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Industrial needs

Challenges

Qualified models developed by engineering
are usually ‘heavy’:

- Memory

- Computing Power

- Computing time

Embedding complex reference models for
assistance: Braking Distance Estimation,
Structure Load Estimation, etc

Surrogate is necessary for embedding
reference physics models validated by
authorities: How can we assess the safety of
the surrogate compared to its reference ¢

EASA: 41% accidents involving small non
commercial airplanes happen during landing
(1991-2017)

Airbus Amber

EUROCAE ED250: Minimum Operational Performance
Standard for a Runway Overrun Awareness and Alerting

System”, 2017

23/09/2022: a Boeing overrun in
Montpellier

AIRBUS



Braking Distance Estimation

Consequences of under-estimation and
over-estimation of a surrogate model are not
aligned.

How can we ensure safety in surrogate model
learninge

>

Safe Unnecessary o

landing turn around

Special case where safety € over-estimation
of the reference model.

Overrun Y Overrun

prevented

: AIRBUS



Embedding Neural Networks for Surrogate Modeling

Training shallow neural networks for a regression task

—
Step 1: .
Sample training/testing dataset °
Using the reference model .
Step 2:
Design a shallow neural network (NN)
h
Step 3: =
Train the NN for a regression task
(symmetric or asymmetric) —
Step 4. .
Check the the NN over-estimates Program testing can be used to show
The reference function on the test data the presence of bugs but never their
@ absence (E. Dijkstra))

“Softsign’ function widely used in

SCADE implementation AIRBUS



Reproducibility

SAFE SURROGATE UNSAFE SURROGATE

- Notebooks on open source data
(CESSNA C172)
- Landing Distance Estimation

https://github.com/ducoffeM/safety braking_distance_estimation

' AIRBUS



Probabilistic Assessment For
Over-estimation

A High-Probability Safety Guarantee for Shifted Neural
Network Surrogates

Ducoffe Mélanie, Sébastien Gerchinovitz and Jayant Sen Gupta
Safe AI@AAAI 2020

AIRBUS



Ensuring Safety with Probabilistic Assessment

Our Goal: Prove that a surrogate model over-estimates a reference function. The reference function is a black-box
system which can be evaluated at any point.

Touché des roues
ﬂ Distance de freinage a estimer

Our Solution: We derive probabilistic inequalities to prove high-probability safety bounds on the surrogate
model and on shifted versions of it.

A

A natural probabilistic definition of safety: A surrogate model f is (1-¢) safe if it over-approximates the
reference function f with probability at least 1-&:

P(f(X)> (X)) 21—

where X is drawn at random from a given probability distribution PX on the input domain.

AIRBUS



Estimating the probability from samples

AN

We estimate P(f(X) > f(X)) by simply counting how many times we have overestimation among i.i.d. test

10

samples X1, o X

n

Proposition 1 (Consequence of Bernstein’s inequality)
Consider n > 2 independent random variables X, . .., X,

drawn from the same distribution Px in the domain of

study, and independent of the training set ([ is considered
as fixed). We estimate the under-estimation probability by

" 1 n |
Gn = oy Z If(xf)>f(-v\’»:)

i=1

Then, for any risk level 6 € (0, 1), the following inequality
holds with probability at least 1 — & over the choice of the
calibration set X, ..., X,,:

P(F(X) > F(X)) < G + \/ 2Gn mG) L2 m('g{)

n n

We use Bernstein’s inequality to relate the unknown probability to its estimate.

Interpretation:

For a large fraction 1-11 of all possible
sequences x, .., x_that we could
observe, the unknown probability of
error is bounded by:

- the observed proportion of errors
- plus a small remainder term

The risk level [ quantifies how unlikely

it is to observe a sequence x,,.., X
for which the guarantee fails.

AIRBUS



Shited Surrogate

Can we prevent the drop in accuracy with a suitable loss function?

11

What can we do when the probabilistic guarantee is too loosee (when @n is large)

We could re-train the model from scratch and pray for a miracle...
Or we can use a basic trick: shift all surrogate predictions upwards (by a positive quantity). |,
Shifting is a simple option and will be efficient empirically. i

Issue: we |lose the guarantees from Prop 1 since it requires to know the value of the shift before-hand.
We cannot ‘cheat’ and opftfimize our shift as is (the optimized shift depends on the calibration seft
which is also used to estimate the probability of error).

s A
[0)
SURROGATE 3
2 S
G o,
o) O >
€S O Q
¥ ) -
T2 5o
o © n
e oo o
5| Ul F $ HiGHEST =
under-estimation 5
Reference function's output Reference model’s output

A
4 N

’ AIRBUS
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Probabilistic guarantee for all shifted surrogates

simultaneously

Theorem 1 (A uniform Bernstein-type inequality)
Consider n > 2 independent random variables X, ..., X,,
drawn from the same distribution Py in the domain of study,
and independent of the training set ( fis considered as fixed).
We define GG(t) and G n(t) forallt € R by

~~

G(t) = P(f(X) > f(X) +1)

N _I_ mn
Gn(t) = o Z ]l{f(/‘(i)>f(«’<f)+t}
i=1

Let 6 € (0, 1). Then, with probability at least 1 — 0 over the

choice of the calibration set Xy, ..., X, we have: for all
t € R,
. 2Ga(t) . (n\ 2. (ny 1
G(t) < Gup(t) +1\[ — () In (ﬁ) + —1In (2) F—= 5
n 0 n 0 n

Airbus Amber

Interpretation:

For most calibration sets (a proportion 1-[]
of them), the probability of error of all
shifted surrogates is bounded by

- their observed proportion of errors
- plus a small remainder ferm

The guarantee is valid for all shifts 1
simultaneously.

In particular, it is valid for a shift chosen
after observing the calibration set.

AIRBUS
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Safety proof for shifted surrogates

How to post-process (shift) a surrogate to
guarantee its safety?

(1) < én(l‘) . \/2@:“) In (;—1) -3 5"’?7 In (;—2)

E.g.. choose the minimal shift t* for which the

AN

observed proportion of errors (G, () vanishes.

For this shift t*, the previous theorem shows
that the shifted surrogate is (1-€)-safe with

e =5.67In(n/d)/n

Of course, shifting decreases the model’s accuracy.

Surrogate model’s output

)

{I HIGHEST ERROR t*

s — — -

Reference function’s
output

Can we train a surrogate in order to reduce the impact of shifting on accuracy?

SHIFTED Surrogate model’s

output

Airbus Amber

Reference function’s
output

AIRBUS



Airbus Amber

Shifted Training

Can we prevent the drop in accuracy with a suitable loss function?

Neural Networks are known to be ‘good’ surrogate models. But shifting them post training may
drastically impact the accuracy.

Instead of training with a standard loss function for regression (Mean Squared Error), we can
consider the impact of shifting directly at the training stage.

We propose to add an estimate of the post-processing shift in the loss function.

SURROGATE ) . . 2
g e Mse w2 (Wi — i)
£ 5 5B " i
3 8 . —at ~
*qg:% Ui @ Asymmetric MSE % Z (ea(yz v —a(f; —yi) - 1)
o %QL} t = max;(0,y; — y;) !
A 8. ~ 2
ssTyz shifted MSE 7 2 (Ui — 9 — 1)
K _ 2

Reference function's output

< BackPropagation |

h AIRBUS



Industrial Use Case

Surrogate for Braking Distance Estimation

Over-estimate the braking distance with a surrogate neural network

Training samples= 544000, Calibration samples= 181000, Test samples= 181000
Learning with MSE, AMSE and our loss SMSE

250 A

Error = surrogate - reference -=- no error » .
1004 . ° e error with MSE
no error £ 2009 o error with AMSE
M o error with SMSE
o 5s0{ e error with AMSE g
o] 35 150 -
o)) w
0 | cufhBafofoa fed, [a)
5 01 CEEERIAGTTEE e
2 [ 100 -
5 &
§ =50 © 50
& 5 °
-100 - ° ] 0] mmmmm e -
e Gl
=150 A e
—50 L T T T Ll T l.
' ' , . ' 9 3 5 6 7 8 9
- 5 6 7 8 9
_ log of reference distance
Good accuracy: Drop in accuracy:
- MSE(MSE): 53 - AMSE (MSE): 112
But with large probability of error. Estimated on the test set: - AMSE (MSE): 142
- AMSE : £=53% But with small probability of error:
- MSE : e=55% - estimate on the test sett € <= e

- safety guarantee (with [1=1e-9) : € <= 4e-4



Airbus Amber

In a Nutshell

Our method in two steps:

SURROGATE 1 t  CALIBRATION A
® 8 e
© - 8 n 0>
(@] 8 i
=3 3 3<
55 4, & C 3 o
% o} Yi; .8 & 2 A
S ssT ssil} t = max;(0,y; — ;) |::> *g*g E S
D ) 59 O | E E
2 |w Vi o % ® I HIGHEST ERROR 5
: > 3 R * :
Reference function’s R -
output ' > . >
1 N 2 Reference function’s Reference function’s
BackPropagation | Shifted MSE ¥ ; (v —9; — t) output output

Theoretical guarantee: high probability (not worst-case), but comes with certified bound
without any assumptions on the surrogate and reference models.

Perspectives:

- beyond surrogate models (ongoing)
- other loss functions, other learning tasks

AIRBUS



Limitation of (1-€) safety

Surrogate model f is (1-¢)-safe iff P (f(X) > f(X)) >1—e¢

f(x)
The input distribution P, can be chosen a priori (e.g., uniform) or correspond to real data. All we assume in the
sequel is we have access to samples X, ..., X from P,.

If P, is uniform on a domain of study D, the choice of D is important for meaningful interpretation.

D1: domain of
study
! D2: usage :
i domain E
i - under-estimation : —
. A A single surrogate
é Certification authorities require to - for multiple operational domains

- over-approximate the operational domain

’ AIRBUS



ﬁ https://github.com/airbus/decomon

Formal Verification For Over-estimation

Over-estimation learning with Guarantees
Gauffriau Adrien, Malgouyres Francois and Ducoffe Mélanie
Safe AI@QAAAI 2021

Formal Monotony Analysis of Neural Networks

- with Mixed Inputs

Vidot Guillaume et al.
International Conference on Formal Methods
for Industrial Critical Systems, 2022

AIRBUS



Airbus Legacy on Formal Verification

Broaden formal verification to Neural Networks

Airbus A340-300 (2003) Airbus A380 (2004)

(case study for) ESATV (2008)

@ size: from 70 000 to 860 000 lines of C
@ analysis time: from 45mn to ~40h

Program is correct (X N O=0 ) Polyhedra| abstraction proves @ alarm(s): 0  (proof of absence of run-time error)
correctness (Cyan N o=@ ). .
(e ) a Ci
Astrée Absint
www.astree.ens.fr www.absint.com

Applications in software engineering:

e Analysis of run-time errors (arithmetic overflows, array overflows, divisions by O, ...)
e On embedded critical C software (no dynamic memory allocation, no recursivity)
e control/command software (reactive programs, intensive floating point computations)

19 AIRBUS



Awareness on Formal methods for Al

Verification of Local Robustness

20

NON ROBUST
o, e )go\ 2 Y THAT CAN B¢
VX )0 | DETECTED
* Q\ § - ! % oy WITH

* * A ind with beorisics ALIDATION |

* * :Counter-examples

* Kk % * Eot f'Ot:’nd with
T

.

TEST DATASET -

human decisions are Adversarial example:
locally stable... so should Prograom testing can be
be the decision of a used to show the

machine learning model  presence of bugs but

never their absence (E.
Dijkstra))

Formal Robustness

%iven an input domain Q Az € Q st f(z) > 0}

COMPLETE INCOMPLETE
'fggf(z)ﬁo max f (z) < 0 A
Vz € Q f(z) < f(2)

o

/

o

Few complete verification methods are

compatible with s-shape activation COMPLEZ
Incomplete verification methods is compatible mag(z) <0
with any native Deep Learning activation

-

J “Softsign’ function widely used

in SCADE implementation

AIRBUS



Over-estimating and Majoring Points

When the properties involve both the Neural Network and the

reference function... Over-estimation hull

with guarantees

—

N N A

NeuralNetwork

Distance de freinage (m)

- Octopus

The reference function over the input domain needs to be Over-estimation with guarantees when training

(over) approximated: a Monotonic Neural Network on Majoring Points
- Either with a fine grained approximation (Look Up Table
based on expert knowledge, too heavy to be embedded)

- Over-approximated under Monotony

assumption Method # train RMSE Guarantee
speed  =>braking distance .
EV((JIutian)de la distafc'e de freinage 9 Evoluti)on de la distance de freinage O'basel ine 1 50k 3 . 3 x

2000

f//j 300-baseline 150k 302.6 &3

1500 -

o = ONN with MP 110k 4457 @

500

]
S

1000

]
=)

Distance de freinage (m)

Verification with Majoring Points on an industrial dataset
X-baseline: we train a neural network with MSE on the training distance

=]

-100 -075 -050 -0.25 000 025 050 075 100 -100 -0.75 -050 -0.25 000 025 050 075 100
\itesse Force du vent

) with the X additive constraints. AlRBUS



In a Nutshell :

22

CASEL: ROBUST

<
&

Linear Relaxation for Neural Networks

draw two hyperplanes that are
possible solutions
ill-posed

Different ‘recipes’ in the
litterature that balance
efficiency and scalability:
primal approaches that
propagate linear relaxations
through the network

- ——

Primal View ,’ Linear Outer Bounds \ _
~

Weaker / more relaxed

Similar strength

Dual View

Section 4

AIRBUS



Interval Bound Propagation

23

Step 1: optimize a linear activation function given
constant input bounds

w, :max Wy -z +byg =W, -u+ W52 - 1+b

I<zx<u

L, s min Wy -z +by = W, - 1+ W;" - u+ b

I<z<u
Step 2: optimize increasing activation function

u, : max maz(0,h ) =maz(0,u))
lﬁsh_suh

l,: min maz(0,h ) =maz(0,1))
l,<h <u,

AIRBUS
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@ (B)
Va :‘ %2 :/

Vy < Vg :PickA
VB S VA : Pick B

Computing linear relaxations over non-linear
operations (ReLU) require to bound the input
domain with:

*alower bound ¥

*an upper bound &

With aoffine functions, bounds can be
computed symbolically for specific domains:

&
L HYPER-RECTANGLE

L_PBALL

HOLDER'S
INEQUALLTY

AIRBUS



Formal Verification of Over-estimation

Pipeline of Linear Relaxation

Entrées

WY

AN S <L AN N ™

=TT A\

e A\ eY:

§§§§‘\"E‘$ @%ﬁk RIS ‘{"I,IIII'IZZ:
= L7

N 4

SO XA
NRSSELAL NRRSEL A
SRS K~ NS R
N S B IR S S 1745
RS K/, NS KT LK

"\V« 57 ’»6
RIS KA

RN )
DN
.

K
RS

/'”’ll 77 =

-~
o
TS
Y PEHQRORS, _ J59074)
USSR 5
4 % NS % L7
TSN DA
SO SN
127> V275N
052 SN\ 752 SN
TS A}}w‘.ﬁ”m SN
— >\

04
X, -2

¥
Ls 08

25

Sortie

Distance de freinage

Local Linear relaxation

“Octopus

Branch and Bound
Input partitioning
(Gradient)

NeuralNetwork

e Octopus

Too loose ?
The partition is only for
the neural network’s
linear relaxation
No extra sampling on
the reference model is
required

AIRBUS



NN’s distance - Reference’s distance

Incomplete Verification For the Safety of Braking Distance Estimation

44

42 1

40

38

36

26

The prediction error for ANY sample from is

below the green curve

120 140 160
The prediction error for ANY sample
from is over the red curve

180

200

) Prediction error between the
neural network and the
reference on test samples
(the corners)

= Formal upper bound on the
prediction error between the
neural network and the
reference

== Formal lower bound on the
prediction error between the
neural network and the
reference

Highly conservative Neural Network
Formal method can help tightening the
over-estimation

No constraints on NN’s monotonicity

from decomon.models import clone

decomon model
, lower =

clone(model)
decomon model.predict (box)

Plug and Play library to compute Linear
Relaxation.

Airbus open source library

With the support of ANITI

Al S
D W -
.y \

https://github.com/airbus/decomon

Input partitioning

box t = tf.constant(box)
with tf.GradientTape() as g:
g.watch(box t)
_, Y = decomon model (box t)
dy dx = g.gradient(y, box t)

AIRBUS



Partial Input Monotonicity for Safety

Over-estimation will not be the solely pre-requisite for safety
Property 2: If monotony is not enforced in the design, it may be safety critical given some inputs
Only on the Neural Network

V(x1, %) € X2 i x1la = xola Axila 2 xela = f(x1) < f(x)

X1 X2 f(Xl) f(XQ)
speed = speed
weight = weight — BDE; < BDE,

dry runway/ < \wet runway

Previous works consider PIM on continuous inputs (gradient)
No existing work on discrete inputs

27 AIRBUS



When the brakes’ state deteriorates, the braking distance should increase.

2 layers
neural network

b1|bs

left

28

b3|bs

right

Brakes' states: Normal, Altered, Emergency, Burst, Release
Order on Brakes's states: N <, A<p E <p B<p R

sym / asym b1|b2 / b3|b4
N,AE,B,R / N,AE,B,R

(4,0,0,0,0/0,0,0,0,0) = NN / NN

|

(3,1,0,0,0/-1,1,0,0,0) = NA /NN

sym = left + right
asym = left - right

AIRBUS



Exact Verification

Only for piecewise linear activation (ReLU...)

RelLU definition is:

MILP Generic Problem Definition y = ReLU(x) = max(0, %)

min cyxq + C3x3 + - + CpXp, objective MILP ReLU encoding is:
y<x—-l+x1—-a)

aij1x1 + .-+ A1pnXn < bl )
constraints

Am1X1+ -+ QpnXn < by y=x
Li<xi<u;, 1<i<n bounds on continuous x; y <uxa
x; €EZ some X; are integer
J ! y=0

« cpayb; €R andLu € R" ac {01} a is a binary integer variable

some x; ‘s can be integers (or even binary), hence Mixed-Integer problem
This assumes we have computed lower | and upper u bounds for the input neuron x

* state-of-the-art solvers (e.g., Gurobi) require bounds on x; ’s
(e.g., by using Box beforehand).

Several MILP solvers: Gurobi, Venus, MIPVerify

AIRBUS
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Application to Braking Distance Estimation

Identify the sub-spaces where the monotony does not hold
using a Mixed Integer Linear Programming (MILP) solver

1.61%
exact sub-space (w) where the I
% monotony property does not hold — i i ] i
B lower bound 2 of w 1.39%
-‘|‘:] upper bound 2 of w B _SEENE
‘l;jE-NE;’\\'” >VAE-N\E\ \\\
RN Sy
ok NN-NE-— SNN-NR SNANR - SAANR—— PAENRT e
weight SO ARN
" N N W SN XU b e SBEF-AE
Gurobi 9 NN-AE- !if»NA-AE\\\:\kaA-AE\\}‘\";;F/:E AE\\\; &N\
; ; R\ TANAAR— < PAA-AR—>AE-AR
<10 hours (MacBook Pro 8 core 2.3 GHz Intel Core i9 with 32 Gb) ol g N RV
NN-AR—— —————BNE-AR »EE-AR

0 AIRBUS



Food for thought: Verification in an Industrial pipeline

Challenge 1: Recent field of research

Al : GANs
Artificial Backpropagation  peep CNN
Neuron Perceptron Learning Backpropagation AlexNet |AlphaGo
~1950 1969 1974 1977 1982 ~2000 2010 2017 2018
o— [ o— [ [ [ [ o—0-0:0—0-0—0 -
1943 1957 1960 1971 | 1989 2012 20142016
Temporal
Computer-generated Hoare .LOg'C Model Industrial DO-178C
FM proof Logic SX;E?; | Checking Adoption  revision
Abstract

Interpretation

Many properties to assess -> speedup for an industrial process
x (DEEL-LIP) DeepPoly
. . FM First Al?
Bugs in existing solvers + NN format Formal Verification Reluplex | Marabou
- . S , - + Of Neural network
Training scheme may imped verification (adversarial training) AI

verification mainly intended for data scientists: high level of code, no
assurance that the property is kept when embedded

AIRBUS



Food for thought: Verification in an Industrial pipeline

Challenge 3: Scalability

Computer Vision Time Series Decision Making NLP
Hybrid Al

Shallow NN
KKLKKLK D
advisedlib

Verification For

Business

vianuracturing
VBL, HMF Maintenance Air Mobility

Too loose ?

Input dimension

Network depth

Certification authorities may require a unique process independently from

the depth (jurisprudence)

32 AIRBUS
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Airbus Amber

Reconciliation with Statistics

proVEN: Certifying Robustness of Neural Networks with a Probabilistic Approach
-> deriving a worst case bound for probability of local robustness risk independently

Statistical Certification of Acceptable Robustness for Neural Networks
-> Hoeffding inequality for neural networks

v AIRBUS



Thank you

PROVEN: Certifying Robustness of Neural Networks.with a Probabilistic Approach
-> deriving a worst case bound for probability of local robustness risk independently

AIRBUS




Food for thought: Verification in an Industrial pipeline

Challenge 2: Tools to be matured

COMPLETE and INCOMPLETE verification for tiny/medium NETWORK NB Safe Time Time
neural networks (INCOMPLETE) (INCOMPLETE | (COMPLETE)

Full demonstration on industrial usecase )

Growing community (synergies with DEEL-LIP) reluplex 74.01% 15 min 198h

- —I I - corners 84.13% 8 min 9h
D : : il 1 P https://github.com/deel-ai/deel-lip
LIPSCHITZ KERAS LAYERS ) _ adversarial 69.83% 7 min 4h20
Many properties to assess -> speedup for an industrial process
(DEEL-LIP)
S ACAS-XU local robustness verification in 3D

Bugs in existing solvers + NN format (304 000 boxes)

Training scheme may imped verification (adversarial training)

verification mainly intended for data scientists: high level of code, no
assurance that the property is kept when embedded

% AIRBUS
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Statistical methods for safety and decommissionning

speaker

Airbus Amber

AlIR

Mélanie Ducoffe — speaker

Industrial Research Data Scientist - ONERA
Airbus CRT / ONERA / ANITI e

Mélanie Ducoffe est chercheuse industrielle au centre de recherche
et de technologie d’Airbus depuis 2019 et détachée a mi-temps dans
le projet DEEL pour I'étude de la robustesse en machine learning et
ses applications aux systémes critiques. Avant de rejoindre Toulouse,
elle a validé ses études de master par un stage sur 'apprentissage
geénératif avec Yoshua Bengio, puis effectué un doctorat en machine
learning au CNRS de Nice Sophia Antipolis sur I'apprentissage actif
des réseaux de neurones profonds. Ses principales activités de
recherche actuelles sont sur la robustesse des réseaux de neurones,
notamment par les méthodes formelles.
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