority scientific issues
▶ Effects of prolonged exposures and low dose rates
▶ Non-cancer effects and heritable effects, and contribution to radiological detriment
▶ Mechanisms of low-dose effects and integration of these mechanisms into

dose-response modeling

⇒ The assessment of the risk of stochastic effects in the current radiation protection
system is mainly based on knowledge from epidemiological studies
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Radiation epidemiology

Some priority scientific issues

Identification and estimation of the effects of :
▶ chronic or repeated exposures at low doses and characterization of the form of the

dose-response relationship for cancer risk
▶ exposure during childhood
▶ non-cancer effects associated with exposure to low and moderate doses

Main statistical aims

Estimate the magnitude of the association (and its
uncertainty) between one (several) exposure(s) to
ionizing radiations (IR) and a given disease
▶ (Probabilistic) modelling and statistical learning

Identify the existence of an association between one
(several) exposure(s) to ionizing radiations (IR) and a
given disease
▶ Statistical hypothesis testing/model selection

Characterize the shape of dose-response relationships
▶ Model selection/Model averaging

Sophie Ancelet (IRSN)
"Statistical methods for safety and decommissionning"
7 / 38



Radiation epidemiology : an observational science

First step : Build, validate and maintain large databases over the long term, in
compliance with health data confidentiality constraints
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Many sources of uncertainty

Exposures (measurement/estimation, left-censored value due to detection limits,
missing data, . . .)

Organ dose estimation

Right-censored survival data (competing risks...)

Baseline risk for rare diseases (but not only)

Cause of death

Multifactorial diseases (e.g., cancer)

Confounding factors

Shape of the dose-reponse/exposure-risk model
Individual variability
. . .
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Exposure uncertainty

Uncertainty on radiological exposure values (predictor variables) is :
▶ ubiquitous
▶ one of the most important source of input uncertainty in epidemiological studies
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Exposure uncertainty
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Exposure uncertainty

In retrospective cohort studies :
▶ complex patterns of exposure measurement error
▶ attenuation of the exposure-risk relationship for high

exposure values [Stayner (2003)] : Measurement error ?

If not accounted for, exposure uncertainty may cause [Carroll et al. (2006)] :
▶ bias in risk estimates
▶ misleading conclusions about the effect of these exposures on the disease risk
▶ a distortion of the exposure-risk relationship

⇒ It is important to account for exposure uncertainty in risk estimation [ICRP103
(2007) ; UNSCEAR (2012)]
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Standard methods to account for exposure uncertainty in risk
estimates

Exposure measurement error ⇒ Frequentist functional methods : regression
calibration and simulation extrapolation [Carroll et al. (2006) ; Keogh et al. (2020)]
▶ Lack of flexibility to account for complex measurement error on time-varying exposures

• Mixture of different types of measurement error
• Heteroscedastic measurement error

▶ Disjoint steps to estimate "true" exposure and risk parameters
▶ Applicability restricted to cases where a validation sample is available to estimate the

expected value of true exposure given observed exposure or the true size of the error
▶ Potential lack of consistency in risk estimates in proportional hazards models [Bartlett

and Keogh, 2016]
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Dose uncertainty

The health effects of IR are associated with radiation dose rather than with
radiation exposure [Preston et al. (2013) ; Birchall and Marsh (2005)].

The values of radiation dose do not only depend on the exposure to radioactive
material, but also on the exposure conditions.

The calculation of radiation doses involves further uncertainties
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Dose uncertainty
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Dose uncertainty
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Dose uncertainty

The input parameters of dosimetric models are uncertain ⇒ The estimation of
radiation doses is uncertain when estimating the health effects of radiation exposure
If not accounted for, dose uncertainty may cause :
▶ bias in risk estimates
▶ misleading conclusions about the effect of these exposures on the disease risk
▶ a distortion of the dose-response relationship

However, they are most often neglected in epidemiological studies !

NB : The dosimetric models are black box for epidemiologists/statisticians (but dose
calculations from these models are fast)

⇒ It is important to account for dose uncertainty in risk estimation [ICRP103 (2007) ;
UNSCEAR (2012)]
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Standard methods to account for dose uncertainty in risk estimates

Step 1 : Simulate plausible dose values using 2-dimensional Monte-Carlo algorithm
[Simon et al. (2015)]
Step 2 :
▶ Plug-in of dose point estimates (i.e., empirical mean, median or other quantiles derived

from the simulated dose distributions) in dose-response models
▶ Monte-Carlo Maximum Likelihood [Stayner et al. (2007)] : Estimate the risk coefficient

β and its uncertainty by maximizing the estimated average likelihood from a grid of
fixed values for β

Asymptotical confidence intervals
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Model uncertainty

In radiation epidemiology, different radiation-related risk models may fit similarly
well to a given dataset.

Usual practice ignores such a model uncertainty by selecting a single model
↪→ Some excess risks may be wrongly declared as significant or non-significant.

Model uncertainty → Uncertainty by ignorance/Epistemic uncertainty
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Example : Modelling the radiation-related leukaemia excess risk

ERR models Form of ERRθ2,i

UNSCEAR (2006) (αdi + βd2
i )exp(κlog(ai/55))

Qexp βd2
i exp(γdi )exp(κlog(ai/55))

Sigmoid A

exp(B)+
(

1
di

)exp(C) exp(κlog(ai/55))

Spline [α1di + α2(di − dk)1(di≥dk )]exp(κlog(ai/55))
Little (2008) (αdi + βd2

i )exp(κ1log(ai/55) + κ2log(ei/25))
Littleexp (2008) (αdi + βd2

i )exp(γdi )exp(κ1log(ai/55) + κ2log(ei/25))
BEIRVII (2006) β(si+1)(di + θd2

i )exp(γe
′
i + δlog(ti/25) + ϕe′i log(ti/25))

EAR models Form of EARθ2,i

UNSCEAR (2006) (αdi + βd2
i )exp(κ1si + κ2log(ti/25))

Littleexp (2008) (αdi + βd2
i )exp(γdi )exp(κ1si + κ2log(ti/25))

BEIRVII (2006) β(si+1)(di + θd2
i )exp(γe

′
i + ϕe′i log(ti/25))

Schneider (2009) (1 + αs̃i )(βdi + δd2
i )exp(γ1(ei − 41) + γ2log(ai/60))

Schneiderexp (2009) (1 + αs̃i )(βdi + δd2
i )exp(γdi )exp(γ1(ei − 41) + γ2log(ai/60))

Preston (2004) β(si+1)(αdi + δd2
i )exp(γ[ecati ] + τ [ecati ]log(ti/25))
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A specific statistical challenge : to deal with weakly informative data

Sophie Ancelet (IRSN)
"Statistical methods for safety and decommissionning"
21 / 38



Aim

Promote the use of hierarchical (also called multilevel models) modeling and
Bayesian statistical methods when estimating radiation-related risks at low doses

Why hierarchical modeling ?
▶ Flexible modelling approach to describe and simultaneously account for several and

heterogeneous sources of uncertainty
▶ Benefit of "borrowing strength" in the inference of multiple groups of data

Why Bayesian statistics ?
▶ Allows for the joint inference of all unknown quantities (e.g., true exposure/dose and

risk parameters) when fitting complex models like hierarchical models
▶ Allows to integrate external information through the specification of informative priors

or transfer/sequential learning
▶ Credible intervals (i.e., for risk estimates) are easily obtained as by-product of Bayesian

inference (without asymptotic assumption !)
▶ . . .
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What is a hierarchical (probabilistic) model ?

Main idea : Think conditionally to build complexity !

Combination of conditionally independent submodels

Each sub-model describes one source of uncertainty

Many latent layers can be combined
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Case study 1 : Lung cancer and chronic low-dose exposure to radon

Radon is a radioactive gas which presents the primary source of background radiation
Radon is the second cause of lung cancer (after tobacco) [Samet and Eradze, 2000]
Thanks to annual radiological exposures collected over the entire career, the French
cohort of uranium miners is a reference population to study the long-term health
effects of chronic low-dose exposure to radon (Inhalation exposure) and define radon
exposure thresholds
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Building a Bayesian hierarchical model

Work in collaboration with Julie Fendler (IRSN), Chantal Guihenneuc (Univ. Paris Cité),
Sabine Hoffmann (Univ. Ludwig Maximilians)

Two (or three) conditionally independent submodels [Richardson & Gilks (1993)]
▶ Disease submodel : it describes the relation between the "true" unknown

exposures/doses and the disease outcome
▶ Measurement submodel : it describes the relation between the observed and the

"true" unknown exposures
▶ Exposure submodel : it describe the probability distribution of the "true" exposures

Specific context :
▶ Heteroscedastic measurement error components
▶ Time-varying exposure covariates
▶ Right-censored survival data (outcome variable)
▶ Weak signal in the data (low dose/exposure and low radiation-related risks)

⇒ New models are required
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The disease submodel M0 (1/2)

Let’s consider one event of interest (e.g., death by lung cancer)

Disease outcomes : (Yi , δi ) with Yi = min(Ti ,Ci ), Ti the age at the time of event
for individual i = {1, . . . ,N}, Ci the age at censorship and δi the non-censoring
indicator

Modelling the hazard rate of event for individual i at time t ∈ [0,+∞[

hi (t;β, θ) = h0(t; θ)ρ(β;X
cum
i (t))

▶ X cum
i (t) : 5-year lagged cumulative exposure to radon of individual i at time t

▶ h0(t; θ) : Baseline hazard rate at time t (i.e., for any unexposed individual)
▶ ρ(β;X cum

i (t)) : Radiation-related hazard ratio (HR)
▶ β : Unknown risk coefficient

Assumption : Non-informative censoring

Contribution to the likelihood of individual i for the disease submodel

[(yi , δi )|β, λ] ∝ hi (yi ;β, θ)
δiSi (yi ;β, θ) where Si (yi ;β, θ) = exp

(
−
∫ +∞
0 hi (u;β, θ)du

)
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The disease submodel M0 (2/2)

Modeling the baseline hazard function :
▶ h0(t;λ) =

∑K
k=1 λk1t∈Ik with λk > 0

▶ h0(t;α, ξ) = ξtα−1 with ξ > 0 (scale parameter) and α > 0 (shape parameter)

Modeling the hazard ratio function :
1 ρ(β;X cum

i (t)) = exp(βX cum
i (t)) ⇒ Cox Model

2 ρ(β;X cum
i (t)) = 1 + βX cum

i (t) ⇒ Excess Hazard Ratio (EHR) model
• Constraint : β > − 1

Xcum
i

(t)
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Estimation of annual radon exposure in the French cohort of
uranium miners
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Measurement submodel M1

For an individual i working in mine m at time t :

Berkson error components only


X 1

im(t)︸ ︷︷ ︸
true exposure

= Z 1
m(t)︸ ︷︷ ︸

estimated mean exposure

· Tim(t)︸ ︷︷ ︸
effective working time

· U1
i (t)︸ ︷︷ ︸

Berkson error

period 1 : 1945-1955

X 2
im(t) = Z 2

m(t) · Tim(t) · U2
i (t) period 2 : 1956-1982

X 3
im(t) = Z 3

im(t) [Hoffmann et al., 2017] period 3 : post 1983

with Z 1
m(t) ⊥⊥ U1

i (t) ∀i ,m, t and Uk
i =

(
Uk

i (t1), . . . ,U
k
i (tik)

)T ∼ LN (−σ2
k
2 1tik , σ

2
kΓtik )

⇒ E [Uk
i ] = 1tik ∀k ∈ {1, 2}

1tik = (1, ..., 1)T et Γtik =


1 ρ · · · ρ

ρ 1
. . .

...
...

. . .
. . . ρ

ρ · · · ρ 1

 , ρ ∈ [0; 1[.

Uk
i : Shared Berkson error (individual worker practices)

Fixed magnitudes of Berkson error : σ1 = 0.93, σ2 = 0.39 [Allodji et al., 2012]
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An alternative hierarchical model to describe exposure measurement
error in period 1945-1955

Measurement submodel M2 : A mixture of Berkson and classical error for period 1



• Z 1
m(t) = ζ1

m(t) · Um(t)︸ ︷︷ ︸
classical error

if Z 1
m(t) is known, period 1 : 1945-1955

X 1
im(t) = ζ1

m(t)︸ ︷︷ ︸
true mean exposure

·Tim(t) · U1
i (t)︸ ︷︷ ︸

Berkson error
X 1

im(t) = Z 1
m(t) · Tim(t) · U1

i (t) if only
(
Z 1
m(t) · Tim(t)

)
is known

•X 2
im(t) = Z 2

m(t) · Tim(t) · U2
i (t) period 2 : 1956-1982

•X 3
im(t) = Z 3

im(t) period 3 : post 1983

Um(t) ∼i.i.d LN (−σ2
∗
2 , σ2

∗) ∀t
Fixed magnitudes of errors : σ∗ = 0.41 and σ1 = 0.84 [Allodji et al., 2012]

Exposure submodel

ζ1
m(t) ∼i.i.d LN (µζ , σ

2
ζ)
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Directed Acyclic Graph
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Prior distributions and fixed parameters

[β] : β ∼ N (0, 106) left-sided truncated at 0 to guarantee hi > 0

[α] : α ∼ G(0.01, 0.01)

[ξ] : ξ ∼ G(1, 1)
[λ] : λj ∼ G(α0j , λ0j) for each component j, of λ, j = 1, . . . , 4 based on the lung
cancer mortality in the general French male population between 1968 and 2005 or
λj ∼ Unif (0, 1)∀j
[µζ ] : µζ ∼ N (0, 100)

[τζ ] = [ 1
σ2
ζ

] : τζ ∼ G(0.001, 0.001)

+ Prior sensitivity analysis for α and ξ

No validation sample to estimate the expected value of true exposure given
observed/estimated exposure or the true magnitude/variance of the error
components => σ1, σ2, σ∗ [Allodji et al., 2012] and ρ must be fixed...

+ Impact of these choices on risk estimates must be evaluated
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Bayesian inference

Complex joint posterior distribution θ = (β, α, ξ, µζ , τζ , ζ,U)

More than 198,000 pseudo-observations

More than 40, 000 unknown quantities to estimate
=> High dimensional posterior distribution

Adaptive Metropolis-Within-Gibbs algorithm developed in Python 3.4 + cluster HPC

▶ (Left-sided truncated) Gaussian random Walk Metropolis-Hastings for β and α
▶ Multiplicative random walk Metropolis-Hastings for ζ, Uk

i and Um
▶ Gibbs sampling for ξ, µζ , τζ
▶ Block updating of shared Berkson error component Ui after defining 239 homogeneous

groups of miners (hierarchical clustering) based on information on mine location, type
of min, job type

Reparametrizations to improve mixing of the chains (e.g. ξ parameter)

Targeted acceptance rate : About 40% for single parameters and 20% for vectors

Running time : 5 days for 2 Markov chains, 10,000 iterations for the adaptive phase
+ 60,000 iterations including 20,000 iterations for the burn-in phase (⇒ Effective
Sample Size >4000)
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Application on the French cohort of uranium miners
Impact of the correlation parameter ρ on Bayesian inference

HR* 100WLM IC** 95% WAIC

EHR

ρ = 0 2.14 1.65 ;2.81 6860
ρ = 0.2 2.16 1.66 ;2.86 6860
ρ = 0.4 2.21 1.70 ;2.94 6858
ρ = 0.6 2.23 1.68 ;2.99 6859
ρ = 0.8 2.17 1.66 ;2.89 6862
ρ = 0.99 2.13 1.63 ;2.80 6863

Cox

ρ = 0 1.32 1.18 ;1.48 6971
ρ = 0.2 1.33 1.18 ;1.50 6870
ρ = 0.4 1.33 1.18 ;1.52 6870
ρ = 0.6 1.35 1.18 ;1.54 6872
ρ = 0.8 1.35 1.20 ;1.55 6875
ρ = 0.99 1.19 1.08 ;1.35 6886

Results provided by the disease submodel combined with the M1 measurement error submodel

*HR : Posterior median of the hazard ratio for 100 Working Level Months of death by lung
cancer (i.e., 1 + β × 100), **IC : 95% credible interval
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Uncorrected and measurement corrected estimation of lung cancer
mortality risk and associated uncertainty

HR* 100WLM IC** 95% WAIC***
Baseline model (β = 0) 6895

M0 2.06 1.60 ;2.70 6861
M1 2.21 1.70 ;2.94 6858

M2

σ1 = 0.84 ; σ∗ = 0.41 2.38 1.78 ; 3.26 6855
σ1 = 0.84 ; σ∗ = 0.82 2.50 1.81 ;3.46 6854
σ1 = 0.63 ; σ∗ = 0.31 2.32 1.73 ;3.13 6857

Results provided by the EHR disease submodel M0 (i.e., without accounting for exposure
measurement error) and the measurement submodels M1(ρ = 0.4) and M2(ρ = 0.4) combined
with M0

Some posterior probability distributions :
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Impact of exposure measurement error on the instantaneous excess
risk β (ρ = 0.4, σ1 = 0.84, σ∗ = 0.41)

Posterior density of the excess risk coefficient β (per 100 WLM) of death by lung cancer in the
French cohort of uranium miners
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Application on the French cohort of uranium miners
Prior sensitivity
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Limitations & Perspectives

Adaptive Metropolis-Within-Gibbs algorithm are time-consuming to explore
high-dimensional posterior distributions ⇒ Which alternative bayesian learning
algorithm ?
▶ Work under progress to implement a Metropolis-adjusted Langevin sampler and

compare it to our current adaptive Metropolis-Hastings sampler ⇒ First promising
results with about 40% reduction in calculation time for an equivalent ESS when
updating unknown parameters α and β

Robustness of our models to measurement and/or exposure model mispecification ?
⇒ Simulation studies under progress...
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