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Trustworthiness of AI in the transport industry
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Industrial needs

• Qualified models developed by engineering 
are usually ‘heavy’:
- Memory
- Computing Power
- Computing time

• Embedding complex reference models for 
assistance: Braking Distance Estimation, 
Structure Load Estimation, etc

• Surrogate is necessary for embedding 
reference physics models validated by 
authorities: How can we assess the safety of 
the surrogate compared to its reference ?

Challenges

EUROCAE ED250: Minimum Operational Performance 
Standard for a Runway Overrun Awareness and Alerting 
System”, 2017

23/09/2022: a Boeing overrun in 
Montpellier

EASA: 41% accidents involving small non 
commercial airplanes happen during landing 
(1991-2017)
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Braking Distance Estimation
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Consequences of under-estimation and 
over-estimation of a surrogate model are not 
aligned. 

How can we ensure safety in surrogate model 
learning?

Special case where safety ⇔ over-estimation 
of the reference model.
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Embedding Neural Networks for Surrogate Modeling
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Program testing can be used to show 
the presence of bugs but never their 
absence (E. Dijkstra))

“Softsign’ function widely used in 
SCADE implementation

Step 1:
- Sample training/testing dataset

Using the reference model

Step 2:
- Design a shallow neural network (NN)

Step 3:
- Train the NN for a regression task

(symmetric or asymmetric)

Step 4:
- Check the the NN over-estimates

The reference function on the test data

Training shallow neural networks for a regression task



Airbus Amber

Reproducibility
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- Notebooks on open source data 
(CESSNA C172)

- Landing Distance Estimation

https://github.com/ducoffeM/safety_braking_distance_estimation
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Probabilistic Assessment For 
Over-estimation

A High-Probability Safety Guarantee for Shifted Neural 
Network Surrogates
Ducoffe Mélanie, Sébastien Gerchinovitz and Jayant Sen Gupta
Safe AI@AAAI 2020
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Ensuring Safety with Probabilistic Assessment
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Our Solution: We derive probabilistic inequalities to prove high-probability safety bounds on the surrogate 
model and on shifted versions of it.

A natural probabilistic definition of safety: A surrogate model        is (1-𝛆) safe if it over-approximates the 
reference function f with probability at least 1-𝛆:  

where X is drawn at random from a given probability distribution          on the input domain.

Our Goal: Prove that a surrogate model over-estimates a reference function. The reference function is a black-box 
system which can be evaluated at any point.
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Estimating the probability from samples
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We estimate                               by simply counting how many times we have overestimation among i.i.d. test 
samples X1, …, Xn.

We use Bernstein’s inequality to relate the unknown probability to its estimate.

Interpretation:

For a large fraction 1-ẟ of all possible 
sequences x1, …, xn that we could 
observe, the unknown probability of 
error is bounded by:

- the observed proportion of errors
- plus a small remainder term

The risk level ẟ quantifies how unlikely 
it is to observe a sequence x1,…, xn
for which the guarantee fails.
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Shited Surrogate
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SAFETY

What can we do when the probabilistic guarantee is too loose? (when       is large)

We could re-train the model from scratch and pray for a miracle…
Or we can use a basic trick: shift all surrogate predictions upwards (by a positive quantity).
Shifting is a simple option and will be efficient empirically.

Issue: we lose the guarantees from Prop 1 since it requires to know the value of the shift before-hand.
We cannot ‘cheat’ and optimize our shift as is (the optimized shift depends on the calibration set 
which is also used to estimate the probability of error).

Can we prevent the drop in accuracy with a suitable loss function?



Airbus Amber

12

Probabilistic guarantee for all shifted surrogates 
simultaneously

Interpretation:
For most calibration sets (a proportion 1-ẟ 
of them), the probability of error of all 
shifted surrogates is bounded by

- their observed proportion of errors
- plus a small remainder term

The guarantee is valid for all shifts t 
simultaneously.
In particular, it is valid for a shift chosen 
after observing the calibration set.
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Safety proof for shifted surrogates

How to post-process (shift) a surrogate to 
guarantee its safety?

E.g., choose the minimal shift t* for which the 
observed proportion of errors            vanishes.
For this shift t*, the previous theorem shows 
that the shifted surrogate is (1-𝛆)-safe with  Reference function’s 
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Of course, shifting decreases the model’s accuracy.
Can we train a surrogate in order to reduce the impact of shifting on accuracy?
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Shifted Training

Neural Networks are known to be ‘good’ surrogate models. But shifting them post training may 
drastically impact the accuracy.
Instead of training with a standard loss function for regression (Mean Squared Error), we can 
consider the impact of shifting directly at the training stage.
We propose to add an estimate of the post-processing shift in the loss function.

Can we prevent the drop in accuracy with a suitable loss function?

SURROGATE

Reference function’s output

 S
ur

ro
ga

te
 m

od
el

’s
 

ou
tp

ut

BackPropagation

MSE

Asymmetric MSE

Shifted MSE
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Industrial Use Case
Surrogate for Braking Distance Estimation

10 mai 2021

Over-estimate the braking distance with a surrogate neural network

Training samples= 544000, Calibration samples= 181000, Test samples= 181000

Learning with MSE, AMSE and our loss SMSE

Error = surrogate - reference

log of reference distance

log of reference distance
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Good accuracy:

- AMSE (MSE): 5.7
- MSE (MSE): 5.3

But with large probability of error. Estimated on the test set: 

- AMSE : ε=53%
- MSE : ε=55%

Drop in accuracy:

- SMSE (MSE): 94
- AMSE (MSE): 112
- AMSE (MSE): 142

But with small probability of error:
- estimate on the test set: ε <= 1e-5
- safety guarantee (with ẟ=1e-9) : ε <= 4e-4
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In a Nutshell
Our method in two steps:

Theoretical guarantee: high probability (not worst-case), but comes with certified bound 
without any assumptions on the surrogate and reference models.
Perspectives:

- beyond surrogate models (ongoing)
- other loss functions, other learning tasks
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BackPropagation Shifted MSE
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Limitation of (1-ε) safety
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The input distribution PX can be chosen a priori (e.g., uniform) or correspond to real data. All we assume in the 
sequel is we have access to samples X1, …, Xn from PX.

If PX is uniform on a domain of study D, the choice of D is important for meaningful interpretation.

Surrogate model    is (1-𝛆)-safe iff

Certification authorities require to 
over-approximate the operational domain

A single surrogate 
for multiple operational domains
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Formal Verification For Over-estimation

https://github.com/airbus/decomon

Over-estimation learning with Guarantees
Gauffriau Adrien, Malgouyres François and Ducoffe Mélanie 
Safe AI@AAAI 2021

Formal Monotony Analysis of Neural Networks 
with Mixed Inputs
Vidot Guillaume et al.
International Conference on Formal Methods 
for Industrial Critical Systems, 2022

Gauffriau Adrien, Malgouyres François and Ducoffe Mélanie 
Safe AI@AAAI 2021
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Airbus Legacy on Formal Verification
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Broaden formal verification to Neural Networks

Applications in software engineering:
● Analysis of run-time errors (arithmetic overflows, array overflows, divisions by 0, …)
● On embedded critical C software (no dynamic memory allocation, no recursivity)
● control/command software (reactive programs, intensive floating point computations)
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Awareness on Formal methods for AI 
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Test Dataset

:
:

human decisions are 
locally stable… so should 
be the decision of a 
machine learning model

Adversarial example: 
Program testing can be 
used to show the 
presence of bugs but 
never their absence (E. 
Dijkstra))

Non robust 
that can be 

detected 
with 

Validation !      Counter-examples 
     found with heuristics

  :Counter-examples 
not found with 
heuristics

Formal Robustness

COMPLETE INCOMPLETE

Few complete verification methods are 
compatible with s-shape activation
Incomplete verification methods is compatible 
with any native Deep Learning activation

COMPLETE

“Softsign’ function widely used 
in SCADE implementation

Verification of Local Robustness
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The reference function over the input domain needs to be 
(over) approximated:

- Either with a fine grained approximation (Look Up Table 
based on expert knowledge,  too heavy  to be embedded)

- Over-approximated under Monotony 
assumption
( speed      => braking distance     )

Method # train RMSE Guarantee

0-baseline 150k 3.3

300-baseline 150k 302.6

ONN with MP 110k 445.7

Verification with Majoring Points on an industrial dataset

X-baseline: we train a neural network with MSE on the training distance 

with the X additive constraints. 

Over-estimation hull 
with guarantees

Over-estimation with guarantees when training 

a Monotonic Neural Network on Majoring Points

When the properties involve both the Neural Network and the 
reference function…
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In a Nutshell : Linear Relaxation for Neural Networks
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draw two hyperplanes that are 
possible solutions
ill-posed

Different ‘recipes’ in the 
litterature that balance 
efficiency and scalability: 
primal approaches that 
propagate linear relaxations 
through the network

CASE 1: ROBUST
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Interval Bound Propagation
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Step 1: optimize a linear activation function given 
constant input bounds

Step 2: optimize increasing activation function
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CROWN :

      (A)       (B) 

: Pick A
: Pick B

Computing linear relaxations over non-linear 
operations (ReLU) require to bound the input 
domain with:
* a lower bound
* an upper bound

With affine functions, bounds can be 
computed symbolically for specific domains:

hyper-rectangle

Polytope

L_P BALL

Hölder’s 
inequality
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Formal Verification of Over-estimation 
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Local Linear relaxation

Branch and Bound 
Input partitioning

(Gradient)

?

Pipeline of Linear Relaxation

Too loose ?
❏ The partition is only for 

the neural network’s 
linear relaxation 

❏ No extra sampling on 
the reference model is 
required
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Incomplete Verification For the Safety of Braking Distance Estimation
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Prediction error between the 
neural network and the 
reference on test samples 
(the corners)

Formal upper bound on the 
prediction error between the 
neural network and the 
reference

Formal lower bound on the 
prediction error between the 
neural network and the 
reference
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The prediction error for ANY sample from is 
below the green curve

The prediction error for ANY sample 
from  is over the red curve

Highly conservative Neural Network
Formal method can help tightening the 
over-estimation
No constraints on NN’s monotonicity

https://github.com/airbus/decomon

Plug and Play library to compute Linear 
Relaxation.
Airbus open source library
With the support of ANITI

Input partitioning
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Partial Input Monotonicity for Safety
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Over-estimation will not be the solely pre-requisite for safety
Property 2: If monotony is not enforced in the design, it may be safety critical given some inputs
Only on the Neural Network

Previous works consider PIM on continuous inputs (gradient)
No existing work on discrete inputs
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Exact Verification
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Only for piecewise linear activation (ReLU…)

Several MILP solvers: Gurobi, Venus, MIPVerify
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Application to Braking Distance Estimation
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Gurobi 9
<10 hours (MacBook Pro 8 core 2.3 GHz Intel Core i9 with 32 Gb)
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Food for thought: Verification in an Industrial pipeline
Challenge 1: Recent field of research

1957

Perceptron

AI

FM

1989

CNN 
Backpropagation

2012

AlexNet

2014

GANs

2016

AlphaGo

1971

Deep 
Learning

~1950

Computer-generated 
proof

1943

Artificial
Neuron

1969

Hoare 
Logic

1974

Symbolic
Execution

1977

Temporal
Logic

1982

Model
Checking

Abstract
Interpretation

2010

DO-178C
revision

~2000

Industrial
Adoption

FM
+
AI

First
Formal Verification
Of Neural network

1960

Backpropagation

Reluplex
AI²

Marabou

2017 2018

1847

Boolean
Algebra

DeepPoly
Many properties to assess -> speedup for an industrial process 
(DEEL-LIP)

Bugs in existing solvers + NN format

Training scheme may imped verification (adversarial training)

verification mainly intended for data scientists: high level of code, no 
assurance that the property is kept when embedded
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Food for thought: Verification in an Industrial pipeline
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Verification For Shallow NN
Hybrid AI

Business Surrogate
Modeling

Scalability
# NN parameters

~50 000

VBL, HMF

[~2M ,~6M]

Computer Vision

Manufacturing
Air Mobility

Decision MakingTime Series

Predictive 
Maintenance

[~700K, ~70M]

NLP

ATC

> 86M

Challenge 3: Scalability

Too loose ?
❏ Input dimension
❏ Network depth
❏ Certification authorities may require a unique process independently from 

the depth (jurisprudence)
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Reconciliation with Statistics

PROVEN: Certifying Robustness of Neural Networks with a Probabilistic Approach
-> deriving a worst case bound for probability of local robustness risk independently

Statistical Certification of Acceptable Robustness for Neural Networks
-> Hoeffding inequality for neural networks

33
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Thank you

PROVEN: Certifying Robustness of Neural Networks with a Probabilistic Approach
-> deriving a worst case bound for probability of local robustness risk independently
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Food for thought: Verification in an Industrial pipeline
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Challenge 2: Tools to be matured

COMPLETE and INCOMPLETE verification for tiny/medium 
neural networks
Full demonstration on industrial usecase

Growing community (synergies with DEEL-LIP)

Many properties to assess -> speedup for an industrial process 
(DEEL-LIP)

Bugs in existing solvers + NN format

Training scheme may imped verification (adversarial training)

verification mainly intended for data scientists: high level of code, no 
assurance that the property is kept when embedded

https://github.com/deel-ai/deel-lip

NETWORK  NB Safe 
(INCOMPLETE)

Time 
(INCOMPLETE
)

Time 
(COMPLETE)

reluplex 74.01% 15 min 198h

corners 84.13% 8 min 9h

adversarial 69.83% 7 min 4h20

ACAS-XU local robustness verification in 3D 
(304 000 boxes)
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Mélanie Ducoffe ---   speaker
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Industrial Research Data Scientist - 
Airbus CRT / ONERA / ANITI
Mélanie Ducoffe est chercheuse industrielle au centre de recherche 
et de technologie d’Airbus depuis 2019 et détachée à mi-temps dans 
le projet DEEL pour l’étude de la robustesse en machine learning et 
ses applications aux systèmes critiques. Avant de rejoindre Toulouse, 
elle a validé ses études de master par un stage sur l’apprentissage 
génératif avec Yoshua Bengio, puis effectué un doctorat en machine 
learning au CNRS de Nice Sophia Antipolis sur l’apprentissage actif 
des réseaux de neurones profonds. Ses principales activités de 
recherche actuelles sont sur la robustesse des réseaux de neurones, 
notamment par les méthodes formelles.St
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