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Thanks

Works and discussions shared with many people : B. Iooss, J.-M. Loubes, S. Da Veiga,
F. Gamboa, F. Ruggeri, A. Raftery, E. Parent, L.-P. Rivest, V. Chabridon, M. Il Idrissi,

S. Ancelet, M. Blazère, etc.
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Introduction

Key words for this workshop on statistical approaches to safety and decommissioning (of
industrial facilities) (especially nuclear ones)

Uncertainties

Risk and reliability

Contamination, radionuclide quantification, radiations

Bayesian approaches

Metrology (measurement process, GUM, etc.)

Geostatistics and metamodeling/surrogates (Gaussian processes, neural networks)
under form constraints (e.g., monotonicity)

Sensitivity analysis

Lunches & coffees & Apéro (and gala dinner of course)
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A personal view of thematics 1

What characterizes (from my point of view) important statistical problems related to
safety and decommissioning

We face many uncertainties :

1 On data information, related to uncertainties from measurement and
reconstruction processes ⇒ How selecting good quality data ? (small samples analyses)

e.g., cracking, radionuclides,
radiation-induced diseases ...
talks by M. Désenfant, C. Norman et al., S.
Ancelet, poster by J. Baccou,...

(Atmosph. radionucl.) [2] (RI heart disease) [25]

1. The talk by Dancausse et al. will certainly improve / deepen this view !
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A personal view of thematics 1

What characterizes (from my point of view) important statistical problems related to
safety and decommissioning

We face many uncertainties :

1 On data information, related to uncertainties from measurement and
reconstruction processes ⇒ How selecting good quality data ? (small samples analyses)

2 On the predictive behavior of components and systems, through models or
surrogates ⇒ Calibrating / inverting input parameters, sensitivity analysis,
controlling (meta)model errors or avoid using models

talks by A. Clément, T. Rovary, S.
Ancelet, posters by J. Baccou, C. de
Fouquet, M. Wieskotten,...

Prohibitive comput. time ⇒
learning from simulations
(metamodeling / surrogates)

talks by Y. Desnoyers, F. Bachoc, M.
Ducoffe, posters by C. Gauchy, R.
Perillat, ...

JAEA + gisgeography.com IRSN

1. The talk by Dancausse et al. will certainly improve / deepen this view !

4 / 53

gisgeography.com


A personal view of thematics 1

What characterizes (from my point of view) important statistical problems related to
safety and decommissioning

We face many uncertainties :

1 On data information, related to uncertainties from measurement and
reconstruction processes ⇒ How selecting good quality data ? (small samples analyses)

2 On the predictive behavior of components and systems, through models or
surrogates ⇒ Calibrating / inverting input parameters, sensitivity analysis,
controlling (meta)model errors or avoid using models

3 On studying extreme situations ⇒ Computing risk indicators, accounting for

(meta)model errors

(e.g., probabilities, quantiles) with
strong guarantees (conservative)

Guide ASN n°28 Qualification of
scientific computing tools for nuclear
safety demonstration

talks by E. Borgonovo, F. Bachoc, A.
Marrel, poster by V. Chabridon, ... [43] TWP

1. The talk by Dancausse et al. will certainly improve / deepen this view !
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A personal view of thematics 1

What characterizes (from my point of view) important statistical problems related to
safety and decommissioning

We face many uncertainties :

1 On data information, related to uncertainties from measurement and
reconstruction processes ⇒ How selecting good quality data ? (small samples analyses)

2 On the predictive behavior of components and systems, through models or
surrogates ⇒ Calibrating / inverting input parameters, sensitivity
analysis,controlling (meta)model errors or avoid using models

3 On studying extreme situations ⇒ Computing risk indicators, accounting for

(meta)model errors

4 On the capacity of alternative energies to efficiently complement those produced
by nuclear power plants (decommissioned one day), and preparing their future
decommissioning ⇒ Data assimilation, forward simulation, optimization, etc.

e.g., reliability of wind power
generation

talk by M. Fouladirad

energy.gov

1. The talk by Dancausse et al. will certainly improve / deepen this view !

4 / 53

energy.gov


Uncertainties

Everyone probably knows the consensual aleatoric part of uncertainties (related to
intrinsic variability of magnitudes)

Key role of epistemic uncertainty (IRSN also uses the terms "imprecision")

due to imprecise knowledge or lack of knowledge

affects choices tainted with some subjectivity (e.g., working hypothesis)

Could be interpreted as resulting from an accumulation
of potentially reducible errors (e.g., modeling errors) [29],
which can significantly affect critical decisions

Remark. Difficulty to discriminate between uncertainties related to strong technical
limits (e.g., measurement / computing limits)
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Illustrating the influence of model errors on a decision through a
simple (but realistic) example
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Model of resource evolution
(logistic / Gray-Verhulst)

dBt

dt
≃ Bt − Bt−1 = gθ(Bt)− ϕtBt

Bt = resource at time t

gθ = renewal function
with θ ⊇

{
growth rate r
saturating resource K

(ex : gθ(Bt ) = rBt (1 − (Bt/K)p)

ϕt = extraction rate

Industry

Bt = Lifetime of lithium-ion
batteries, ϕt = wear rate [61]

Bt = load forecasting of
electrical systems, ϕt = wear
rate [53]

Bt = C02 emissions, ϕt =
absorption rate [56]

Évolution with constant ϕt

Saturating renewal function
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Model of resource evolution
(logistic / Gray-Verhulst)

dBt

dt
≃ Bt − Bt−1 = gθ(Bt)− ϕtBt

Bt = resource at time t

gθ = renewal function
with θ ⊇

{
growth rate r
saturating resource K

(ex : gθ(Bt ) = rBt (1 − (Bt/K)p)

ϕt = extraction rate

Health

Bt = nb of cancer cells, ϕt =
chemother. injection [60]

Quantitative ecology

Bt = biomass, ϕt =
anthropic impact [27]

e.g., effects of ionising
radiations on species [46, 58]

Évolution with constant ϕt

Saturating renewal function
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Which maximal extraction for resource sustainable equilibrium ?

Historical approach Bt+1 = Bt

(Hyp : ϕt = ϕ, p = 1)

ϕopt =
r

2
⇒ optimal extraction =

rK

4

Ratio of extractions (new / hist.)

Stochastic approach (B. et al. [15]) Bt+1 ∼ Bt

Let us introduce a model error εt

Bt = {Bt−1 + gθ(Bt)− ϕtBt} εt

with E[εt ] = 1 and V[εt ] = σ2. If σ2 < σ2
0

(non-extinction condition) then

ϕopt =
r

2
− 2(2 − r)

(4 − r)2
σ2 + o(σ3)

and the optimal extraction is

rK

4

(
1 − σ2

r(1 − r/4)
+

4σ4

r2(4 − r)4
(1 + o(σ4))

)
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More details on the optimal decision

Under the stationarity assumption, we can simplify Bt+1 ∼ Bt in (for instance)

E[Bt+1|Bt ] = Bt (martingality)

and the decision will be something like "the optimal extraction is

B∗ = argmin
x≥0

ϕopt(θ)

∫
ℓ(x ,Bt)dP(Bt)"

where

θ is the set of parameter (that need to be estimated)

ℓ is a choice of cost function

With ℓ chosen as quadratic

B∗ =
rK

4

(
1 − σ2

r(1 − r/4)
+

4σ4

r2(4 − r)4
(1 + o(σ4))

)
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Obtaining / selecting good quality data

To apprehend a critical feature of a system :

Defining good measurements

Selecting representative (prototypes) subsets of experimental designs [14, 26, 23]
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Good measurements - a metrological issue

Selecting a good measurement is a decision that might be formalized as follows

Let Y = yi be an (indirect) measurement of a quantity X = xi , understood as

yi = gΣ(xi , εi )

where

gΣ is an operator modeling a measurement process Σ

ε ∼ P(ε) is a random "noise" summarizing the influence of external factors

For a same (hidden) source X = xi , several values of yi due to εi

Example : lung cancer screening by thoracic scanner

Source : [41]

X = tumor features

Y = table of pixels

ε = patient position +
setting chosen by the
operator
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Quality of measurement

From repeated observations Y (x), assess the quality of a measurement Y by estimating
(for instance) the conditional variance

Var[Y |X = x ] =

∫
ℓ(gΣ(x , ε))dP(ε) with ℓ(u(ε)) = Eε[u

2(ε)]− E2
ε[u(ε)]

= indicator of measurement uncertainty in X = x

Assuming X ∼ PX , a global indicator of quality for Σ could legitimately be

QΣ = EX [Var[Y |X ]]

(note that is can be estimated only with a sample Y = {Y ij (xi )}i,j without knowing the real xi )

Now, having two competing measurement processes Σ1 and Σ2, may we compare the
QΣi to check if ”Σ1 is better than Σ2" ?
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Stochastic inversion

What we want from using each Σi is to reconstruct X , or rather PX (in a concern of
generality), using Y Σi (stochastic inversion)

Classical approach.

1 Assume X ∼ PX (.|θ) parameterized by θ (e.g., a multivariate Gaussian)

2 Estimate θ from Y Σi (e.g., using missing data, EM-type algorithms [20, 8])

θ ⇒ θ̂(Y Σi )

Then

QΣi = QΣ

(
θ̂(Y Σi )

)
but we cannot be sure to have a total order between the QΣi [52]
⇔ we cannot correctly compare Σ1 and Σ2

13 / 53



Stochastic inversion

What we want from using each Σi is to reconstruct X , or rather PX (in a concern of
generality), using Y Σi (stochastic inversion)

Bayesian approach.

1 Note that θ is a summary of the features of X ∼ PX , endowed with epistemic
uncertainty

2 Model this uncertainty by defining technically θ as a random variable with prior
measure

θ ∼ π(θ)

3 Estimate the posterior π(θ|Y Σi ) (e.g., using Monte Carlo-type algorithms [31, 32])

π(θ) ⇒ π(θ|Y Σi ) (Bayesian updating)

Then

QΣi = Eθ [EX [Var[Y |X ]|θ] |Y Σi )]

It is a Bayes estimator then we are sure to get a total order between the QΣi

⇔ we can compare Σ1 and Σ2
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More generally, designing / selecting good (informative) experiments

so-called support points or representative points

prototypes from a database (in machine learning)

Framework

xn = (x1, . . . , xn) ∈ X n = some design points

Corresponding output yi = gθ(xi ) where gθ is a
model

How selecting{
new informative design points
the most informative design points within xn

(informative on θ or some function of θ

[45]
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Designing good (informative) experiments

Close (if not similar) approaches for various situations
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Example : A property of steels used in industrial vessels

Fracture toughness of steel (FTOS) characterizes the capacity of the material to resist
to cracking through plastic deformation when a load is applied (e.g., a transient cooling such as

water injection)

It is part of the most influential material attributes in structural safety studies [55].

Source : [44]
Source : https://www.substech.com
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Destructive testing to get measurements

Charpy impact tests [5] ⇒ indirect toughness values (megapascal square root meter) with
different qualities

Source : https://theconstructor.org

European FTOS database (ferritic steels) from

Oak Ridge National Laboratory (ASTM E399-90 [4])
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Inspired by [21], define a Bayesian experimental design

1 Consider a well recognized theoretical statistical model (e.g., from weakest link theory [37])

linking a FTOS measure y j
i at a given temperature Tj

P(Y j
i < y |Tj , θ) = 1 − exp

−

{
y j
i − α)

µ(Tj)

}β
 (simple Master Curve [59])

with µ(Tj) = λ1 + λ2 exp(λ3Tj) and θ = (α, {λi}i , β)
2 Elicit a prior distribution Π(θ)

3 Formalize a design of experiments for fixed n standard Charpy specimen [25 mm]

ε =

{
J,

{
T1 T2 . . . TJ

η1 η2 . . . ηJ

}}
with ηj=

nj
n
∈ [0, 1] for all j=1, . . . , J and

∑J
j=1 ηj=1
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Last ingredient : an utility function

U1(ε) = expected utility function quantifying the expected gain in knowledge about θ
provided by data collected under the experimental design ε

U2(ε) = expected utility function quantifying the opposite of the expected experimental
cost under ε

Generic (compound) weighted (dimensionless) utility [3] (similar idea in [36])

U(ε) = ω ×∆U1(ε) + (1 − ω)×∆U2(ε)

where
∆Uk(ε) =

Uk(ε)− Uk(ε0)

|Uk(ε0)|
for k = 1, 2

∆Uk(ε) = relative change in expected utility

ε0 = fixed baseline experimental design for which the total expected utility U(ε0)
is set to zero

for instance (using typical temp values within the brittle-ductile transition zone)

ε0 =

{
4,
{

−150 −100 −50 0
0.25 0.25 0.25 0.25

}}
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Last ingredient : an utility function (details)

Quantifying the opposite of the number of days of work required for collecting data at a
design point :

U2(ε) = −
J∑

j=1

nj ×
(
2 − 1{T−<Tj<T+}

)
where T−=−130◦C , T+ = −60◦C

(one day of work to make a test when T ∈ [T−,T+] but two days to homogenize the room temperature in more

extreme conditions)
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Asymptotic posterior approx. ⇒ pseudo-Bayesian designs

Quantifying the expected gain in knowledge provided by data collected under an
experimental design ε about θ

[Ex.1] Posterior-prior KL divergence ⇒ all dimensions of θ

U1
1 (ε) =

∫∫
log

π(θ|y, ε)
π(θ)

π(θ|y, ε)dθdy

asympt.
≃ cte +

1
2
EY

[
log

(
det(Σ(θ̂, ε)−1)

)]
(D−optimal design)

[Ex.2] Opposite of the quadratic loss function ⇒ selected linear combination of
dimensions of θ

U2
1 (ε) = −

∫∫
(θ − θ̂)TA(θ − θ̂)f (y, θ|ε)dθdy

asympt.
≃ −EY

[
tr(AΣ(θ̂, ε))

]
(A−optimal design)

(with θ̂ = posterior mode, A symmetric nonnegative definite matrix, I (., .) = Fisher matrix and R = prior precision

matrix)

21 / 53



Application [3]

1 Gaussian prior computed as an approximation of a posterior from European FTOS
data (flat baseline prior)

2 Use simulated annealing [3] or the approximate coordinate exchange algorithm [48]

ω u1 J∗ η∗ T∗ Ũ(ϵ∗)
1 D J=3 (0.55,0.27,0.18) (-213.84,-97.52,17.80) 0.046

A1 J=2 (0.31,0.69) (-213.80,9.21) 0.156
A2 J=2 (0.58,0.42) (-213.70,12.48) 0.102

0.9 A1 J=2 (0.31,0.69) (-213,91,7.62) 0.126
A2 J=3 (0.54,0.10,0.36) (-213.96,-60.21,17.71) 0.079

0.5 A1 J=3 (0.49,0.42,0.09) (-129.51,-60.10,17.92) 0.164
A2 J=2 (0.92,0.08) (-129.97,-60.37) 0.200
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Howver... avoiding pseudo-Bayesian designs if possible

The addition of noises, model errors and measurements limits will decrease the
quantity of information yielded by planned experiments

Asymptotic assumptions and prior (Gaussian) assumptions behind A- and
D-optimal design criteria can be strongly unrealistic and lead to degenerate
situations [38, 36]

Modern computational techniques become capable of tackling the problem of
computing repeatedly posteriors to solve the optimization problem of the design ε

multi-stages mixing stochastic gradient optimisation and automatic differentiation [49]

⇒ Good prior is required !

23 / 53



Good prior modeling

We should focus more on prior modeling

Priors ("best guesses") can significantly help to produce useful designs (e.g., [12]
for clinical studies)

All the more when the planned design is small-sized (since costly)

Producing defensible priors take part in a more general, growing approach of questioning
the formalization of prior choices

A. Gelman and J. Sprenger on the objectivity and reproducibility of Bayesian
assessments : [Holes in Bayesian Statistics] [34, 54, 35]

Contemporary concerns for the auditability of deep learning [30] and artificial
intelligence [62]

What could be a good prior ? Use an illustration !
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Illustration : variational approximation for a nonconjugate Gamma process prior [18]

A crack size Zk,t on a component k is monotonically increasing with time t

The increments (assumed independent) Xk,i = Zk,ti − Zk,ti−1 are assumed to be gamma
distributed

fα(t−s),β(x) =
1

Γ(α(t − s))
· x

α(t−s)−1e−
x
β

βα(t−s)
1{x≥0}
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Illustration : variational approximation for a nonconjugate Gamma process prior [18]

Consider Jeffreys’ prior πJ(α, β) ∝ 1
β

√
αΨ1(α)− 1

π(θ) beneath is the first-order (Taylor) approximation of the posterior of an imaginary
sample of crack increments ~xm = (x̃1, . . . , x̃m) observed at times ~tm = (t̃1, . . . , t̃m) :

β|α ∼ IG (αmt̃e,1,mx̃e)

α ∼ G (m/2,mt̃e,2)

with the meanings

t̃e,1 =
1
m

m∑
i=1

t̃i (mean observation time)

x̃e =
1
m

m∑
i=1

x̃i (mean increase)

t̃e,2 =
1
m

m∑
i=1

t̃i log

m∑
j=1

x̃j/x̃i

m∑
j=1

t̃j/t̃i

(tuning hyperparameter)

Other similar ideas can come from the rich literature on Edgeworth expansions for
posterior densities [40]
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Coming back to designs (more generally)

Static or incremental Space filling designs based on discrepancies [50]

Sequential Bayesian designs produced by Stepwise Uncertainty Reduction (SUR)
strategies [10]

Quantization techniques like Maximum Mean Discrepancy minimization (ie., using
kernel herding, grid search or Sequential Bayesian Quadrature [51])

Selection of subsamples (prototypes) in a database

A concern shared with machine learning tasks confronted with huge
cardinality and dimension (e.g. [26, 14])
Related current works (EDF-IRSN-CEA-Université de Toulouse) linked to
some improvements of the SAPIUM project [7] (2017-2019) : Establishing
the relevance of an experimental database
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Conservative and robust risk assessments
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Small sample situations

Sometimes, the small size of measurement samples makes it difficult to use a physical or
statistical model to describe them

Ex : Radiological characterization of contaminated elements (e.g., walls, grounds,
objects)

Too few measurements x1, . . . , to make classical hypotheses (e.g., Gaussian
distribution)

How determining risk prediction bounds on the level of contamination ?

P(X > xs) ≤ α

The authors [13] propose to strongly limit model assumption X ∼ f and use
nonasymptotic (concentration) inequalities tools

Camp-Meidell inequality (if f unimodal)

P(X ≥ µ+ t) ≤
(

1 +
9
4
t4

σ2

)−1
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Small sample situations

Sometimes, the small size of measurement samples makes it difficult to use a physical or
statistical model to describe them

Ex : Radiological characterization of contaminated elements (e.g., walls, grounds,
objects)

Too few measurements x1, . . . , to make classical hypotheses (e.g., Gaussian
distribution)

How determining risk prediction bounds on the level of contamination ?

P(X > xs) ≤ α

The authors [13] propose to strongly limit model assumption X ∼ f and use
nonasymptotic (concentration) inequalities tools

in addition : Wilks’ formula (no assumption on f ), requiring a minimal size n such
that

P(P(X ≥ maxXi ≥ γ) ≥ β
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Small sample situations : Wilks’s formula

Took from [13]

P(P(X ≥ maxXi ≥ γ) ≥ β
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Applications to non-iid data, through martingale-based inequalities (e.g.,
Azuma-Hoeffding)
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Availability of a numerical model g

Our decisional variable is

Y = g(X )

where X ∼ f (x) is a set of incertain input parameters

Safety analysis based on specific designs of experiments

Complementary structural reliability analysis based on indicators as

p = P(Y ≥ y0) =

∫
1{g(x)≥y0}f (x)dx (failure probability),

or quantiles associated to extreme levels of risk, etc.

The risk and reliability (R&R) indicators can theoretically be computed by Monte Carlo
sampling
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Ex : Loss-of-coolant accident
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Use of metamodels (surrogates)

The risk and reliability (R&R) indicators can theoretically be computed by Monte Carlo
sampling

But computationally unfeasible in practice

⇒ Monte Carlo variance reduction techniques (e.g., splitting, line sampling)

use of surrogates if relevant (e.g. Gaussian process-based kriging, physics-informed
neural networks...)

Issues

What is a good metamodel ?

How should I deal with its error for computing my indicators ?

34 / 53



Recent results on excursion sets with Gaussian processes

Excursion set of g above y0

Γ∗ = {x ∈ X : g(x) ≥ y0}

Excursion set (light gray) of a nuclear criticality safety coefficient depending on two
design parameters. Blue triangles : initial experiments [22]

⇒ Bounding such sets can provide conservative assessments of reliability and risk indica-
tors
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Recent results on excursion sets with Gaussian processes

Excursion set of g above y0

Γ∗ = {x ∈ X : g(x) ≥ y0}

Stepwise Uncertainty Reduction
(SUR) strategies + Gaussian process
[10]

Authors [6] recently provide strategies
to ensure a (very) good conservative
estimate of an excursion set

Could maybe be adapted to neural
networks using conformalized
prediction

Remaining issues : high dimension +
results obtained conditionally to small
(meta)model error
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What would we like to have ideally ?

Computing (R&R) indicators, using metamodels, with fine conservatism

Consider the target probability of feared situations

p = P(X ∈ Ay0) =

∫
Ay0

dP(x) =

∫
χ

1{g(x)≥y0}dP(x).

estimated as p̂dn =
∫
χ
1{ĝ(x|dn)≥y0}dP(x) where ĝ(x |dn) is a metamodel of g assessed

from a (training) design dn

We could rather propose another estimator

based on a metamodel Γ̂n of the limit state
(classification) surface

Γ = {x ∈, g(x) ∈ ∂Ay0}
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Computing (R&R) indicators, using metamodels, with fine conservatism

Consider the target probability of feared situations

p = P(X ∈ Ay0) =

∫
Ay0

dP(x) =

∫
χ

1{g(x)≥y0}dP(x).

estimated as p̂dn =
∫
χ
1{ĝ(x|dn)≥y0}dP(x) where ĝ(x |dn) is a metamodel of g assessed

from a (training) design dn

For any function h(g) (as p), let ĥm(g) be an estimator computed from m simulations,
and denote ĥm(ĝn) the metamodel-based approximation of ĥm(g)

Weak (minimal) guarantee (∼ universal approx. theorem)

ĥn
(
f̂m
)

a.s.−−−−−→
n,m→∞

h(f ) (general tool : random set theory)
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What would we like to have ideally ?

Computing (R&R) indicators, using metamodels, with fine conservatism

Consider the target probability of feared situations

p = P(X ∈ Ay0) =

∫
Ay0

dP(x) =

∫
χ

1{g(x)≥y0}dP(x).

estimated as p̂dn =
∫
χ
1{ĝ(x|dn)≥y0}dP(x) where ĝ(x |dn) is a metamodel of g assessed

from a (training) design dn

Instead, reuse the concept from Ducoffe et al. [28] (then Gauffriau et al. [33]) of the
probability of a safe surrogate by

q = P (g(X ) ≥ ĝ(X |dn)))

ĝ(X |dn) is safe with probability q = 1 ⇔ p ≤ p̂dn
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1st proposal (but requires much improvement)

Upper bound (lemma)

Assume there exists α ∈ [0, 1[ such that P(Ey0) ≤ α

Denote

β = P(g(X ) ≥ ĝ(X )|ĝ(X ) ≥ y0).

Then

p ≤ βp̂dn +
(1 − βp̂dn)

(2 − p̂dn − q)

[
p̂dn(1 − q) +

qα(1 − p̂dn)

q − p̂dn

]
.

Tools : concentration inequalities, among others (for iid and non iid samplings)

Ongoing work at EDF
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Form constraints can help

Exploration of monotonicity of models and
limit state surfaces ⇒ constrained
surrogates [16, 24, 19, 42, 57], etc.

Monotonicity can be possibly considered as a conservative assessment or a way of
respecting physics
But obtaining strong guarantees is uneasy (e.g. [9])
Could be interesting to define the closest monotonic surrogate (and controlling its
error to be unsafe) (e.g., linear variational surrogates)

Other ideas : use quasi-convexity properties [47]
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Moreover : penalizing choice of input dependence structure

In [11], algorithms to select penalizing dependence structures (copulas) are provided

Penalizing ⇔ minimizing the output quantile value of order α

Requires parsimony hypotheses
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Validity of metamodels : an open issue

Today, the validity of metamodels is somewhat entangled with their calibration : both
are based on training sets of simulation data

⇒ Clarifying the generalization properties

A metamodeling constraint should be : conclusions produced with its help should be
similar to the ones provided using the "real" (most accurate) model

It means for instance that sensitivity analyses should produce the same results

⇒ the metamodel error should have the lowest SA indice(e.g ., Sobol ,Shapley , etc.)

Ensuring this is not an easy task [17]
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Robust assessments

Y = g(X ) with X ∼ P

How risk indicators computed over Y react to model misspecifications on P ?

Idea : minimizing a distance under constraints

Q∗ = argmin
Q

D(P,Q)
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Ex : quantile constraints
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Ex : quantile constraints
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The Wasserstein distance

The p-Wasserstein distance between Q and P on respective supports XK and X is the
quantity defined by

Wp(Q,P) = inf
fc∈Πc (Q,P)

{∫
XK×X

∥x − y∥ppdfc(x , y)
}

(1)

where ∥.∥p denotes the ℓp norm and Πc(Q,P) the set of probability couplings, with Q
and P as its marginals

Theorem ([39] using a result from [1])

If Q and P share the same dependence structure (copula), then

W p
p (Q,P) =

d∑
i=1

W p
p (Qi ,Pi ). (2)
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The 2-Wasserstein choice for the calibration

Working on the real line (each dimension of X ), the choice of the 2−Wasserstein
distance (W2) leads to

W2(Qi ,Pi ) =

√∫ 1

0

(
F→
Q,i (x)− F→

i (x)
)2

dx

with F→ denoting the generalized inverse cdf, which

metricizes weak convergence on P2(R) ⇔ W2 is a measure of proximity on a broad
set of probability measures

simplifies solving the minimization problem by

estimating the F→
Q,i using isotonic polynomials between marginal

quantiles, with controlled regularity, which requires to solve a convex
quadratic program
using gradient descent

Technical details in our recent preprint [39]
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Key subjective messages and suggestions
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Key subjective messages and research suggestions

1 Producing clear, auditable rules for prior (Bayesian) modeling should be a more
lively research axis

Relying on a huge objective corpus
Improving the quality of designs
Useful for model inversion and sensitivity and robustness analyses
Improves the overall interpretability of UQ and decisions

2 Developing / improving nonparametric characterizations in small samples situations

3 Obtaining stronger guarantees on the use of metamodels and ML approaches

Relying on nonasymptotic statistics
Relying on topological/geometrical constraints of models
Relying on conservatisms on uncertain dependences
Relying on biased designs and metamodels

4 Sensitivity analyses for extreme situations
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