

SMART USE OF THE VARIOGRAM TO EXPLORE SPATIAL DATA, TO BREAK DOWN VARIANCE CONTRIBUTIONS AND TO MODEL RADIOLOGICAL CONTAMINATIONS

> **Yvon Desnoyers** Geostatistician - Nuclear sector desnoyers@geovariances.com

0 5000 10000 20000 m

Several characterisation stages

Surface mapping

- Hot spot identification
- Zone priorisation
- Radiation protection
- Doubt removal

Volume categorisation

- Operational waste zoning: radiological thresholds, migration profiles
- Source term: scaling factors, average activity

Final control

- Compliance with clearance level
- Residual average activity for impact assessment

To introduce geostatistics

Smart use of the variogram to explore spatial data, to break down variance contributions and to model radiological contaminations

Variogram presentation

Application cases

Advanced use of the variogram

Impact on sampling strategy

Conclusions

Classical formula for the statistical variance

Alternative formula for the statistical variance So we can take benefit from the distance between point i and point j $=\frac{1}{N^{2}}\sum_{i=1}^{N}\sum_{j=1}^{N}\frac{1}{2}(z_{i}-z_{j})^{2}$ between each Calculating the mean pair of points

Key tool in geostatistics

Spatial variability to be interpeted and fitted

Variogram key points

8

Three spatial signatures...

9

Three spatial signatures...

...in the nuclear context (environment)

Waste in a trench

Contaminated soils

Plume in groundwater

More and more continuous behaviour

...in the nuclear context (buildings)

More and more continuous behaviour

...for temporal variations (Covid-19)

Hospital capacities

Incidence rate

Temporal fluctuations of reanimation entries

- Long-term range (60 days)
- Weekly variations (7 days)

Smart use of the variogram to explore spatial data, to break down variance contributions and to model radiological contaminations

Variogram presentation

Application cases

Advanced use of the variogram

Impact on sampling strategy

Conclusions

Geostatistics workflow on Fukushima (large scale)

Application case: Fukushima

Application case: RM2 facility

Geovariances

Application case: RM2 facility ÷ Interpolation Classification Uncertainty []]] 0.8 0.7 0.6 0.5 <u>}</u>⊞ <u>}[ii]</u> 0.4 ζ L_1 0.3 1.1 <u>}[i]</u> <u>}[]]</u> <u>}</u>⊞ 0.2 0.1 <u>s</u>fiif] <u>3[11]</u> 1J

Geovariances

Filter room MAR200 (CEA Marcoule)

Historical

Dose rate

Samples

Activité (Bq/g) 1.E-01 1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07

→239 à 242 Pu

→ 241 Am

Geovariances

170 m², concrete slab30 cm thicknessTwo major events of contamination

Distance (m)

Profondeur (cm) 12

20

25

Filter room MAR200 (CEA Marcoule)

Former moat (CEA Fontenay-aux-Roses)

Volumes with existing data in 2007

Geovariances

Former moat (CEA Fontenay-aux-Roses)

Former moat (CEA Fontenay-aux-Roses)

Geovariances

Smart use of the variogram to explore spatial data, to break down variance contributions and to model radiological contaminations

Variogram presentation

Application cases

Advanced use of the variogram

Impact on sampling strategy

Conclusions

Precisions on nugget effect

Random contribution (no spatialisation)

Possible origins of nugget effect

Phenomena	 Huge heterogeneity at small scale Perturbation of the environment during the sampling
Metrology	 Measurement uncertainty or laboratory uncertainty Successive measurements are not identical (temporal fluctuation for dose rate for instance)
Location	 Errors and uncertainties of positioning (GPS) Height variation, matrix

Geovariances

Identification of spatial outliers

Spatialy close pairs of points but with high variability on the variogram cloud

Back to exploratory data analysis

Soil composition and GPS issues

11358

20

15

Distance [m]

593

5

Variance decomposition (CEA G2 dataset)

Geovariances

Variance decomposition (CEA G2 dataset)

Variance decomposition (Eurachem dataset)

100 Samples (p45)

Table A2.1: Measured lead concentrations at each target on the sampling grid (mg kg⁻¹), shown by the actual coordinates used in the regular sampling grid (spacing 30 m) [56]. They show a high degree of variability between-locations of roughly a factor of 10. The variability within 10 of these locations selected at random (i.e. A4, B7, C1, D9, E8, F7, G7, H5, I9 and J5) was used for the estimation of uncertainty from sampling (Table A2.2). This within-target variability.

Row	Α	В	С	D	Ε	F	G	Н	Ι	J
1	474	287	250	338	212	458	713	125	77	168
2	378	3590	260	152	197	711	165	69	206	126
3	327	197	240	159	327	264	105	137	131	102
4	787	207	197	87	254	1840	78	102	71	107
5	395	165	188	344	314	302	284	89	87	83
6	453	371	155	462	258	245	237	173	152	83
7	72	470	194	82.5	162	441	199	326	290	164
8	71	101	108	521	218	327	540	132	258	246
9	72	188	104	463	482	228	135	285	181	146
10	89	366	495	779	60	206	56	135	137	149

2x2x10 Replicates (p46)

Table A2.2: Measurements of the concentration (mg kg⁻¹) of a lead on 10 duplicated samples from the total of 100 targets in a survey of contaminated land (Table A2.1) [56]. The duplicate samples are labelled S1 and S2. Likewise, duplicate analyses are labelled A1 and A2. Hence, D9S1A2 (value 702 mg kg⁻¹) is analysis 2, from sample 1 from sampling target D9. Values shown are rounded for clarity, and used for subsequent calculations, but generally un-rounded values are preferable for these calculations.

Sample	S1A1	S1A2	S2A1	S2A2
target				
A4	787	769	811	780
B7	338	327	651	563
C1	289	297	211	204
D9	662	702	238	246
E8	229	215	208	218
F7	346	374	525	520
G7	324	321	77	73
Н5	56	61	116	120
I9	189	189	176	168
J5	61	61	91	119

EURACHEM / CITAC Guide

Measurement uncertainty arising from sampling A guide to methods and approaches

Second Edition 2019

Produced jointly with Eurolab, Nordtest, and RSC Analytical Methods Committee

Variance decomposition (Eurachem dataset)

EURACHEM / CITAC Guide

Measurement uncertainty arising from sampling A guide to methods and approaches

A guide to methods and approaches Second Edition 2019 Produced jointly with Eurolab, Nordtest, and RSC Analytical Methods Committee

Support effect and spatial structure

Multivariate geostatistics: Case presentation

Workshop D of ATUE facility (CEA Cadarache) Historical and functionnal analysis

Production of metallic uranium, then uranium oxides Two physical states of uranium : dry way / wet way 800 m²

Geovariances

Multivariate geostatistics: Variography analysis

Coupling between different radiological investigations

Cross-variogram:
$$\gamma_{z_1z_2}(h) = \frac{1}{2} E\{[z_1(x+h) - z_1(x)][z_2(x+h) - z_2(x)]\}$$

Multivariate geostatistics: Mapping comparison

Geovariances

Smart use of the variogram to explore spatial data, to break down variance contributions and to model radiological contaminations

Variogram presentation

Application cases

Advanced use of the variogram

4

Impact on sampling strategy

Conclusions

Investigation optimisation

Initial mesh determination

Geometrical context

structures

Target size

Uncertainty reduction

Manual approach

Automatic algorithm

Positioning of destructive samples

- Specific vertical recommendations
- Feedback on migration profiles

Experimental variograms with 1 m mesh

38

Narrative arc: Workshop D (ATUE – CEA Marcoule)

Historical and functionnal analysis

Production of metallic uranium, then uranium oxides Two physical states of uranium : dry way / wet way $\approx 800 \text{ m}^2$ (54 m by 15 m)

Geovariances

Historical context

Different processes

Consequences on the sampling optimisation

Positioning of destructive samples

Prior knowledge (incidents...) Multivariate with in situ mapping

3D variogram and anisotropy

Generaly, the vertical variability (along-borehole) is higher than the horizontal one (between-boreholes)

Additional comments

Migration profiles and vertical resolution

In lab analyses

• Dose | Gamma | Beta | Alpha

Ratio variation (both laterally and vertically)

Examples of vertical profiles

« Classical » shape

First mm (even cm) in concrete

A few tens of cm in soils

Several peaks

Lithology impact Difference of concrete quality Older contamination...

Smart use of the variogram to explore spatial data, to break down variance contributions and to model radiological contaminations

What is the variogram?

Application cases

Advanced use of the variogram

Impact on sampling strategy

Variogram, the smart tool

- To explore spatial data
 - Data errors, coordinates uncertainty
 - Quantification of the spatial correlation
- To break down variance contributions
 - Phenomenon, metrology, sampling issues
 - As regards spatial correlation
- To model radiological contaminations
 - 2D and 3D maps, along with estimation uncertainty
 - Taking spatial correlation into account

THANK YOU

Smart use of the variogram to explore spatial data, to break down variance contributions and to model radiological contaminations

Yvon Desnoyers Geostatistician Nuclear sector

desnoyers@geovariances.com www.geovariances.com

