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Motivation : computer models

Computer models have become essential in science and industry !

For clear reasons : cost reduction, possibility to explore hazardous or extreme
scenarios...
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Computer models as expensive functions

A computer model can be seen as a deterministic function

f:XCcRY SR
x — f(x).

m x : tunable simulation parameter (e.g. geometry).

m f(x) : scalar quantity of interest (e.g. energetic efficiency).

The function f is usually

m continuous (at least)

m non-linear

m only available through evaluations x — f(x).
== Black box model.
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Follow-along example : coastal flooding
Figures from [Azzimonti et al., 2019].
Data and computer model MARS from BRGM.
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m Input x with d = 5.
m : Tide (meter).
: Surge peak (meter).
: Phase difference between surge peak and high tide (hour).
: Time duration of raising part of surge (hour).
: Time duration of falling part of surge (hour).
m Onput f(x).

m Maximal flooding area (m?®).
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Gaussian process

Gaussian processes (Kriging model)

Modeling the black box function as a single realization of a Gaussian process
X — &(x) on the domain X C RY.

Usefulness

Predicting the continuous realization function, from a finite number of observation
points.
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Gaussian processes

Definition
A stochastic process ¢ : X — R is Gaussian if for any xq, ..., Xp € X, the vector
(&(x1), ..., &(xn)) is a Gaussian vector.

Mean and covariance functions

The distribution of a Gaussian process is characterized by :
m Its mean function : x — m(x) = E(¢(x)) Can be any function X — R.
m |ts covariance function (xq, X2) — k(x1, X2) = Cov(&(x1), &(X2))-
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Conditional distribution

Gaussian process £ observed at xq, ..., Xp, without noise.

my= (§(X1)7 "'7E(Xf7))T'

m Ris the n x n matrix [k(x;, X;)].
m r(x) = (k(x, 1), -, kK(X, xn)) T

Conditional mean

The conditional mean is mu(x) = E(£(X)|€(X1), -, €(Xn)) = r(x) TR~ 1y.

Conditional variance

The conditional variance is kn(x, x) = var(&(x)[&(x1), ---, £E(Xn)) =
E [(£(x) — mn(x))?] = k(x,x) — r(x) T R~ r(x).

Conditional distribution

Conditionally to £(xq), ..., £(Xn), £ is @ Gaussian process with (conditional) mean
function mp and (conditional) covariance function
(u, v) = kn(u,v) = k(u,v) — r(u)TR="r(v).
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Illustration of conditional mean and variance
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Illustration of the conditional distribution
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Notation : parametric covariance function estimation

Parameterization

Covariance function model {ky, 6 € ©} for the Gaussian process &.
m © CRP.
m 0 is the multidimensional covariance parameter.
B ky is a covariance function.

¢ is observed at xq, ..., o € X, yielding the Gaussian vector y = (£(x), ..., &€(xn)) T

Objective : build estimator 4(y).
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Notation : maximum likelihood (ML) for estimation

Explicit Gaussian likelihood function for the observation vector y.

Maximum likelihood

Define Ry as the covariance matrix of y = (£(x1), ..., £(Xn)) T with covariance function
Ko : Ro = [Ko(Xi, X)1i j=1,....n-
The maximum likelihood estimator of 8 is
O € argmax Ln(6)
9o
with ;
1,Tp—1
Ln(6) = | =log( ——>—e2 Fo y).
2(6) = log(Pa(y)) = log ((%m =
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Inequality constraints

We consider a Gaussian process £ on X = [0, 1]¢ for which we assume that additional
information is available.

m £(x) belongs to [¢, u] for x € [0,1]¢ (boundedness constraints).

m 9¢(x)/0x; > 0for x € [0,1]9 and i = 1, ..., d (monotonicity constraints).
m ¢ is convex on [0, 1]¢ (convexity constraints).

m Modifications and/or combinations of the above constraints.

Application examples in computer experiments.

= Boundedness : computer model output belongs to R* (energy) or [0, 1]
(concentration, energetic efficiency).

m Monotonicity : inputs are known to have positive effects (more input power —
more output energy).
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Coastal flooding : the constraints

Tide
. Y=1.9 105 m?
Ré Island i 0 A\\//\
a Rocnelle
ty Time
&l Suge ¥:3.1 10 m? | |v=6.5 105 m?
Oléron ' S
Island
0 Time
L,
m Input x.
= : Tide (meter). Output increases when tide increases!

: Surge peak (meter). Output increases when surge increases !
: Phase difference between surge peak and high tide (hours).

: Time duration of raising part of surge (hours).

: Time duration of falling part of surge (hours).

m Onput f(x).
m Maximal flooding area (m?).
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Impact of the constraints

Generic form of the constraints :
Eeé

where £ is a set of functions from [0, 1]¢ — R such that P(¢ € £) > 0.

Impact.
m New stochastic model : The law of the realization function is P(¢ € .|¢ € &).

m New conditional distribution : Conditional distribution of ¢ given

m (X)) =Ww1,...,&(Xn) = ya (data interpolation),
m ¢ € & (inequality constraints).

m New estimation of the covariance parameters 6 in the covariance model
{ko; 0 € ©}.
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Illustration of constraint benefits

Target function : bounded and monotonic.
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Discussion of computational aspects : handling the constraints

m For boundedness constraints, it is possible to consider models of the form
yi = T(&(x;)) with T bijective from R to [¢, u] and £ a Gaussian process.

= No computational problem.

m For monotonicity and convexity constraints, the model P(¢ € .|¢ € £) has become
standard.
m But the constraint ¢ € £ needs to be approximated.
m ¢ € Eisreplaced by a finite number of constraints on inducing points in
[Da Veiga and Marrel, 2012, Golchi et al., 2015].

(8i€)(s) > 0,5 € [0,1]° ~ (Bi€)(s) > 0,j=1,...,m.

m ¢ is replaced by a finite-dimensional approximation &, in
[Lépez-Lopera et al., 2018, Maatouk and Bay, 2017].

0.00-—f=222200s

0.00 0.25 0.50 0.75 1.00
x
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Discussion of computational aspects : conditional distribution

In the frame of [Lopez-Lopera et al., 2018, Maatouk and Bay, 2017].

m The mode is the “most likely” function for £m,, obtained by quadratic optimization
with linear constraints.

m Conditional realizations of £, can be sampled approximately, for instance by
Hamiltonian Monte Carlo for truncated Gaussian vectors
[Pakman and Paninski, 2014].

monotone GP sample paths
« = unconstrained Kriging mean
= increasing Kriging mean
4 inequality mode

10
L

monotone GP

Francois Bachoc Inequality constraints 19/34



Results on coastal flooding example

Gaussian process predictive score.
m Without constraints.
m With constraints.
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An application to nuclear engineering

@ = 0.077 / Q2 — 0.982

Q2 =0.999

Q2 =0.998

Figure — Two dimensional nuclear engineering example. Radius and density of uranium sphere
— criticality coefficient. Monononicity constraints. Left : unconstrained Gaussian process
models. Right : constrained Gaussian process models. The Q® measures the prediction quality and
should be close to 1.
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Constrained maximum likelihood estimator

The constrained maximum likelihood estimator for 6 is

Ocm € argmax Le n(0)
oco

with

Le,n(0) = log(ps(yI€ € £))
= log(pg(y)) — log(Py (€ € £)) + log(Py (€ € Ely)).

m The additional terms log(Pg (£ € £)) and log(Py(& € £]y)) have no explicit
expressions.

m They need to be approximated by numerical integration or Monte Carlo :
[Genz, 1992, Botev, 2017].

Main questions :

m )y ignores the constraints. Is it biased conditionally to the constraints ?

m For instance if éML is the variance estimator, if the true variance is 4 and if the
constraints are £ € [—1, 1], does Oy underestimate the variance ?

m Does Oy improve over Oy by taking the constraints into account ?
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Asymptotic normality result : Matérn model

Matérn family of covariance functions :

u—v
Ko(0.) = Koo (0.) = Ko (=)

Shown in [Kaufman and Shaby, 2013] using results from
[Du et al., 2009, Wang and Loh, 2011] :

~2 2 2\2
(% - 3) w03
Py pav ) n—too o2
Theorem [Bachoc et al., 2019
We have » » 52
o (o L|E€E o
(G -3) 2 aea( )
P Py / Moo 2o
~2 2 2\ 2
(i) s oa(3))
Po.  Pg°/ Moo ry”

m Same conclusions as for the estimation of a variance parameter.

and
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An illustration

0.15

0.10;

0.05-

0.00-

Figure — An example with the estimation of ag with boundedness constraints. Distribution of
n'/2(82 — 62). n = 20 (top left), n = 50 (top right) and n = 80 (bottom). Green : VL. Blue : cML.
Red : Gaussian limit.
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MaxMod in 1d

1.00

0.00 0.25 0.50 0.75
T

m Let Y be the mode function with an ordered set of knots :
{to,...,tm}, with 0=fH < - - <tm=1.

m Here, we aim at adding a new knot ¢t (where ?).
m To do so, we aim at maximising the total modification of the mode :

= [ (Yt~ V() ox. (1)

The integral in (1) has a closed-form expression.
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1D example under boundedness and monotonicity constraints

Conditional sample-path
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2D example under monotonicity constraints

Figure — Evolution of the MaxMod algorithm using f(x) = $x; + arctan(10x2)
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MaxMod results on coastal example

m Eq(Y, V) : relative square error.

[ ] ?square : regularly spaced knots, identical number per variable.

| VMaxMod,red : regularly spaced knots, numbers per variable given by MaxMod.
m V. : optimized by hand in a previous study.

L YR Y R I Y R TV R S VY Y Y
i <@ Piquare
,\()‘()20 3 “0- PtaxModrect
& ! -
> i 0 YMaxMod
5 0.015 1 ?.
0.010
e
~ v w2z g pg® 3% 38 R S
total number of multi-dimensional knots per iteration
s CPU time [s
Approach | m En(Y,Y) Computation d Sampling step
[1 x 107%] | Training step ~ . o
of Y with 100 realizations
Yaquare 1024 8.72 49.1 8.03 non converged after 1 day
YMaxMod | 432 8.81 949.5 0.58 108.72
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Conclusion

Summary

m Inequality constraints correspond to additional information (e. g. physical
knowledge).

m Taking them into account can significantly improve the predictions.

m With a computational cost (explicit = Monte Carlo).

m Asymptotically, we do not see an impact of the constraints and ML =~ cML.
m MaxMod algorithm for higher dimension.

References
m Constrained Gaussian processes : [Lopez-Lopera et al., 2018].
m Constrained Maximum Likelihood : [Bachoc et al., 2019].
m MaxMod : [Bachoc et al., 2022].
m Extension of MaxMod for additive models : [Lopez-Lopera et al., 2022].
m R package LineqGPR : https://github.com/anfelopera/linegGPR.

Thank you for your attention !
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