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Numerical Simulation — Experimental results — Database

Assessment of a accidental scenario on PWR: Break Loss Of Coolant Accident (B-LOCA)
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1/ Experlmental results

BETHSY experimental facility: 3-loop reduced
scale model (1/100 in vol., real size in height) of a 900 2/ Data

MWe Framatome pressurized water reactor (PWR) Thermal-hydraulics variables, physical
properties and coefficients, ...
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Risk assessment in nuclear accident analysis

= Safety studies: compute a failure risk (margins, rare events) and prioritize the risk
indicators, with validated computer/numerical models

= Numerical simulators: fundamental tools to understand, model & predict physical
phenomena.

= Large number of input parameters, characterizing the studied phenomenon or related
to its physical and numerical modelling.

= Uncertainty on some input parameters - impacts the uncertainty on the output, the
evaluation of safety margins

= BEPU (Best Estimate Plus Uncertainties): realistic models & uncertain inputs - Better
assessment of the real margins

CP
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Uncertaininput

Uncertain output

parameters
Y = M(Xy, .. , X0)

X= (Xy,..,Xq)
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Risk assessment in nuclear accident analysis

= How to deal with uncertainties in numerical simulation?
-» Probabilistic framework and statistical methods
-> Monte Carlo-based approaches and data analysis = Data Sciences

- Essential use of machine learning

= Data-driven methods in support of physical modeling, analysis and forecasting

- To propagate the uncertainties of the inputs

- Assess their impact on the simulator predictions

—> Estimate probabilities of failure, quantiles, safety margins

-» Identify the most influential uncertain inputs: sensitivity analysis

- Calibrate modeling parameters & input uncertainty w.r.t. experimental results
-> Validate the numerical simulator accuracy w.r.t. experimental results

-> Identify optimal configurations

CEA Workshop on Statistical Methods for Safety and Decommissioning - Avignon MARREL Amandine 22" November 2022



Cea General uncertainty quantification methodology

Step C: Propagation of uncertainty sources

>
Step A: Specification of the problem
(
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Extracted and modified from De Rocquigny et al. (2008)
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General uncertainty quantification methodology

Step A: Specification of the problem

-
Quantity of
i : interest
Uncertain inputs Numerfcal model Va?nable of _mter
X=X X,] or simulator interest X: ;a[)lf’:ll;lce,
ilisti ] = ) o) robability...
Probab:{;stf.c m.odelmg 1 d g: RE 5 R Y = g(X) P y
= Distributions - |
[PXI l & B & N &8 § § &8 § § _§ |
Py, A I’ Metamodeling :J
Py, A F=3x) =g i

w
| Step D: Sensitivity analysis i
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Recent advances in Sensitivity Analysis

= Focus on HSIC measures

CEA - www.cea.fr




Sensitivity Analysis (SA) in Uncertainty treatment

= Quantify how the variability of the input parameters influences the output
— Aim of Sensitivity Analysis (SA)

» Quantitative SA and ranking purpose:
= Quantify the impact of each uncertain input and interaction - Ranking

— ldentify the variables to be fixed or further characterized in order to obtain the
largest reduction of the output uncertainty

» Screening purpose. Separate the inputs into two groups: influential and non-influential

= Non-influential variables fixed without consequences on the output uncertainty
= |n support of model reduction

= To build a simplified model, a metamodel = ICSCREAM metholodogy

> Global SA within a probabilistic framework

— Valuable information to understand G and underlying phenomenon
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Global Sensitivity Analysis (GSA) of numerical simulators

@ /”’—.——. --~~~‘\
»7+ Easily interpretable ™«

Non exhaustive-list of available methods... o

------- ~2a. '/ - Expensive in practice
(p = number of inputs) 'p-mdependents \, - Only nullity of total ,,‘
\ S ndices < independence,s
(N ~ 100) / See e
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Modified from looss et Lemaitre [2015] ~ €valuations
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E A few notations

» Black-box model
Y = MXy, ..., Xq)

= X4,..,X4aredindependent inputs, evolving in domain X, ... , X4
= Y evolvesin domain Yy
= Py denotes the probability distribution of X

= Pyy: the joint probability measure and Py @ Py the product of marginal
distributions

» Only a n-sample of simulations is available

M unknown, only Monte-Carlo sample (X(i), YU))1<],<" where YU) = ]V[(X(f))
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E HSIC review: a kernel-based GSA method

» How to evaluate the sensitivity in a probabilistic way? < Independence

-> By comparing Py.y with Py QPy
S; = d(Px,y, Px,®Py)

where d a dissimilarity measure between two probablity distributions

d can be based on Maximum Mean Discrepancy:
MMD(P, Q) = sup [Epf(Y) — Eqf ()]
€

With H{'= unit ball in a (characteristic) RKHS (Reproducing Kernel Hilbert Space)

Sriperumbudur et al. [2008]

= S; = MMD?(Py,y, Px,QPy) = HSIC(X;,Y)

Hilbert-Schmidt Independence Criterion
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HSIC review: a kernel-based GSA method

» MMD? applied between Py y and Py Q Py = HSIC(X, Y)g{Xi,}[y
Hy, and Hy RKHS associated to X; and Y, resp :
Kernel ky: X; X X; — R with feature space Hy; and feature map ¢y, (not unique)

Kernel ky: Y X Y - R with feature space Hy and feature map ¢y

' ' ' ' kernel defines the i
K Gx") = (5,05, G, 800 K1 9") =y (9 0 D, Kool defnes e e

Kernel embedding of a distribution P, into RKHS with kernel K, :
up,(z) = Ez.p,[Kz(Z,2)] = (ﬂIP’Z»KZ(-»Z»ﬂZ

Muandet et al. [2017]

Space of all probability distributions
for the input-output pair

Tensorized RKHS

Picture extracted from G. Sarazin’s (CEA) slides
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HSIC review: a kernel-based GSA method

2 .
» MMD? applied between Py y and Py Q Py = HSIC(X, Y)g{Xi,}[y
Hy, and Hy RKHS associated to X; and Y, resp :
Kernel ky : X; X X; —» R with feature space Hy; and feature map ¢y,

Kernel ky: Y X Y - R with feature space Hy and feature map ¢y

/ / / / kernel defines the inner
Ky, Ce,x) = (0x, (), ox, (), and Ky (y,5") = {0y (), @y (Y D3ey oroduct in the RKHS

HSIC = distance in the RKHS between the images of the two distributions of interest
2

= HSIC(X;, V)gey 56, = MMDiey s, (Px,v , Px,®Py) = ||y, — Hogar, |
Xi' Y

Gretton et al. [2005]

Space of all probability distributions
for the input-output pair

Tensorized RKHS

Extracted from G. Sarazin’s (CEA) slides
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@ HSIC review: a kernel-based GSA method

2 .
» MMD? applied between Py y and Py Q Py = HSIC(X, Y)g{Xi,}[Y
Hy, and Hy RKHS associated to X; and Y, resp :
Kernel ky : X; X X; —» R with feature space Hy; and feature map ¢y,

Kernel ky: Y X Y - R with feature space Hy and feature map ¢y

/ / / / kernel defines the inner
Ky, Ce,x) = (0x, (), ox, (), and Ky (y,5") = {0y (), @y (Y D3ey oroduct in the RKHS

HSIC = distance in the RKHS between the images of the two distributions of interest
2
= HSIC(X;, Y)3¢, 30, = MMD%-in,}[y(PXiY'PXi®PY) = ||Cx,Y||H5

With Cy y the covariance operator between features maps:
Cxy = Exy ox(X)®@y(Y)] — Ex[@x(X)|QEy[¢@y(Y)]

HSIC "summarizes" the cross-cov between feature maps

= Large panel of input-output dependency can be captured.

Gretton et al. [2005]
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cea HSIC review: a kernel-based GSA method

» Characteristic kernels and RKHS = Injective canonical feature map

= Equivalence to independence: HSIC(X,Y) =0 X LY
Ex: Gaussian Kernel

/ (xi_xl{)z
k(xi, x;) = exp| —~—5—

» Estimation: Kernel Trick = Feature map linked to kernel function

Very simple M-C estimator from a n-sample of simulations (Xg"),YU'))1
<js<n

HSIC(X;,Y) = —Tr(K;HLH)
where H = I, ( XU) X(’ ) ) and L = (k(y(j)’y(j')))
1<j,jr1sn

1<j,j'sn

» Statistical Properties:
* Asymptotically unbiased, variance of order O(1/n)

* IfX 1Y,nHSIC(X,Y) converges asymptotically to a Gamma distribution
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Use of HSIC for GSA of numerical simulators

» Normalization for sensitivity analysis: Da Veiga [2015]
2 _ HSIC (X.Y) , o .
R HSIC — JHSIC(X,)HSIC (Y,1) = Ri¢c € |0,1] for easier interpretation

Influence(X[y;) > Influence(X;;) > - > Influence(X{q4)

D2
>"'>RHX

. D2 D2
Where order [-] is such that R HXpq) > Ry x X(a)

[2]
— Use for ranking of inputs

» Independence tests: HSIC(X,Y) =0 <> X L Y (with characteristic kernels!)

" Null hypothesis: Hy: X LY against H;: X #Y
= Test statistics: nHSIC(X,Y)

= Decision rule: Hy rejected iff nHSIC(X,Y) > q1_,
where gq;_, is the (1 — a)quantile of nHSIC(X, Y) under H,,

— Use for screening of inputs
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Use of HSIC for GSA of numerical simulators

HSIC-based independence tests for screening

How to have the distribution nHSIC(X;, Y) under #, to compute p-value?

» If n large: asymptotic test based on approximation with Gamma distribution
(Gretton et al. (2008])

» If n small: Permutation-based approximation (De Lozzo & Marrel (2016a], Meynaoui
[2019], EI Amri & Marrel [2021a])

Gamma distribution

hsic,.

P-value = Pr [I‘TSE(Xi; Y) > hS'icobs]

800 1000

400 600
1 1 1

200
1

0
I

T T T T T
0.000 0.001 0.002 0.003 0.004

Interpretation of p-value for a level a (¢ = 5% or 10%) for screening:
> pval <a = H, (Independence) rejected = X; is significantly influential
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Use of HSIC for GSA of numerical simulators

» HSIC as indices of Sensitivity Analysis
* Focus the SA analysis on the difference between Py, with Py & Py

= Power of RKHS - HSIC=one of the most successful non-parametric dependence measure

= Capture a large spectrum of relationships
= Able to deal with many types of variables and purposes:

= Goal-oriented SA for safety studies (Marrel & Chabridon [2021], looss & Marrel[2019]) :
To measure the input influence in a restricted output domain: Y € C

— Numerous applications for safety and risk assessment (C: critical safety domain,
e.g. C = {Y|Y > critical value})

= SA of multivariate or functional output (or inputs) = definition of specific kernels
Atmospheric dispersion model with spatio-temporal output (De Lozzo & Marrel [2016b]),
Dynamic compartmental epidemiologic model on COVID-19 (El Amri & Marrel [2021b])

: Efficiency demonstrated in numerous industrial applications,
especially with small sample size n and large dimension d

= Use in support of metamodeling in large dimension - ICSCREAM Methodology
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Recent advances in Metamodeling
= Focus on Gaussian Process (GP) Regression
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Cea General uncertainty quantification methodology

Step A: Specification of the problem

(. .
Quantity of
interest
Ex: variance,

Numerical model
or simulator

Variable of

Uncertain inputs )
interest

ilisti i X =X, ..,X bability...
Probab:{fst;.c m.odelmg [X1 dl g: RE - R Y = g(X) probability.
= Distributions P, .
]IDXJ_ . L& N B N &N N B &N &5 B B |
Py, A\ I Metamodeling :J
Py, A F=3gx)=~gX) I
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Crucial use of metamodel (machine learning)

* Physical parameters
* Modeling and numerical parameter

Design of numerical Numerical .
experiments simulations === | Analysis of outputs
A . PR = -
Xl d ° ¢ 600 | ,, / —  Experimental results
‘. ) —p | Simulator > .-
° ° o ° Y = G(xl’ . Xd) %400‘
> ) 300 L ,/'l' Il e 5
Incertain inputs: X In case of costly G_i _ HRIE
e Environmental variables Model reduction or AppI‘OXIma'[Ion 204 A || |
with Machine learning (ML) e S S W —
metamodel Z,,, ~ g(X) Time (<)

Thermal-hydraulics transients
for accidental B-LOCA scenario

v" With good approximation and prediction capabilities = to be controled
v With a negligible cpu cost for prediction

=] A
v Built from a Monte Carlo sample of n experiments (n~10d) - ‘ a /
Ex : Polynomials, splines, neural networks, regression trees... " : :7 —-
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Crucial use of metamodel (machine learning)

kriging the sinus function

Choice: Gaussian process (GP) metamodel .
see Rasmussen & Williams [2005]

Part of Supervised Machine Learning

Advantage: gives a prediction with an associated error & -
bound (Gaussian distribution at each point)

- I How to build the GP in large dimension? I -

- I How to build the GP for chaotic code? I

- How to build the GP for functional or
other type of data?

) Integration of physical constraints?
cf. Bachoc'’s talk
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Crucial use of metamodel (machine learning)

v Kernel-based method of supervised learning from (X, ,Y,). Response is considered as a

realization of a random GP field:
Y(x)~GP (u(x), k(x', x))
With u(x) the mean and k(x’, x) the covariance function.

— Predictive GP is the GP conditioned by the observations (X, ,Y) :

Y(x*)ly(xs)=YS~GP (I:Z(x*); §(x,; x*)ij 4

Kriging the sinus function

With

« A(x*) = E[Y(x)|Y (X,) = Y] = p(x*) + k§s,x*K)?s,1X5(Ys - ﬂs)ﬁ
* 3(x',x) = Cov[Y (XY (Xs) = Y;] = ky_-Kilx ky_y
where p; corresponds to u evaluated at X, ky_,+ the covariance between X and x* and Ky_x,
the covariance matrix for X,

= Conditional mean fi(x*) serves as the predictor at location x*

= Prediction variance (i.e. mean squared error) given by conditional covariance s(x*, x*)
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lllustration: the ICSCREAM methodology for the

IB-LOCA nuclear accident
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Simulation of IB-LOCA nuclear accident

Accidental scenario on pressurized
water reactor: IB-LOCA R
LOss of primary Coolant Accident due to &
a Intermediate Break in cold leg l
-

0
|
W)
~

d (~ 100) input random variables:

Critical flowrates, initial/boundary UJJ
conditions, phys. eq. coef., ...

700 Test 7 - Fuel rod surface temperature i
Modelled with CATHARE2 code; —~ FEEE=a .

- Models complex thermal-hydraulic phenomena c00f e

- Large CPU cost for one code run (> 1 hour)

w
o
o

400

Temperature (€)

Variable of Interest:

2"d peak of cladding temperature (PCT)
= scalar output

300

200

0 100 200 300 400 500 600
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E Objective in IB-LOCA safety study

Uncertain
parameters

CATHARE2

| tem p'éfétijré (PCT)
Code

Y= g(X1, ey Xgﬁ)

T TR R NN NN NN NN TNNNNNNENENENE NN NN NN NN NN NN NN NN NN NN NN NN NN ENNNNNEENEEEEEE ’

O In IB-LOCA modeling framework, uncertain input parameters are:
» (Type 1) Initial conditions, physical model parameters = Probabilistic (U, LU, V', LN)
» (Type 2) Scenario parameters (min / max bounds) = No probabilistic

d Objective in support of safety studies A

Identify the most penalizing configurations for Type 2 inputs,
under the uncertainties of type 1 inputs.

Penalizing configurations < leading to high PCT values

- /

IB-LOCA: Intermediate Break LOss of Coolant Accident
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E Objective in IB-LOCA safety study

Problems & constraints
» Very large number of inputs (~100), but effective dimension might be lower

» Each CATHARE simulation ~ 1 hour = around 1000 simulations available
» Phenomena involved are complex with strong non-linearities
» Black-box model: intrusive methods not possible

= Monte Carlo sampling + advanced statistical tools for data analysis
v' Screening and sensitivity analysis
v' Approximation with metamodel
v' Uncertainty propagation

— Adapted to VERY HIGH DIMENSIONAL test case (~100 uncertain inputs)

= ICSCREAM* methodology in 4 Main _Steps
*|dentification of penalizing Configurations using SCREening And Metamodel
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STEP 1: Monte Carlo Sampling design

Uncertainty quantification of uncertain inputs + scenario inputs to be penalized X,,.,

Uncertain inputs X = (X, ..., X;/) with probability distributions + scenario inputs X,,.,

4

Step 1: Learning sample of n simulations (X;,Yy)

Monte-Carlo design of n experiments Xg = {x, ..., x™} and associated CATHARE2 PCT outputs Y

CEA Workshop on Statistical Methods for Safety and Decommissioning - Avignon MARREL Amandine 22t November 2022



STEP 1. Monte Carlo Sampling design
lllustration on the IB-LOCA test case

» d = 96 uncertain variables with probability distributions Py (almost indep.)
» n = 889 CATHAREZ2 simulations : Monte-Carlo sample (X~Py)

Empirical quantile 90%: q,4 = 673.18 °C
Critical configurations are defined as: PCT > (4

Distribution of the PCT output

T
kernel estimator Scatter plots with 1-D local polynomials for trends

= = +90%- quantile

[o]
(=]

~
o
T

D
o
T

800

[4)]
o
T

700

|

|

|

1 800
|

| 700
1

600 600

PCT

by S au = g
5004 " 500 p»*
- E .

Number of simulations
w H
o o

,
400} ¥ 7
e

N
o
T

300

=1
o
T

o

200 300 400 500 600 700 800
PCT values (°C)

| Complex relationships of PCT w.r.t. X

e Metamodeling of PCT with such a
large number of inputs is a hard task!!
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STEP 1. Monte Carlo Sampling design
lllustration on the IB-LOCA test case

Among 96 inputs, 2 scenario inputs to be penalized (here dependent):

» X,,; (break size): uniform distribution on [3, 4.2] inches

» Xy (factor for GMPP stop time): uniform random variable whose range of
variation depends on the value of X,,-

PCT values
' , »_Objective:

{s0 Precisely capture critical configurations of
1480 (X157, X145) Which lead to the highest probability
1400 of PCT exceeding g,4 (= 673.18 °C)

4320

240 Xpen = {X127, X142} € X

160

=
N
o
o

[y
=
o
o

[y
o
o
o

900

800

700 -

600

500 - 80

Factor for GMPP stop time X;4,

400 0

2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2

Break size X;,7 GMPP : group of primary punps
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STEP 2: Screening & ranking of inputs

Uncertainty quantification of uncertain inputs + scenario inputs to be penalized X,,.,

!

Step 1: Learning sample of n simulations (Xg,Yy)

!

Step 2: Screening and ranking with HSIC-based independence tests from (X, Ys)
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STEP 2: Screening & ranking of inputs

Identify and rank the inputs of primary influence with HSIC-based tests

72

Global Sensitivity Analysis Goal-oriented Sensitivity Analysis:
U focus on exceeding the 90%-quantile
Global (G-) HSIC U
Target (T-) HSIC
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STEP 2: Screening & ranking of inputs
lllustration on the IB-LOCA test case

Global-HSIC tests P-value of HSIC-based Independence tests
1._.
08— @ ; . ¢ o p
~ 18 influential inputs in GSA - (¢ 1 ? p o ¥ o
Influence ++ : X142 (GMPP time) 04— I J L I ,\ cj( |I T [ Jﬂd
Influence + : X127 (break size) °§fﬁ _f_ "PI _[__ f l__ ‘P,-H-"L 01| 1
Influence : X113, X110, X11 X1 X2r X6 X2
Lower influence : X50, X42, X112, X83, X64, -
X125, X55 , X103, X36, X27, X54, X102, X52 . o ¢ © ¢ e o 0
2 I » & C Q Q ©® P Q
06 ] ) ) ® ?
04 | o | ® o Q ¢ o o ¢ (
£ 25 1] Lytbe L]
EETY T il " o il I i
X64 X83 Inputs X102103 X110 X112113
P-value of Target-HSIC-based Independence tests
05— ? of f ﬂ T ¢ ¢ of 99 o T-HSIC = Impact on exceeding
iy " I L ? ? the 90%-quantile g, o(Y)
ﬁi [ %3 ? 3217 X@,;@B i H}iz [t XQ ﬁxﬁg ~ 19 influential inputs in TSA
ke 8§ ® G i _ o Influence ++ : X142 (GMPP time)
0'6_ . 5 &Y " R los 90 ¢ Influence + : X113, X110, X127, X125, X83
|l o 911 il = ® © | Lower influence : X42, X103, X76, X50, X55, X54,
Ll I I J 1 LQﬂ ? { ‘ X2, X27, X28, X21, X84, X64, X11
O_X 4X(;9 X§6 )}3:(;: ? r |X1g3 Xg] X£3

Inputs
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STEP 2: Screening & ranking of inputs
lllustration on the IB-LOCA test case

|

From aggregation, selection of around 20 inputs

|

Inputs ordered by influence d°, using P-values
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STEP 3: Approximation with a GP Metamodel

Uncertainty quantification of uncertain inputs + scenario inputs to be penalized X,,.,

!

Step 1: Learning sample of n simulations (Xg,Yy)

!

Step 2: Screening and ranking with HSIC and T-HSIC independence tests from (Xs,Yy)

!

Step 3: Sequential Metamodeling —» Gaussian process (GP) regression from (Xs,Ys)

==fp | Challenge to be addressed here: how to
build the GP in large dimension (d~100) ?
=P | Use the information of screening and ranking from HSIC
= Sequential estimation of GP hyperparameters
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STEP 3: Approximation with a GP Metamodel
lllustration on the IB-LOCA test case

Assessment of accuracy and predictivity of final GP metamodel built on N = 889 simulations

Predictivity by CV

Std Residuals by CV

800 120 r
iz :
700 - - . 100 - Accuracy Sequential
e 2, criterion GP
2 600f T Hﬁ%@ 4 80 -
> +
Q 500+ - W 60 - Q 0.82
S f} i
B 400} e *{h 40+ PVA 0.15
a +
300 " 20 -
200 - - - - 0
300 400 500 600 700 800 -4 -2 0 2 5
Observed values = Q?:82 % of PCT variance
o _ Accuracy of Cllevels explained by the GP built with
S the 20 selected 96 inputs
B o} a-Cl pIOt
u . -
2 = 18% of variance unexplained:
2o inaccuracy of the GP + total
5 .l effect of the 76 neglected inputs
g
£ oz2f — Low PVA and good a-ClI plot:
§ accurate confidence intervals in
% 02 02 06 08 1 prediction
Theoretical @
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STEP 4: Uncertainty propagation with the GP

Uncertainty quantification of uncertain inputs + scenario inputs to be penalized X,,.,

!

Step 1: Learning sample of n simulations (Xg,Yy)

!

Step 2: Screening and ranking with HSIC and T-HSIC independence tests from (Xg,Yy)

!

Step 3: Sequential Metamodeling with Gaussian process (GP) from (Xg,Ys)

!

Step 4: Uncertainty propagation with GP metamodel
= Identify penalizing values of X, under the uncertainty of the other inputs {X\X,.,}
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STEP 4: Uncertainty propagation with the GP

Step 4: Uncertainty propagation with GP metamodel to identify the
penalizing values of X, under the uncertainty of the other inputs {X\X,.,}

= Precisely capture critical configurations of X,,.,, = {X;,7, X143} which lead to the
highest probability of PCT > §,4(Y) (under randomness of the other variables)

Notations :
Xxp are explanatory inputs of the GP

~

Xexp = Xexp \ Xpen

P(Xpen) = PYGp(Xexp) > 0.9 [Xpen] Xexp and Xy, are
N " independent
o / ® do.o — Y (If:(xexp- Xpeﬂ) d P}*{ﬂp f:iu.\'p) (necessary condition)
Zexp \/M SE [Y Gp (ie-\‘[l- XIIEH )] ® : CDF of standard

Gaussian distribution

Variation domain of Xexp Joint distribution of Xy,

Q In practice, for each value of X, = (X127, X143}, P(Xpen) is estimated by
iIntensive Monte-Carlo computation (here integral in dimension 18 in the use-case)
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STEP 4: Uncertainty propagation with the GP
lllustration on the IB-LOCA test case

Computation of P(X ey )
Probability of exceeding o 9 = 673.18°C, accordingto X;,; and X4

@ 1200 - 1200 - .
" S—
= 0.5 m
- o4
X 1100 0.45 x 1100
0
a 0

04 Q A
E 100 £ 1000 ! 0

0.5 | 3
a = % 5 *x Y
4 2 ooy %
€ ool 0.25 - %
= 800 A E 800
- 02 2 N
' 4 0
S 700} 0.15 o 00t , -
g v 3 9
£ 3 £
= 600} = 600
ot 0.05 e 0102
o a A
0
500 . : ' | 0 L . n . . . ]
vy s 32 34 36 38 4 42 » 5003 32 34 36 38 4 42

Break Size X;y7 (in) Break Size X;y7 (in)

» Strong interaction between the two scenario parameters

» Worst case: (3.57 inches, 907.8 seconds) = P = 0.55

» Physical explanation: these two parameters drive the degradation of the water inventory
o The smaller X;,-, the longer the pump will have to run for the same inventory degradation
o If X;,7 < 3.3 = the water inventory does not degrade too much (whatever GMPP)
o If X;,7 > 3.9 = break tends to be prevailing and reduces the impact of stop time of GMPP
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Some axes of research for uncertainty treatment

= Model exploration : numerical Designs of Experiments (DoE)
- Space-filling designs for large number of uncertain inputs
- How to tackle the curse of dimensionality?
- Extension to functional (temporal/spatial) inputs?
- Adaptive/sequential DoE (tractability in large dimension)

= Sensitivity analysis techniques

- Advanced and robust screening (dimension reduction) and ranking techniques
-> Extension to functional (temporal/spatial) outputs?
- Extension to correlated inputs?

= Metamodeling for large number of uncertain inputs
- How to build accurate and reliable GP metamodel in very large dimension d ?

-> Scalability with large sample sizen ?

= Validation/Calibration of model (real experiments vs. calculations)
-> Bayesian approaches
-> Definition of relevant metrics for validation
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Some axes of research for uncertainty treatment

» Some are notably addressed within the ANR SAMOURAI project

- Advanced and robust screening and ranking
Decomposition into main effects & interactions must be investigated

= Assess the use of HSIC with ANOVA-like kernels (Da Veiga [2021])

= Build associated independence tests
: HPH an agence nationale mOURAI

= Relevancy in support of metamodel building HE arecherches

Simulation Analytics and Meta-model-based solutions
for Optimization, Uncertainty and Reliability Analysls

-> BuildGP in large dimension: improve reliability
= More reliable estimation of hyperparameters

= Bayesian approach and sparse GP

-> Adaptive/sequential DoE
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