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Summary

❑Overview of the literature

❑Mathematical Foundations 

❑Structural Importance Measures 

❑Reliability Importance Measures with 
Aleatory Uncertainty

❑Reliability Importance Measures with 
Epistemic Uncertainty
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Motivation

❑Reliability Importance Measures are a 
central tool in supporting engineering 
decision making

❑They allow us to identify important 
components in a system under a variety of 
settings

❑Over the years several Reliability 
Importance Measures developed for 
various tasks
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Some Applications

❑ Prioritization (Birnbaum, 1969)

❑ Redundancy Allocation in the Design Phase 

❑Graded Quality Assurance Programs (NRC, 
2002)

❑Maintenance Prioritization (Nguyen, Do, & 
Grall, 2017)

❑ Remaining Useful Life (Do and Berenguer, 
2022, Zhu et al, 2022)
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Risk Analysis
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Definitions of Risk

❑Several definitions of risk (e.g., Risk
equals the expected loss; (2) Risk equals
the expected disutility. (3) Risk is a
measure of the probability and severity of
adverse effects, etc.)

❑Kaplan & Garrick 1981
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Kaplan and Garrick Risk Triplets

❑Risk is a triplet of 

❑Scenarios (𝑆𝑛): What can happen? 

❑Likelihoods (𝑙𝑛): How likely is it to happen?

❑Consequences (𝑥𝑛): What is the end result?

❑Hazard: a set of doublets
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Probabilistic Safety Assessment
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Mathematical Foundations

❑R. E. BARLOW, J. B. FUSSELL, AND N. D. 
SINGPURWALLA, EDS. “Reliability and 
Fault Tree Analysis,” Society for Industrial 
and Applied Mathematics, Philadelphia, 
PA, 1977

❑N. D. Singpurwalla, 1988: 
“FOUNDATIONAL ISSUES IN RELIABILITY 
AND RISK ANALYSIS”, Siam Review, Vol. 
30, No. 2, June 1988
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The Boolean Background
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❑Structure function

❑where

❑Coherent system: the structure 
function is increasing

1 2( , ,..., ) ( )n    =  = 
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1 component i has failed

0 component i is working correctly
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❑ Birnbaum (1969, p. 583-584):

❑ Structural Importance

❑ Further studied in several works, such as Meng 
(2000)
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Birnbaum Relevance
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A visual representation

12



Aleatory Uncertainty and 
Conditioning
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System Reliability

❑The system reliability at time t is the 
probability that the system has not failed 
at time t:

❑Considering the failure probability

❑We have
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Properties

❑ Let 𝑝𝑖(𝑡) = 𝑃(𝑥𝑖=1;t) be the (conditional) 

failure probability of component i

❑ Then R(t) is a multilinear function of 𝑝𝑖 𝑡 for 

both coherent and non coherent systems

with dependent and independent failures (B., 

2010)
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Conditioning and Criticality

❑ Component i is critical for the system if the 
system is in such a state that the change in 
state of the component causes the system to 
tail

❑ Coherent system: only changes from working 
to failed can cause the system to fail

❑Non-coherent system: both ways

❑ To calculate criticality, we condition on the 
component being “up” or “down”
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The Birnbaum Importance

❑ Re-consider the expression

❑ 𝛿𝑖 𝑡 = 1 the component i is critical at time t if the 

system is coherent

❑ Then, Birnbaum (1969) defines

❑ 𝐵𝑖(t) is the Birnbaum importance measure
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Risk Achievement Worth

❑Risk Achievement Worth (Vesely et al, 
1983)

conditional risk metric given that component 
i has failed
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Risk Reduction Worth

❑Risk Reduction Worth

❑Conditional risk metric given that 
component i is always working

❑Probabilistic Relationship

19

| 0

( )Pr( 1; )
( )

Pr( (0 , ) 1; ) ( )
i

i

i X

F tt
RRW t

x t F t



 =

 =
= =

 =



Fussell-Vesely

❑ Let

be the union of the Min Cut Sets containing component i

❑ The Fussell-Vesely importance is defined as

❑ It can be shown that
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A summary of Relationships
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Two Observations

❑For coherent systems with iid failures

Thus, for a coherent system criticality and 
differentiation coincide
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DETOUR ON IMPORTANCE 
MEASURES BASED ON 
DERIVATIVES
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Literature Review

24



The Criticality and Joint Importance 
Measures

❑ Criticality Importance Measure (Cheok et al, 1998)

❑ Joint Reliability Importance (Hong & Li, 1993)

How the Birnbaum importance of component I
changes as the importance of component k changes
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The Differential Importance Measure

❑Fraction of the differential of the risk 
metric associated with a perturbation in 
the failure probability of component i

(Borgonovo and Apostolakis, 2001)
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DIM Properties

❑ Additivity:

❑ Relationship to Birnbaum and Criticality

❑Uniform perturbations in the p’s Differential 
Importance coincides with Birnbaum

❑ Proportional Perturbations Differential 
importance coincides with Criticality
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Considering Interactions

❑Total Order Reliability Importance:

Includes the Birnbaum and all the joint 
reliability importance measures of all orders

Can be efficiently 

❑ Borgonovo 2010, EJOR
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END OF DETOUR
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BIRNBAUM AND NON-
COHERENT SYSTEMS
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Two Extensions

❑Andrews and Beeson (2003) extend the 
Birnbaum importance as

❑𝑞𝑖 is the probability of component success

❑Vaurio (2016) 
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Boolean Expression for Criticality

The above definition gives rise to the following Boolean 
expression (Aliee, B., Glass, Teich, 2017):
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Birnbaum Importance For 
Coherent and Non Coherent 

Systems

❑The Birnbaum importance is then the 
probability that component i is critical for 
system failure when working or when 
failed
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Main Implication

❑For non coherent systems, derivatives can 
be negative

❑Therefore the probability of a component 
being critical is no more equal to the 
partial derivative of the system with 
respect to the probability of component i
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TIME INDEPENDENT 
IMPORTANCE MEASURES
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Barlow-Proschan Importance

❑For a coherent system, the B-P 
importance (Barlow and Proschan, 1975):

❑The probability that component i is critical, 
independently of time.
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Other Time Independent 
Importance measures
❑ Lambert’s  Enabler importance measure (Lambert 

1975)

❑ Natvig’s importance measure (1979)

❑ A general definition by Xie (1987)

❑ Where Y(t) is a differentiable function.

❑ For instance, if 𝑌 𝑡 = 𝑡𝑟, 𝑟 ≥ 0

❑ For 𝑟 = 0 we have the Barlow-Proshan, for 𝑟 = 1, we 
have the importance measure of Bergman (1985).
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THE NOTION OF TIME 
CONSISTENCY
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Conditional Failure

❑ We expect that if a component is always failed, then the 
probability of the system working given that i has failed 
is always greater than the original probability 
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Time Consistency

❑A system is time consistent for component 
failure if F 𝑡 ≥ 𝐹𝑖(𝑡|𝜙𝑖 = 1) for every t 
and for all components.

❑ Implication: if a system is not time 
consistent, there is one or more times 
after which if we do not perform repair, 
we are better off.
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MTTF Importance

❑Difference between MTTF and MTTF given 
that component i has failed

❑The most important component is the one 
that creates the greatest shift in MTTF
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A relevant result

❑A system is time consistent with respect to 
component i if and only if
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Example of a non-time 
consistent system
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Borgonovo, Aliee, Glass Teich (2016)



Extensions

❑ Importance Measures for Multistate Systems; 
works of Ramirez-Marquez, Coit, Natvig, 
Huseby.

❑ Importance Measures in Repairable and Non-
Repairable Systems, Works of Natvig & 
Gasemyr, etc..

❑ Importance Measures for Thresholds linking 
value of information and importance 
measures (Borgonovo and Cillo, 2016) 

❑… several others

44



IMPORTANCE MEASURES 
AND EPISTEMIC 
UNCERTAINTY
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How uncertainty affects IM 
Ranking
❑Works has been done starting from Lambert 

(1975), Modarres and Aggarwal (1996) to 
account for the effect of epistemic 
uncertainty in importance measure ranking.

❑ A set of approaches is covered in Borgonovo
(2008)

❑ Borgonovo and Smith (2015) introduce the 
epistemic risk achievement worth (ERAW)
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Global Sensitivity Measures

❑Epistemic Uncertainty can be addressed 
also using global sensitivity measures

❑A variety of techniques, from variance-
based (Homma and Saltelli 1996) to 
moment independent (Borgonovo 2007)
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More General Settings

❑ Risk Metric Y

❑ Uncertainty in the paramters 𝑋1, 𝑋2, …

❑ 𝐹𝑋1,𝑋2,…,𝑋𝑛 𝑥1, 𝑥2, … , 𝑥𝑛 probability distribution of X.

❑ Uncertainty propagates from X to Y (usually via Monte 
Carlo simulation). 
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An Intuition

❑Conditioning on the value of a parameter

❑Marginal distribution: 𝐹𝑌(𝑦)

❑Conditional Distribution: 𝐹𝑌|𝑋𝑖 𝑦
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A Visualization
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Common Rationale

A General Framework:

𝜉𝑋 = 𝐸 [𝑑 𝐹𝑌, 𝐹𝑌|𝑋𝑖 ]

where 𝑑(⋅,⋅) is meant to accommodate 
several sensitivity measures.
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Global Importance Measures

If we set 𝑑 ⋅,⋅ to be the L1 norm between 
densities, 

𝑑 𝐹𝑌, 𝐹𝑌|𝑋𝑖 = ∫ |𝑓𝑌 𝑦 − 𝑓𝑌|𝑋𝑖 𝑦, 𝑥𝑖 |𝑑𝑦

we find the delta importance measure (B. 
2007):

𝛿𝑖 =
1

2
𝐸𝑋𝑖[∫ |𝑓𝑌 𝑦 − 𝑓𝑌|𝑋𝑖 𝑦, 𝑥𝑖 |𝑑𝑦
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And Several Others

❑Gamboa et al (2018), based on the 
Cramer von Mises Distance between 
Distributions

❑Chatterjee (2020) 

❑Wiesel (2022), B. et al (2022) based on 
the Wasserstein distance (Optimal 
Transport)
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Multiple Risk Metrics

❑Loss of crew or loss of mission are two 
criteria simultaneously of interest

❑Reliability and Cost are also two conflicting 
criteria

❑Case a): they can be combined in a 
unique objective function

❑Case b): we cannot combine them
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Global Sensitivity Analysis for 
Multivariate Output

❑Extending the framework to multivariate 
responses

❑Several works by Da Veiga, Iooss, 
Lamboni, Marrel and others (no time to 
review all of them)
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Recent Approaches based on 
Optimal-Transport-Theory

❑Wasserstein Distance:

❑Corresponding global sensitivity measure 
(B., Figalli, et al. 2022):
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Properties

❑Zero-Independence 
– It is null if and only if Y is independent of X

❑Max-Functionality
– It is maximal if and only if learning Y removes uncertainty in X completely

❑ Monotonicity for information refinements
– For the same X, if information is less refined then the value of the importance 

measure of X is smaller than if we have more refined information
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And Value of Information

Let 𝐿 𝑦, 𝑎 a loss function where Y is a 
random variable and 𝑎 is an alternative 
belonging to a set of alternatives 𝐴. The 
decision problem is to solve

max
𝑎∈𝐴

𝐸[𝐿 𝑌, 𝑎 ]

Optimal choice: 𝑎∗ such that

𝑎∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎∈𝐴𝐸[𝐿 𝑌, 𝑎 ]
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Value of Information

The expected value of information about an 
uncertainty X is given by:

𝑋 = 𝐸𝑋[𝑑 𝑥 ]

Where 

d 𝑥 = max
𝑎∈A

𝐸𝑌 𝐿 𝑌, 𝑎 |𝑋 = 𝑥 − 𝐸[𝐿 𝑌, 𝑎∗ ]

which is information gain for getting to 
know X (conditioning on X=x).
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Thank you for your attention!
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