

DE LA RECHERCHE À L'INDUSTRIE

Bayesian Approach for Multigamma Radionuclide Quantification Applied on Weakly Attenuating Nuclear Waste Drums

Workshop MASCOT-NUM, 21-22 November 2022

Aloïs CLEMENT

Commissariat à l'énergie atomique et aux énergies alternatives - www.cea.fr

I'm sorry, but I'm a nuclear physicist.

'RZ

- In situ nuclear measurement of radioactive items
- Gamma spectrometry : HPGe 30% (Canberra)
- Software : Génie 2000, ISOCS
- Waste drums : 100 et 200 L

• Actinides : U, Pu, Am, Np

Some context

• Aims : identify and quantify actinides

$$A = \frac{S(E)}{\epsilon(E, env) t I_{\gamma}(E)}$$

$$m = \frac{A}{A_m}$$
Multi-gamma radionuclide : Let suppose :

$$\mathbf{E} = (E_1, \dots, E_N)$$

$$\mathbf{Y}^{\mathbf{obs}} = \frac{\mathbf{S}(E)}{t \mathbf{I}_{\gamma}(E)A_m}$$

$$\mathbf{Y}^{\mathbf{obs}} = m\epsilon(\mathbf{E}, env)$$

Inverse problem to solve

$$\mathbf{Y}^{\mathbf{obs}} = m\boldsymbol{\epsilon}(\mathbf{E}, env) + \boldsymbol{\xi}^{\mathbf{obs}} \qquad \qquad \boldsymbol{\xi}^{\mathbf{obs}} \sim N(\mathbf{0}, \boldsymbol{\Sigma}^{\mathbf{obs}})$$

Likelihood function Priors
Bayes theorem :
$$\pi(m, env|\mathbf{Y}^{obs}) = \frac{\pi(\mathbf{Y}^{obs}|m, env)\pi(m|env)\pi(env)}{\int \pi(\mathbf{Y}^{obs}|m, env)\pi(m|env)\pi(env)}$$

What about the « env » environment variable ?

Observation likelihood

Priors

- Independent Y_i^{obs} : $\pi(\mathbf{Y}^{obs}|m, \mathbf{X}) = \prod_{i=1}^N \pi(Y_i^{obs}|m, \mathbf{X}) = \prod_{i=1}^N \frac{1}{\sqrt{2\pi\sigma_i}} e^{-\frac{1(Y_i^{obs} m\epsilon(\mathbf{X}))^2}{\sigma_i^2}}$
- Independent (m, X_i) : $\pi(m|\mathbf{X})\pi(\mathbf{X}) = \pi(m)\pi(\mathbf{X}) = \pi(m)\prod_{i=1}^{D}\pi(X_i)$

MCMC : Metropolis-Hastings algorithm

$$m_n$$

$$m_{n+1} \leftarrow m_n + A.\delta, \qquad \delta \sim N(0, k_m)$$
$$\rho = \min(\frac{\pi(m_{n+1}, \mathbf{X_{n+1}} | \mathbf{Y^{obs}})}{\pi(m_n, \mathbf{X_n} | \mathbf{Y^{obs}})}, 1)$$

- High number of $\epsilon(\mathbf{X})$ estimations ($\approx 10^5$) by the simulation code MCNP6.2
- Time-consuming

Surrogate model f of the measurement efficiency $\boldsymbol{\epsilon} = f(\mathbf{X})$

6

27

- Input: **X** = { E, r, h, **M**, L, ρ } et m (Card(**X**) = 8)
- DoE: Latin Hypercube Sampling (n = 500)
- Surrogate model: Kriging :
 - → Universal Kriging (UK) : $f(X) = \mu(X) + Z(X)$
 - → Deterministic : $\mu(X) = \sum_{j=1}^{p} \beta_j f_j(X)$
 - > Stochastic : Z(X) : Matérn 5/2
- $\epsilon(\mathbf{E}, env) \approx f(\mathbf{X}) = f(\mathbf{E}, r, h, \rho, L, \mathbf{M})$

How could I estimate « *env* » and $\epsilon(E, env)$?

MADAGASCAR : Automatic Nuclear Waste Drum Measurement Device

8

MADAGASCAR : Validity range

- Bulk density < 0.4</p>
- Detection limit : 1 MBq
- Maximal activity: 200 GBq
- 100L and 200L drums
- → Measurement distance : \approx 60 cm
- Global uncertainties: ± 42%

MADAGASCAR : Database

- > 242 nuclear drums (100L)
- ➢ 6 plutonium standards : 0.4 to 60 grams
- Fixed measurement duration
- Fixed measurement distance : ≈ 60 cm
- ➢ Global uncertainties: ± 42%

Validation steps :

- 0. Convergence analysis
- 1. Linearity : *Assay on plutonium standards*
- 2. Reproducibility *Repetitions on 10 items (drums)*
- 3. Comparison*Comparison of results betweenMADAGASCAR and the Bayesian approach*

Hardware :

> 72 cores (35 Markov chains)

9

cea

Convergence analysis

Linearity

cea

6 plutonium standards: 0.4 to 60 grams

Item	$M_{Pu}(g)$	$M_{Q1}(g)$	$M_{Q2}(g)$	$M_{Mod}(\mathbf{g})$	$M_{Q3}(g)$	$M_{Q4}(g)$
1.	0.400	0.26	0.39	0.55	0.93	1.42
2.	0.800	0.36	0.69	0.98	1.95	2.94
3.	2.104	1.35	1.79	2.26	3.72	5.22
4.	5.619	2.93	3.94	5.27	7.91	11.3
5.	19.731	7.71	12.2	16.9	26.0	36.4
6.	59.541	20.8	33.3	45.6	71.0	99.8

Commissariat à l'énergie atomique et aux énergies alternatives

Reproducibility

97

< 30 repetitions on 10 items (drums)

Experimental comparison

91% of estimated masses \in CI95% of MADAGASCAR

92,3% of estimated mass PDF overlap 50% of the MADAGASCAR CI95% (±42%)

- Validation : good results on plutonium standards
- Comparison : good results on simple cases : low bulk density (< 0,4 g.cm³)
- Useful priors for physicists : bulk density, compositions, Gaussian, Uniform, etc.
- Easy to code (Python) and possibilities to use specific libraries
- Breaking point with classical approach : scalars vs PDF
- Available to other RN (Am, FP, activated)

- Multigamma RN only
- Increasing uncertainties

Thanks for your attention

Commissariat à l'énergie atomique et aux énergies alternatives - www.cea.fr