Introduction to Gaussian process with inequality constraints - Application to coast flooding risk

François Bachoc¹, Nicolas Durrande², Agnès Lagnoux¹, Andrés Felipe Lopez Lopera³, Olivier Roustant¹

> ¹Institut de Mathématiques de Toulouse ²Shift Lab (London) ³Université de Valenciennes

Workshop "Statistical methods for safety and decommissionning" Avignon

November 2022

2 Gaussian processes under inquality constraints

3 Maximum likelihood under inquality constraints

4 MaxMod for optimal knot allocation

Motivation : computer models

Computer models have become essential in science and industry!

For clear reasons : cost reduction, possibility to explore hazardous or extreme scenarios...

Computer models as expensive functions

A computer model can be seen as a deterministic function

$$f\colon \mathbb{X}\subset \mathbb{R}^d\to \mathbb{R}$$
$$x\mapsto f(x).$$

- *x* : tunable simulation parameter (e.g. geometry).
- f(x) : scalar quantity of interest (e.g. energetic efficiency).

The function *f* is usually

- continuous (at least)
- non-linear
- only available through evaluations $x \mapsto f(x)$.

 \implies Black box model.

Figures from [Azzimonti et al., 2019]. Data and computer model MARS from BRGM.

Input x with d = 5.

- : Tide (meter).
- Surge peak (meter).
- Phase difference between surge peak and high tide (hour).
- Time duration of raising part of surge (hour).
- Time duration of falling part of surge (hour).

Onput f(x).

Maximal flooding area (m³).

Gaussian process

Gaussian processes (Kriging model)

Modeling the **black box function** as a **single realization** of a Gaussian process $x \to \xi(x)$ on the domain $\mathbb{X} \subset \mathbb{R}^d$.

Usefulness

Predicting the continuous realization function, from a finite number of **observation points**.

Definition

A stochastic process $\xi : \mathbb{X} \to \mathbb{R}$ is Gaussian if for any $x_1, ..., x_n \in \mathbb{X}$, the vector $(\xi(x_1), ..., \xi(x_n))$ is a Gaussian vector.

Mean and covariance functions

The distribution of a Gaussian process is characterized by :

- Its mean function : $x \mapsto m(x) = \mathbb{E}(\xi(x))$ Can be any function $\mathbb{X} \to \mathbb{R}$.
- Its covariance function $(x_1, x_2) \mapsto k(x_1, x_2) = Cov(\xi(x_1), \xi(x_2)).$

Conditional distribution

Gaussian process ξ observed at $x_1, ..., x_n$, without noise.

Notation

- $y = (\xi(x_1), ..., \xi(x_n))^{\top}$.
- **R** is the $n \times n$ matrix $[k(x_i, x_j)]$.
- $r(x) = (k(x, x_1), ..., k(x, x_n))^{\top}$.

Conditional mean

The conditional mean is $m_n(x) = \mathbb{E}(\xi(x)|\xi(x_1),...,\xi(x_n)) = r(x)^\top R^{-1}y$.

Conditional variance

The conditional variance is
$$k_n(x, x) = var(\xi(x)|\xi(x_1), ..., \xi(x_n)) = \mathbb{E}\left[(\xi(x) - m_n(x))^2\right] = k(x, x) - r(x)^\top R^{-1}r(x).$$

Conditional distribution

Conditionally to $\xi(x_1), ..., \xi(x_n), \xi$ is a Gaussian process with (conditional) mean function m_n and (conditional) covariance function $(u, v) \mapsto k_n(u, v) = k(u, v) - r(u)^\top R^{-1} r(v).$

Illustration of conditional mean and variance

Parameterization

Covariance function model $\{k_{\theta}, \theta \in \Theta\}$ for the Gaussian process ξ .

- $\bullet \Theta \subset \mathbb{R}^{p}.$
- \bullet *θ* is the multidimensional covariance parameter.
- **•** k_{θ} is a covariance function.

Observations

 ξ is observed at $x_1, ..., x_n \in \mathbb{X}$, yielding the Gaussian vector $y = (\xi(x_1), ..., \xi(x_n))^\top$.

Estimation

Objective : build estimator $\hat{\theta}(y)$.

Explicit Gaussian likelihood function for the observation vector y.

Maximum likelihood

Define R_{θ} as the covariance matrix of $y = (\xi(x_1), ..., \xi(x_n))^{\top}$ with covariance function $k_{\theta} : R_{\theta} = [k_{\theta}(x_i, x_j)]_{i,j=1,...,n}$. The maximum likelihood estimator of θ is

$$\hat{\theta}_{ML} \in \operatorname*{argmax}_{\theta \in \Theta} \mathcal{L}_n(\theta)$$

with

$$\mathcal{L}_n(heta) = \log(p_ heta(y)) = \log\left(rac{1}{(2\pi)^{n/2}|R_ heta|}e^{-rac{1}{2}y^ op R_ heta^{-1}y}
ight).$$

2 Gaussian processes under inquality constraints

3 Maximum likelihood under inquality constraints

4 MaxMod for optimal knot allocation

We consider a Gaussian process ξ on $\mathbb{X} = [0, 1]^d$ for which we assume that additional information is available.

- $\xi(x)$ belongs to $[\ell, u]$ for $x \in [0, 1]^d$ (boundedness constraints).
- $\partial \xi(x) / \partial x_i \ge 0$ for $x \in [0, 1]^d$ and i = 1, ..., d (monotonicity constraints).
- ξ is convex on $[0, 1]^d$ (convexity constraints).
- Modifications and/or combinations of the above constraints.

Application examples in computer experiments.

- **Boundedness :** computer model output belongs to ℝ⁺ (energy) or [0, 1] (concentration, energetic efficiency).
- Monotonicity : inputs are known to have positive effects (more input power → more output energy).

Coastal flooding : the constraints

Input x.

- Tide (meter). Output increases when tide increases !
- Surge peak (meter). Output increases when surge increases!
- Phase difference between surge peak and high tide (hours).
- Time duration of raising part of surge (hours).
- Time duration of falling part of surge (hours).

Onput f(x).

Maximal flooding area (m³).

Generic form of the constraints :

 $\xi\in \mathcal{E}$

where \mathcal{E} is a set of functions from $[0, 1]^d \to \mathbb{R}$ such that $P(\xi \in \mathcal{E}) > 0$.

Impact.

- New stochastic model : The law of the realization function is $P(\xi \in .|\xi \in \mathcal{E})$.
- **New conditional distribution :** Conditional distribution of ξ given

•
$$\xi(x_1) = y_1, \ldots, \xi(x_n) = y_n$$
 (data interpolation),

• $\xi \in \mathcal{E}$ (inequality constraints).

■ New estimation of the covariance parameters θ in the covariance model $\{k_{\theta}; \theta \in \Theta\}$.

Illustration of constraint benefits

Target function : bounded and monotonic.

Discussion of computational aspects : handling the constraints

For boundedness constraints, it is possible to consider models of the form $y_i = T(\xi(x_i))$ with *T* bijective from \mathbb{R} to $[\ell, u]$ and ξ a Gaussian process.

No computational problem.

- For monotonicity and convexity constraints, the model $P(\xi \in .|\xi \in \mathcal{E})$ has become standard.
 - But the constraint $\xi \in \mathcal{E}$ needs to be approximated.
 - $\xi \in \mathcal{E}$ is replaced by a finite number of constraints on inducing points in [Da Veiga and Marrel, 2012, Golchi et al., 2015].

 $(\partial_i \xi)(s) \ge 0, s \in [0, 1]^d \qquad \approx \qquad (\partial_i \xi)(s_j) \ge 0, j = 1, \dots, m.$

ξ is replaced by a finite-dimensional approximation ξ_m in [López-Lopera et al., 2018, Maatouk and Bay, 2017].

Discussion of computational aspects : conditional distribution

In the frame of [López-Lopera et al., 2018, Maatouk and Bay, 2017].

- The mode is the "most likely" function for ξ_m , obtained by quadratic optimization with linear constraints.
- Conditional realizations of ξ_m can be sampled approximately, for instance by Hamiltonian Monte Carlo for truncated Gaussian vectors [Pakman and Paninski, 2014].

Results on coastal flooding example

Gaussian process predictive score.

- Without constraints.
- With constraints.

An application to nuclear engineering

Figure – Two dimensional nuclear engineering example. **Radius** and **density** of uranium sphere \implies **criticality coefficient**. Monononicity constraints. Left : unconstrained Gaussian process models. Right : constrained Gaussian process models. The Q^2 measures the prediction quality and should be close to 1.

2 Gaussian processes under inquality constraints

3 Maximum likelihood under inquality constraints

4 MaxMod for optimal knot allocation

Constrained maximum likelihood estimator

The constrained maximum likelihood estimator for θ is

$$\hat{ heta}_{cML} \in \operatorname*{argmax}_{\theta \in \Theta} \mathcal{L}_{\mathcal{C},n}(heta)$$

with

$$\mathcal{L}_{\mathcal{C},n}(heta) = \log(p_{ heta}(y|\xi \in \mathcal{E})) \ = \log(p_{ heta}(y)) - \log(\mathbb{P}_{ heta}(\xi \in \mathcal{E})) + \log(\mathbb{P}_{ heta}(\xi \in \mathcal{E}|y)).$$

- The additional terms $\log(\mathbb{P}_{\theta}(\xi \in \mathcal{E}))$ and $\log(\mathbb{P}_{\theta}(\xi \in \mathcal{E}|y))$ have no explicit expressions.
- They need to be approximated by numerical integration or Monte Carlo : [Genz, 1992, Botev, 2017].

Main questions :

- $\hat{\theta}_{ML}$ ignores the constraints. Is it biased conditionally to the constraints?
 - For instance if $\hat{\theta}_{ML}$ is the variance estimator, if the true variance is 4 and if the constraints are $\xi \in [-1, 1]$, does $\hat{\theta}_{ML}$ underestimate the variance?
- Does $\hat{\theta}_{cML}$ improve over $\hat{\theta}_{ML}$ by taking the constraints into account?

Asymptotic normality result : Matérn model

Matérn family of covariance functions :

$$\mathcal{K}_{ heta}(u,v) = \mathcal{K}_{\sigma^2,
ho}(u,v) = \sigma^2 \mathcal{K}_{ ext{Mat ext{érn}}}\left(rac{u-v}{
ho}
ight).$$

Shown in [Kaufman and Shaby, 2013] using results from [Du et al., 2009, Wang and Loh, 2011] :

$$\sqrt{n} \left(\frac{\widehat{\sigma}_{ML}^2}{\widehat{\rho}_{ML}^{2\nu}} - \frac{\sigma_0^2}{\rho_0^{2\nu}} \right) \xrightarrow[n \to +\infty]{} \mathcal{N} \left(0, 2 \left(\frac{\sigma_0^2}{\rho_0^{2\nu}} \right)^2 \right).$$

Theorem [Bachoc et al., 2019]

We have

$$\sqrt{n} \left(\frac{\widehat{\sigma}_{ML}^2}{\widehat{\rho}_{ML}^{2\nu}} - \frac{\sigma_0^2}{\rho_0^{2\nu}} \right) \xrightarrow[n \to +\infty]{\mathcal{L}|\xi \in \mathcal{E}}} \mathcal{N} \left(0, 2 \left(\frac{\sigma_0^2}{\rho_0^{2\nu}} \right)^2 \right)$$

and

$$\sqrt{n} \left(\frac{\widehat{\sigma}_{cML}^2}{\widehat{\rho}_{cML}^{2\nu}} - \frac{\sigma_0^2}{\rho_0^{2\nu}} \right) \xrightarrow[n \to +\infty]{\mathcal{L}|\xi \in \mathcal{E}}} \mathcal{N} \left(0, 2 \left(\frac{\sigma_0^2}{\rho_0^{2\nu}} \right)^2 \right)$$

Same conclusions as for the estimation of a variance parameter.

An illustration

Figure – An example with the estimation of σ_0^2 with boundedness constraints. Distribution of $n^{1/2}(\hat{\sigma}^2 - \sigma_0^2)$. n = 20 (top left), n = 50 (top right) and n = 80 (bottom). Green : ML. Blue : cML. Red : Gaussian limit.

25/34

2 Gaussian processes under inquality constraints

3 Maximum likelihood under inquality constraints

4 MaxMod for optimal knot allocation

Let \widehat{Y} be the mode function with an ordered set of knots :

 $\{t_0, \ldots, t_m\}, \text{ with } 0 = t_0 < \cdots < t_m = 1.$

■ Here, we aim at adding a new knot *t* (where ?).

To do so, we aim at *maximising the total modification of the mode* :

$$I(t) = \int_{[0,1]} \left(\widehat{Y}_{+t}(x) - \widehat{Y}(x)\right)^2 dx.$$
(1)

The integral in (1) has a closed-form expression.

1D example under boundedness and monotonicity constraints

Mode

Conditional sample-path

Pbservation points + Knots Mode
 Predictive mean 90% confidence intervals

2D example under monotonicity constraints

Figure – Evolution of the MaxMod algorithm using $f(x) = \frac{1}{2}x_1 + \arctan(10x_2)$

MaxMod results on coastal example

- $E_n(Y, \hat{Y})$: relative square error.
- \hat{Y}_{square} : regularly spaced knots, identical number per variable.
- $\hat{Y}_{MaxMod,rect}$: regularly spaced knots, numbers per variable given by MaxMod.
- \hat{Y}_* : optimized by hand in a previous study.

Approach	m	$ \begin{array}{c} E_n(Y,\widehat{Y}) \\ [1 \times 10^{-3}] \end{array} $	CPU time [s]		
			Training step	Computation	Sampling step
				of \widehat{Y}	with 100 realizations
$\widehat{Y}_{ ext{square}}$	1024	8.72	49.1	8.03	non converged after 1 day
\widehat{Y}_{MaxMod}	432	8.81	949.5	0.58	108.72

François Bachoc

Inequality constraints

30/34

Conclusion

Summary

- Inequality constraints correspond to additional information (e. g. physical knowledge).
- Taking them into account can significantly improve the predictions.
- With a computational cost (explicit \implies Monte Carlo).
- Asymptotically, we do not see an impact of the constraints and ML \approx cML.
- MaxMod algorithm for higher dimension.

References

- Constrained Gaussian processes : [López-Lopera et al., 2018].
- Constrained Maximum Likelihood : [Bachoc et al., 2019].
- MaxMod : [Bachoc et al., 2022].
- Extension of MaxMod for additive models : [López-Lopera et al., 2022].
- R package LineqGPR: https://github.com/anfelopera/lineqGPR.

Thank you for your attention !

Azzimonti, D., Ginsbourger, D., Rohmer, J., and Idier, D. (2019).

Profile extrema for visualizing and quantifying uncertainties on excursion regions : application to coastal flooding.

Technometrics.

Bachoc, F., Lagnoux, A., and López-Lopera, A. F. (2019).

Maximum likelihood estimation for Gaussian processes under inequality constraints.

Electronic Journal of Statistics, 13(2) :2921–2969.

Bachoc, F., López-Lopera, A. F., and Roustant, O. (2022).

Sequential construction and dimension reduction of Gaussian processes under inequality constraints.

SIAM Journal on Mathematics of Data Science, 4(2) :772–800.

Botev, Z. I. (2017).

The normal law under linear restrictions : simulation and estimation via minimax tilting.

Journal of the Royal Statistical Society : Series B (Statistical Methodology), 79(1) :125–148.

Da Veiga, S. and Marrel, A. (2012).

Gaussian process modeling with inequality constraints. Annales de la faculté des sciences de Toulouse Mathématiques, 21(6) :529–555.

Du, J., Zhang, H., and Mandrekar, V. (2009). Fixed-domain asymptotic properties of tapered maximum likelihood estimators.

The Annals of Statistics, 37:3330-3361.

12	-0

Genz. A. (1992).

Numerical computation of multivariate normal probabilities. Journal of Computational and Graphical Statistics, 1:141–150.

Golchi, S., Bingham, D., Chipman, H., and Campbell, D. (2015). Monotone emulation of computer experiments. SIAM/ASA Journal on Uncertainty Quantification, 3(1):370–392.

Kaufman, C. and Shaby, B. (2013). The role of the range parameter for estimation and prediction in geostatistics. Biometrika, 100 :473-484.

López-Lopera, A. F., Bachoc, F., Durrande, N., and Roustant, O. (2018). Finite-dimensional Gaussian approximation with linear inequality constraints. SIAM/ASA Journal on Uncertainty Quantification, 6(3) :1224–1255.

López-Lopera, A. F., Bachoc, F., and Roustant, O. (2022). High-dimensional additive Gaussian processes under monotonicity constraints. In NeurIPS.

Maatouk, H. and Bay, X. (2017).

Gaussian process emulators for computer experiments with inequality constraints.

Mathematical Geosciences, 49(5):557-582.

Pakman, A. and Paninski, L. (2014). Exact Hamiltonian Monte Carlo for truncated multivariate Gaussians. Journal of Computational and Graphical Statistics, 23(2):518-542.

Wang, D. and Loh, W.-L. (2011).

On fixed-domain asymptotics and covariance tapering in Gaussian random field models.

Electronic Journal of Statistics, 5:238–269.