Hierarchical modeling and Bayesian statistics for a better
consideration of uncertainties when estimating radiation-related
risks

Sophie Ancelet

Institute for Radiological Protection and Nuclear Safety (IRSN), France (sophie.ancelet@irsn.fr)

Workshop "Statistical methods for safety and decommissionning"
Avignon, 22nd November 2022

£TSon I R S[]

Sophie Ancelet (IRSN) 1/38



All exposed to ionizing radiations (IR)

Worldwide distribution of radiation exposure

UNSCEAR, 2016
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French population : average individual dose
4,5 mSv/year (IRSN, 2015)
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Radiation dose and heath effects

Relationship of radiation doses and health effects
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Current issues on stochastic effects

@ Non-threshold linearity of the dose-response

relationship for cancers : discrepancy between Solid °a"°:;( o
. . L L. 18- Q(<26y
epidemiology and radiobiology o "
@ Multi-exposure situations 124 ~t
1.0+
@ Taking into account the complexity of biological o/
mechanisms & os ,
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@ Variability factors, individual susceptibility 02] i
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o Tissue sensitivity, integration of new cancers 02 . S
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@ Validity of the assessment of heritable effects, Weighted Colon Dose (Gy)
consideration of epigenetic mechanisms
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International Commission on Radiological Protection (ICRP)

o Aim
» "To contribute to an appropriate level of protection for people and the
environment from the adverse effects of radiation exposure, without unduly limiting
the desirable human actions that may be associated with such exposure"
» Avoiding deterministic effects and limiting stochastic effects
@ Management tool
» Strong simplification necessary for the practical application of radiation protection
» Radiological detriment computed from weighted nominal risk coefficients of a given
terminal event (ex : death by cancer) on a given organ over the entire life
» Nominal risk coefficients estimated from dose-response analysis
@ Some priority scientific issues

> Effects of prolonged exposures and low dose rates
» Non-cancer effects and heritable effects, and contribution to radiological detriment

» Mechanisms of low-dose effects and integration of these mechanisms into
dose-response modeling
= The assessment of the risk of stochastic effects in the current radiation protection
system is mainly based on knowledge from epidemiological studies

IRSH
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Radiation epidemiology

Some priority scientific issues

o Identification and estimation of the effects of :
» chronic or repeated exposures at low doses and characterization of the form of the
dose-response relationship for cancer risk
» exposure during childhood
» non-cancer effects associated with exposure to low and moderate doses

Main statistical aims

@ Estimate the magnitude of the association (and its
uncertainty) between one (several) exposure(s) to Solid cancer
ionizing radiations (IR) and a given disease 0 Laten

»> (Probabilistic) modelling and statistical learning

@ Identify the existence of an association between one
(several) exposure(s) to ionizing radiations (IR) and a H
given disease .

> Statistical hypothesis testing/model selection

00 05 10 15 20 25 30

@ Characterize the shape of dose-response relationships Weighted Calon Dose (Gy)
; »> Model selection/Model averaging IRSHN
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Radiation epidemiology : an observational science

@ First step : Build, validate and maintain large databases over the long term, in
compliance with health data confidentiality constraints
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Many sources of uncertainty

@ Exposures (measurement/estimation, left-censored value due to detection limits,
missing data, ...)

@ Organ dose estimation
@ Right-censored survival data (competing risks...)
@ Baseline risk for rare diseases (but not only)
@ Cause of death
@ Multifactorial diseases (e.g., cancer)
o Confounding factors
@ Shape of the dose-reponse/exposure-risk model
@ Individual variability
°.
E¥gon IRSH
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Exposure uncertainty

@ Uncertainty on radiological exposure values (predictor variables) is :
» ubiquitous
» one of the most important source of input uncertainty in epidemiological studies
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Exposure uncertainty

Estimated exposure value
True exposure value *

Measured exposure value True values

Classical measurement error Berkson error

Zi(£) = X;(t) - Ui(¢) Xii(t) = Z(t) - Uji(t)
o Ui(t) L Xi(t) o Ui(t) L Z(t)
E¥5an o Var(Z(®) > VarlXi(t) e Var(X(e)) > Var(Z(2) IRSH
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Exposure uncertainty

@ In retrospective cohort studies :
P> complex patterns of exposure measurement error
P attenuation of the exposure-risk relationship for high
exposure values : Measurement error ?

@ If not accounted for, exposure uncertainty may cause

» bias in risk estimates
» misleading conclusions about the effect of these exposures on the disease risk
P a distortion of the exposure-risk relationship

= It is important to account for exposure uncertainty in risk estimation
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Standard methods to account for exposure uncertainty in risk
estimates

@ Exposure measurement error = Frequentist functional methods : regression
calibration and simulation extrapolation
» Lack of flexibility to account for complex measurement error on time-varying exposures
® Mixture of different types of measurement error
® Heteroscedastic measurement error
» Disjoint steps to estimate "true" exposure and risk parameters
» Applicability restricted to cases where a validation sample is available to estimate the
expected value of true exposure given observed exposure or the true size of the error
» Potential lack of consistency in risk estimates in proportional hazards models

IRSH
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Dose uncertainty

@ The health effects of IR are associated with radiation dose rather than with
radiation exposure

@ The values of radiation dose do not only depend on the exposure to radioactive
material, but also on the exposure conditions.

@ The calculation of radiation doses involves further uncertainties

ETSon IR S []
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Dose uncertainty
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Dose uncertainty

Journal of Radiological Protection

PAPER

NCICT: a computational solution to estimate organ
doses for pediatric and adult patients undergoing
CT scans

To cte this artice: Choonsik Les et al 2015 J. Radio. Prot 35891
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NCICT : National Cancer Institute dosimetry
system for CT
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Dose uncertainty

@ The input parameters of dosimetric models are uncertain = The estimation of
radiation doses is uncertain when estimating the health effects of radiation exposure
o If not accounted for, dose uncertainty may cause :
» bias in risk estimates

» misleading conclusions about the effect of these exposures on the disease risk
P a distortion of the dose-response relationship

@ However, they are most often neglected in epidemiological studies!

@ NB : The dosimetric models are black box for epidemiologists/statisticians (but dose
calculations from these models are fast)

= It is important to account for dose uncertainty in risk estimation
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Standard methods to account for dose uncertainty in risk estimates

@ Step 1 : Simulate plausible dose values using 2-dimensional Monte-Carlo algorithm

@ Step 2:

» Plug-in of dose point estimates (i.e., empirical mean, median or other quantiles derived
from the simulated dose distributions) in dose-response models

» Monte-Carlo Maximum Likelihood : Estimate the risk coefficient
[ and its uncertainty by maximizing the estimated average likelihood from a grid of
fixed values for 8

@ Asymptotical confidence intervals
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Model uncertainty

@ In radiation epidemiology, different radiation-related risk models may fit similarly
well to a given dataset.

@ Usual practice ignores such a model uncertainty by selecting a single model
< Some excess risks may be wrongly declared as significant or non-significant.

Model uncertainty — Uncertainty by ignorance/Epistemic uncertainty

IRSH
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Example : Modelling the radiation-related leukaemia excess risk

ERR models Form of ERRy, ;
UNSCEAR (2006) (ad; + Bd?)exp(rlog(a;i/55))
Qexp Bd?exp(vd;)exp(rlog(a;/55))
Sigmoid exp(B)+(‘dll_)ex"(C) exp(rlog(ai/55))
Spline [oad; 4 a2(di — dik)1(g;>q,)]exp(rlog(ai/55))
Little (2008) (ad; + Bd?)exp(k1log(ai/55) + k2log(ei/25))
Littleexp (2008) (ad; + Bd?)exp(vd;)exp(k1log(ai/55) + kalog(ei/25))
BEIRVII (2006) Bsi+1)(di + 0d?)exp(ve] + dlog(t:/25) + ¢e]log(t:/25))
EAR models Form of EARG, ;i
UNSCEAR (2006) (ad; + Bd?)exp(kisi + ra2log(ti/25))
Littleexp (2008) (ad; 4+ Bd?)exp(vd:)exp(r1si + k2log(ti/25))
BEIRVII (2006) Bs+1)(di + 0d?)exp(ve] + ¢peflog(ti/25))
Schneider (2009) (1 + a%)(Bd: + 6d?)exp(v1(ei — 41) + y2log(ai/60))
Schneiderexp (2009) (1 + a8 )(Bd: + 6d?)exp(yd;)exp(y1(ei — 41) + v2log(ai/60))
Preston (2004) Bsi+1)(adi + §d7)exp(ry[ecat;] 4 T[ecat;|log(ti/25))
£TSon IRS[]
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A specific statistical challenge : to deal

FRENCH COHORT OF URANIUM MINERS
5086 URANIUM MINERS (31/12/2014

Mean follow-up : 39 years

Mean duration of exposure to radon: 13 years
268 deaths by lung cancer
30deaths by kidney cancer
Alive: 2580 miners (50.7%)

Mean cumulative total absorbed lung dose among
exposed miners (post-55 cohort): 133.9 mGy

FRENCH CT COHORT
100560 CHILDREN (31/12/2016)

Mean age at entry in the cohort (1% scanner) : 3,4
years

Mean follow-up : 9,5 years
Mean cumulative brain dose : 24 mGy
Mean cumulative red bone marrow dose : 9 mGy
75 central nervous system tumors
39 leukaemia
41 lymphoma

Sophie Ancelet (IRSN)

with weakly informative data

Solid cancer

La (<2Gy)
\ “la
L
low dose
& ’
low risks
0 15 20 25 30
Weighted Colon Dose (Gy)
Approximated statistical power at level = 0.05 of the following
hypothesis test:
Ho: exp(B)=1 vs Hy: exp(B)=0
where exp(B) is the hazard ratio (for 1 mSv) of death by radiation-
induced solid cancer from a cohort of nuclear workers (Cox model)
exp(f) 1.0001] 1.0005 | 1.0009 1001 1.003 1.005 1.007 1.009 1.015
Poaoa 8% 8% 15% 15% 56% 80% 009% 100% 100%
Pou 5.8 10.22% 100% 100% 100%
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@ Promote the use of hierarchical (also called multilevel models) modeling and
Bayesian statistical methods when estimating radiation-related risks at low doses

@ Why hierarchical modeling ?
»> Flexible modelling approach to describe and simultaneously account for several and
heterogeneous sources of uncertainty
> Benefit of "borrowing strength" in the inference of multiple groups of data

@ Why Bayesian statistics ?
» Allows for the joint inference of all unknown quantities (e.g., true exposure/dose and
risk parameters) when fitting complex models like hierarchical models
> Allows to integrate external information through the specification of informative priors
or transfer/sequential learning
» Credible intervals (i.e., for risk estimates) are easily obtained as by-product of Bayesian

inference (without asymptotic assumption!)
> ..
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What is a hierarchical (probabilistic) model ?

@ Main idea : Think conditionally to build complexity !

u - | Population parameters
N 0-((1 B) Unknown parameters
K
N
o
w
N
| (Individual) characteristics
o, Bl ' akﬁ pk Latent random variables
o
B
S
E N
R
v ]
A Yl_nl vi_ni Yk_nk
B | Observable random variables
L o . (outcomes)
3

@ Combination of conditionally independent submodels

@ Each sub-model describes one source of uncertainty IRSN

ETSDI'I
@ Many latent layers can be combined
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Case study 1 : Lung cancer and chronic low-dose exposure to radon

@ Radon is a radioactive gas which presents the primary source of background radiation

@ Radon is the second cause of lung cancer (after tobacco)

@ Thanks to annual radiological exposures collected over the entire career, the French
cohort of uranium miners is a reference population to study the long-term health
effects of chronic low-dose exposure to radon (Inhalation exposure) and define radon
exposure thresholds

Measurementerror

Obtain a measurement corrected

B estimation of lung cancer mortality
risk as well as its associated

2 uncertainty

IRSH
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Building a Bayesian hierarchical model

Work in collaboration with Julie Fendler (IRSN), Chantal Guihenneuc (Univ. Paris Cité),
Sabine Hoffmann (Univ. Ludwig Maximilians)

@ Two (or three) conditionally independent submodels [Richardson & Gilks (1993)]
» Disease submodel : it describes the relation between the "true" unknown

exposures/doses and the disease outcome

Measurement submodel : it describes the relation between the observed and the

"true" unknown exposures

Exposure submodel : it describe the probability distribution of the "true" exposures

>

| 2

@ Specific context :

» Heteroscedastic measurement error components

» Time-varying exposure covariates

» Right-censored survival data (outcome variable)

> \Weak signal in the data (low dose/exposure and low radiation-related risks)

= New models are required

ETSon IR S []
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The disease submodel Mj (1/2)

Let's consider one event of interest (e.g., death by lung cancer)

@ Disease outcomes : (Y}, d;) with Y; = min(T;, C;), T; the age at the time of event
for individual i = {1,..., N}, G the age at censorship and §; the non-censoring
indicator

@ Modelling the hazard rate of event for individual i at time t € [0, +-o00]

hi(t; 8,0) = ho(t; 0)p(3; X" (t))

> Xcum(t) : 5-year lagged cumulative exposure to radon of individual i at time t
» ho(t;0) : Baseline hazard rate at time t (i.e., for any unexposed individual)

> p(B; X£"(t)) : Radiation-related hazard ratio (HR)

» 3 : Unknown risk coefficient

@ Assumption : Non-informative censoring

Contribution to the likelihood of individual / for the disease submodel

(%618, X] o hi(yis B, 6)" Si(yi: B,0) where Si(yi: 8,0) = exp (= 5 hi(u: ,0)du)

ETSOR
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The disease submodel Mj (2/2)

@ Modeling the baseline hazard function :
> ho(t; A) = K 1 Mkleey, with Ag >0
> ho(t;a, &) = €271 with € > 0 (scale parameter) and o > 0 (shape parameter)

sr et

@ Modeling the hazard ratio function :
Q o(B; XrUm(t)) = exp(BXF'™(t)) = Cox Model
) Q p(B; XUm(t)) = 1+ BX“™(t) = Excess Hazard Ratio (EHR) model
TSon ! ' IRS[]

® Constraint : 8 > ~ X
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Estimation of annual radon exposure in the French cohort of
uranium miners
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Measurement submodel M;

For an individual i working in mine m at time t :

Berkson error components only

X (t) = Zn(t) : Tim(t) - UN®) period 1 : 1945-1955
N—— N—— N—— N

estimated mean exposure effective working time Berkson error

Xin(t) = Zir(t) - Tim(t) - UF(t)
X3.(t)= Z2(t)  [Hoffmann et al., 2017

true exposure

period 2 : 1956-1982
period 3 : post 1983
J

with Zy(t) L U}(t) Vi, m,t and Uf = (Uf(t),. .., U,-k(t,-k))T ~ CN(—%flt,.k,o—irt,.k)
= E[Uf] =1, Vk € {1,2}

1 p - p
. .

L, =1, 1) etly = | ° ,p € [0;1].
: . P
p - p 1

@ U’ : Shared Berkson error (individual worker practices)

ET508 Fixed magnitudes of Berkson error : o1 = 0.93, 0> = 0.39

IRSN



An alternative hierarchical model to describe exposure measurement
error in period 1945-1955

Measurement submodel M, : A mixture of Berkson and classical error for period 1

o Zr(t) =CL(t) - Un(t) if Z~(t) is known, period 1 : 1945-1955
——
classical error
Xm(t)= Gu(t)  Tim()- Ui(t)
N N——
true mean exposure Berkson error

X, (t) = ZE(t) - Tim(t) - Ur(t) if only (Zx(t) - Tim(t)) is known
o X2 (t) = Z3(t) - Tim(t) - UA(t) period 2 : 1956-1982
o X3 (t) = Z3 (1) period 3 : post 1983

o Un(t) ~4 LN (=%, 0?) vt

o Fixed magnitudes of errors : 0. = 0.41 and o1 = 0.84

Exposure submodel

Ch(8) ¢ LN (i, o) J

E
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Wodele de correction des erreurs de mesure

Directed Acyclic Graph

Modéle de surie

IRSH
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Prior distributions and fixed parameters

: B ~ N(0,10°) left-sided truncated at O to guarantee h; > 0
a ~ G(0.01,0.01)

(&~ G(1,1)

: Aj ~ G(awj, Aoj) for each component j, of A, j =1,...,4 based on the lung
cancer mortality in the general French male population between 1968 and 2005 or
Aj ~ Unif (0,1)Vj

D e~ N(0,100)
° : 7¢ ~ G(0.001,0.001)

+ Prior sensitivity analysis for « and &

@ No validation sample to estimate the expected value of true exposure given
observed /estimated exposure or the true magnitude/variance of the error
components => 01, 02, Ox and p must be fixed...

+ Impact of these choices on risk estimates must be evaluated

TSon I R S[]
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Bayesian inference

@ Complex joint posterior distribution 8 = (3, «, &, p¢, 7¢, ¢, U)
@ More than 198,000 pseudo-observations

@ More than 40,000 unknown quantities to estimate
=> High dimensional posterior distribution

@ Adaptive Metropolis-Within-Gibbs algorithm developed in Python 3.4 + cluster HPC

(Left-sided truncated) Gaussian random Walk Metropolis-Hastings for 8 and «
Multiplicative random walk Metropolis-Hastings for (, Uff and U,

Gibbs sampling for &, p¢, 7¢

Block updating of shared Berkson error component U; after defining 239 homogeneous
groups of miners (hierarchical clustering) based on information on mine location, type
of min, job type

vvyvyy

@ Reparametrizations to improve mixing of the chains (e.g. £ parameter)
@ Targeted acceptance rate : About 40% for single parameters and 20% for vectors

@ Running time : 5 days for 2 Markov chains, 10,000 iterations for the adaptive phase
+ 60,000 iterations including 20,000 iterations for the burn-in phase (= Effective
£75on Sample Size >4000) IRS[]
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Application on the French cohort of uranium miners
Impact of the correlation parameter p on Bayesian inference

H HR* 100wLM [ IC** 95% [ WAIC

p=0 2.14 1.65;2.81 | 6860

p=02 2.16 1.66;2.86 | 6860

EHR 2= 0.4 2.21 1.70;2.94 | 6858
p=20.6 2.23 1.68;2.99 | 6859
p=0.38 217 1.66;2.89 | 6862
p=0.99 2.13 1.63;2.80 | 6863

p=0 1.32 1.18;1.48 | 6971

p=02 1.33 1.18;1.50 | 6870

Cox 2= 0.4 1.33 1.18;1.52 | 6870
p=0.6 1.35 1.18;1.54 | 6872
p=0.38 1.35 1.20;1.55 | 6875
p=0.99 1.19 1.08;1.35 | 6886

Results provided by the disease submodel combined with the M; measurement error submodel

..t HR 1 Posterior median of the hazard ratio for 100 Working Level Months of death by Iunq RSN
STEiNLer (i.e., 1+ B x 100), **IC : 95% credible interval
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Uncorrected and measurement corrected estimation of lung cancer
mortality risk and associated uncertainty

HR* 100wLm | 1C** 95% | WAIC***
Baseline model (8 = 0) 6895
Mo 2.06 1.60;2.70 6861
My 221 1.70;2.94 6858
o1 =0.84; 0. =041 2.38 1.78; 3.26 6855
Mz | 01 =0.84; 0. =0.82 2.50 1.81,3.46 6854
o1 =0.63; 0. =031 2.32 1.73;3.13 6857

Results provided by the EHR disease submodel My (i.e., without accounting for exposure
measurement error) and the measurement submodels M1(p = 0.4) and M2(p = 0.4) combined
with Mg

Some posterior probability distributions :

density
density
density

2 3 H 2 5 55 58
Beta X alpha
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Impact of exposure measurement error on the instantaneous excess
risk 8 (p =0.4,01 = 0.84,0, = 0.41)

Model
z Mo
2 W
= D u2

[{E!

2
beta

Posterior density of the excess risk coefficient 8 (per 100 WLM) of death by lung cancer in the
French cohort of uranium miners

£TSon IRS[]
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Application on the French cohort of uranium miners

Prior sensitivity

Influence of the prior density assigned on the baseline risk A on the
posterior density of the risk coefficient B in the French cohort of 7500000
uranium miners
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- Influence of the prior density (dotted lines)

B on the posterior density (solid line) when

. estimating the baseline risk of leukaemia

Lung cancer Leukaemia between 55 and 65 years in the French
cohort of uranium miners
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Limitations & Perspectives

@ Adaptive Metropolis-Within-Gibbs algorithm are time-consuming to explore
high-dimensional posterior distributions = Which alternative bayesian learning
algorithm ?

» Work under progress to implement a Metropolis-adjusted Langevin sampler and
compare it to our current adaptive Metropolis-Hastings sampler = First promising
results with about 40% reduction in calculation time for an equivalent ESS when
updating unknown parameters a and 8

@ Robustness of our models to measurement and/or exposure model mispecification 7
= Simulation studies under progress...
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