
Introduction to Gaussian process with inequality constraints
- Application to coast flooding risk

François Bachoc1, Nicolas Durrande2, Agnès Lagnoux1, Andrés
Felipe Lopez Lopera3, Olivier Roustant1

1Institut de Mathématiques de Toulouse
2Shift Lab (London)

3Université de Valenciennes

Workshop "Statistical methods for safety and decommissionning"
Avignon

November 2022

François Bachoc Inequality constraints 1 / 34



1 Gaussian processes (without inquality constraints)

2 Gaussian processes under inquality constraints

3 Maximum likelihood under inquality constraints

4 MaxMod for optimal knot allocation

François Bachoc Inequality constraints 2 / 34



Motivation : computer models

Computer models have become essential in science and industry !

For clear reasons : cost reduction, possibility to explore hazardous or extreme
scenarios...
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Computer models as expensive functions

A computer model can be seen as a deterministic function

f : X ⊂ Rd → R
x 7→ f (x).

x : tunable simulation parameter (e.g. geometry).

f (x) : scalar quantity of interest (e.g. energetic efficiency).

The function f is usually

continuous (at least)

non-linear

only available through evaluations x 7→ f (x).

=⇒ Black box model.
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Follow-along example : coastal flooding

Figures from [Azzimonti et al., 2019].
Data and computer model MARS from BRGM.

Input x with d = 5.
: Tide (meter).
: Surge peak (meter).
: Phase difference between surge peak and high tide (hour).
: Time duration of raising part of surge (hour).
: Time duration of falling part of surge (hour).

Onput f (x).
Maximal flooding area (m3).
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Gaussian process

Gaussian processes (Kriging model)

Modeling the black box function as a single realization of a Gaussian process
x → ξ(x) on the domain X ⊂ Rd .
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Usefulness
Predicting the continuous realization function, from a finite number of observation
points.
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Gaussian processes

Definition
A stochastic process ξ : X → R is Gaussian if for any x1, ..., xn ∈ X, the vector
(ξ(x1), ..., ξ(xn)) is a Gaussian vector.

Mean and covariance functions
The distribution of a Gaussian process is characterized by :

Its mean function : x 7→ m(x) = E(ξ(x)) Can be any function X → R.

Its covariance function (x1, x2) 7→ k(x1, x2) = Cov(ξ(x1), ξ(x2)).
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Conditional distribution

Gaussian process ξ observed at x1, ..., xn, without noise.

Notation

y = (ξ(x1), ..., ξ(xn))⊤.

R is the n × n matrix [k(xi , xj )].

r(x) = (k(x , x1), ..., k(x , xn))⊤.

Conditional mean
The conditional mean is mn(x) = E(ξ(x)|ξ(x1), ..., ξ(xn)) = r(x)⊤R−1y .

Conditional variance
The conditional variance is kn(x , x) = var(ξ(x)|ξ(x1), ..., ξ(xn)) =
E
[
(ξ(x)− mn(x))2] = k(x , x)− r(x)⊤R−1r(x).

Conditional distribution
Conditionally to ξ(x1), ..., ξ(xn), ξ is a Gaussian process with (conditional) mean
function mn and (conditional) covariance function
(u, v) 7→ kn(u, v) = k(u, v)− r(u)⊤R−1r(v).

François Bachoc Inequality constraints 8 / 34



Illustration of conditional mean and variance
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Illustration of the conditional distribution
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Notation : parametric covariance function estimation

Parameterization
Covariance function model {kθ, θ ∈ Θ} for the Gaussian process ξ.

Θ ⊂ Rp .

θ is the multidimensional covariance parameter.

kθ is a covariance function.

Observations
ξ is observed at x1, ..., xn ∈ X, yielding the Gaussian vector y = (ξ(x1), ..., ξ(xn))⊤.

Estimation
Objective : build estimator θ̂(y).
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Notation : maximum likelihood (ML) for estimation

Explicit Gaussian likelihood function for the observation vector y .

Maximum likelihood
Define Rθ as the covariance matrix of y = (ξ(x1), ..., ξ(xn))⊤ with covariance function
kθ : Rθ = [kθ(xi , xj )]i,j=1,...,n.
The maximum likelihood estimator of θ is

θ̂ML ∈ argmax
θ∈Θ

Ln(θ)

with

Ln(θ) = log(pθ(y)) = log

(
1

(2π)n/2|Rθ|
e− 1

2 y⊤R−1
θ

y
)
.
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4 MaxMod for optimal knot allocation

François Bachoc Inequality constraints 13 / 34



Inequality constraints

We consider a Gaussian process ξ on X = [0, 1]d for which we assume that additional
information is available.

ξ(x) belongs to [ℓ, u] for x ∈ [0, 1]d (boundedness constraints).

∂ξ(x)/∂xi ≥ 0 for x ∈ [0, 1]d and i = 1, . . . , d (monotonicity constraints).

ξ is convex on [0, 1]d (convexity constraints).

Modifications and/or combinations of the above constraints.

Application examples in computer experiments.

Boundedness : computer model output belongs to R+ (energy) or [0, 1]
(concentration, energetic efficiency).

Monotonicity : inputs are known to have positive effects (more input power →
more output energy).
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Coastal flooding : the constraints

Input x .
: Tide (meter). Output increases when tide increases !
: Surge peak (meter). Output increases when surge increases !
: Phase difference between surge peak and high tide (hours).
: Time duration of raising part of surge (hours).
: Time duration of falling part of surge (hours).

Onput f (x).
Maximal flooding area (m3).
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Impact of the constraints

Generic form of the constraints :
ξ ∈ E

where E is a set of functions from [0, 1]d → R such that P(ξ ∈ E) > 0.

Impact.

New stochastic model : The law of the realization function is P(ξ ∈ .|ξ ∈ E).
New conditional distribution : Conditional distribution of ξ given

ξ(x1) = y1, . . . , ξ(xn) = yn (data interpolation),
ξ ∈ E (inequality constraints).

New estimation of the covariance parameters θ in the covariance model
{kθ; θ ∈ Θ}.
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Illustration of constraint benefits

Target function : bounded and monotonic.
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Unconstrained Gaussian process. Constrained Gaussian process.

■ true function • training points
■ predictive mean ■ confidence intervals
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Discussion of computational aspects : handling the constraints

For boundedness constraints, it is possible to consider models of the form
yi = T (ξ(xi )) with T bijective from R to [ℓ, u] and ξ a Gaussian process.

No computational problem.

For monotonicity and convexity constraints, the model P(ξ ∈ .|ξ ∈ E) has become
standard.

But the constraint ξ ∈ E needs to be approximated.
ξ ∈ E is replaced by a finite number of constraints on inducing points in
[Da Veiga and Marrel, 2012, Golchi et al., 2015].

(∂iξ)(s) ≥ 0, s ∈ [0, 1]d ≈ (∂iξ)(sj ) ≥ 0, j = 1, . . . , m.

ξ is replaced by a finite-dimensional approximation ξm in
[López-Lopera et al., 2018, Maatouk and Bay, 2017].
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Discussion of computational aspects : conditional distribution

In the frame of [López-Lopera et al., 2018, Maatouk and Bay, 2017].

The mode is the “most likely” function for ξm, obtained by quadratic optimization
with linear constraints.

Conditional realizations of ξm can be sampled approximately, for instance by
Hamiltonian Monte Carlo for truncated Gaussian vectors
[Pakman and Paninski, 2014].
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Results on coastal flooding example

Gaussian process predictive score.

Without constraints.

With constraints.
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An application to nuclear engineering
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Figure – Two dimensional nuclear engineering example. Radius and density of uranium sphere
=⇒ criticality coefficient. Monononicity constraints. Left : unconstrained Gaussian process
models. Right : constrained Gaussian process models. The Q2 measures the prediction quality and
should be close to 1.
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Constrained maximum likelihood estimator

The constrained maximum likelihood estimator for θ is

θ̂cML ∈ argmax
θ∈Θ

LC,n(θ)

with

LC,n(θ) = log(pθ(y |ξ ∈ E))
= log(pθ(y))− log(Pθ(ξ ∈ E)) + log(Pθ(ξ ∈ E|y)).

The additional terms log(Pθ(ξ ∈ E)) and log(Pθ(ξ ∈ E|y)) have no explicit
expressions.

They need to be approximated by numerical integration or Monte Carlo :
[Genz, 1992, Botev, 2017].

Main questions :

θ̂ML ignores the constraints. Is it biased conditionally to the constraints?
For instance if θ̂ML is the variance estimator, if the true variance is 4 and if the
constraints are ξ ∈ [−1, 1], does θ̂ML underestimate the variance?

Does θ̂cML improve over θ̂ML by taking the constraints into account?
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Asymptotic normality result : Matérn model

Matérn family of covariance functions :

Kθ(u, v) = Kσ2,ρ(u, v) = σ2KMatérn

(
u − v
ρ

)
.

Shown in [Kaufman and Shaby, 2013] using results from
[Du et al., 2009, Wang and Loh, 2011] :

√
n
(
σ̂2

ML

ρ̂2ν
ML

−
σ2

0

ρ2ν
0

)
L−−−−−→

n→+∞
N

(
0, 2

(
σ2

0

ρ2ν
0

)2)
.

Theorem [Bachoc et al., 2019]
We have

√
n
(
σ̂2

ML

ρ̂2ν
ML

−
σ2

0

ρ2ν
0

)
L|ξ∈E−−−−−→
n→+∞

N
(

0, 2
(

σ2
0

ρ2ν
0

)2)
and

√
n
(
σ̂2

cML

ρ̂2ν
cML

−
σ2

0

ρ2ν
0

)
L|ξ∈E−−−−−→
n→+∞

N
(

0, 2
(

σ2
0

ρ2ν
0

)2)
.

Same conclusions as for the estimation of a variance parameter.
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An illustration
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Figure – An example with the estimation of σ2
0 with boundedness constraints. Distribution of

n1/2(σ̂2 − σ2
0). n = 20 (top left), n = 50 (top right) and n = 80 (bottom). Green : ML. Blue : cML.

Red : Gaussian limit.
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MaxMod in 1d
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Let Ŷ be the mode function with an ordered set of knots :

{t0, . . . , tm}, with 0 = t0 < · · · < tm = 1.

Here, we aim at adding a new knot t (where?).

To do so, we aim at maximising the total modification of the mode :

I(t) =
∫
[0,1]

(
Ŷ+t (x)− Ŷ (x)

)2
dx . (1)

The integral in (1) has a closed-form expression.
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1D example under boundedness and monotonicity constraints

Mode Conditional sample-path

• Pbservation points + Knots ■ Mode
■ Predictive mean ■ 90% confidence intervals
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2D example under monotonicity constraints

Figure – Evolution of the MaxMod algorithm using f (x) = 1
2 x1 + arctan(10x2)
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(e) iteration 4

• training points + knots ■ mode
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MaxMod results on coastal example

En(Y , Ŷ ) : relative square error.
Ŷsquare : regularly spaced knots, identical number per variable.
ŶMaxMod,rect : regularly spaced knots, numbers per variable given by MaxMod.
Ŷ∗ : optimized by hand in a previous study.
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Conclusion

Summary

Inequality constraints correspond to additional information (e. g. physical
knowledge).

Taking them into account can significantly improve the predictions.

With a computational cost (explicit =⇒ Monte Carlo).

Asymptotically, we do not see an impact of the constraints and ML ≈ cML.

MaxMod algorithm for higher dimension.
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