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Statistical methods for safety and decommissioning
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Conventional open pit mining
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Uranium in situ recovery
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Roll front deposit
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Uranium in situ recovery (ISR)
57% U world production [OECD-NEA & IAEA, 2020]
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Schematic view of the Katco Uranium In situ recovery (ISR) mine and the ISR process [Collet
et al., 2022]
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Uranium in situ recovery (ISR)
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Modelling U ISR (HYTEC)
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Modelling U ISR (HYTEC)
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Objectives

Propagate the geological uncertainty to the production prediction at the block
scale

Evaluate the impact on mine planning
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Geology of the deposit
U mineralization depends on spatially
variable factors

geological

geochemical

hydrogeological

significant diversity of mineralized U
geometry

more or less elongated and continuous
bodies

lenticular or roll shapes
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Block model adjustment

1 Roll front

2 Lithotype

3 Grade
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Available data
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Available data

Borehole data

Roll front facies : oxydized - mineralized -
reduced

lithotype : sand (coarse to fine) or shale

U grade
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Geostatistical modelling
Petit et al. [2012]

1 Facies

Vertical proportions curves
Truncated (thresholded) Gaussian → variogram

2 Lithotype

Vertical proportions curves
Contact rules
Plurigaussian models → variograms of the latent Gaussian fields

3 U grade (within the mineralized facies)

Anamorphosis (Gaussian transform)
Variogram
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Geostatistical modelling
Petit et al. [2012]
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Uncertainty Propagation

We generate a large set of realisations of the block model

· · ·

We run HYTEC

· · ·
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Uncertainty Propagation
Quantification of the production uncertainty

Cumulative U production curves. In red : P10, P50, P90

Intractable in practice ⇒ Scenario reduction
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Scenario reduction
Scheidt and Caers [2009]

Ideas

only a handful of production curves is sufficient to compute (approximately) the
desired quantities

we can discriminate between the realisations in terms of their dynamic
behaviour by comparing some relevant features
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Features computation
We build the features so that the distance between the realisations in the feature space
is close to the distance between their production curves

Instantaneous U production curves. In red : P10, P50, P90
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Features computation
Langanay et al. [2021]

Static features

Mineralization volume

U average grade

U mass

. . .

Dynamic features

U tracer

cinetic tracer

. . .
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Feature space representation
Langanay et al. [2021]

Representation of the realisations in the feature space

21/36



Clustering in feature space
Langanay et al. [2021]

Results of the clustering
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Clustering in feature space
Langanay et al. [2021]

Centroids
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Results
Langanay et al. [2021]

Instantaneous U production curves of eight selected realisations. In blue: P10, P50, P90 24/36



Results
Langanay et al. [2021]
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More details
Langanay et al. [2021]

The method has been set up on block PB01, then validated on block PB02

Two sets of features have been considered: static (fast) and dynamic (slower)

PB01 tonnage PB02 tonnage

static features 3.88 t 5.81 t

dynamic features 2.33 t 2.72 t

RMSE over the P10, P50, P90

What is the impact on mine planning?
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Mine planning

Mine planning: temporal sequence of blocks start-up

mine operation management

computation of costs and investments

Constrained optimization of the planning

annual production objective

hydraulic constraints

drilling constraints

acid availability
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Mine planning

Annual production objective: 130 t

Block closing concentration: 20mg/L

Minimum waiting time between two
start-ups: 90 days

Start up sequence:
A → B → C → D
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Mine planning

8 selected realisations per block obtained by scenario reduction
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Mine planning
free start-up date
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Mine planning
Histogram of the start-up dates
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Mine planning
Setting a reference time sequence of start-up dates from the P50s
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Mine planning
Variability of the production around the median scenario

year 1 2 3 4 5 6

P 0.84 1 1 1 0.28 0

Probability of reaching the production objective
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Conclusion

Propagation of the geological uncertainty to the U production thanks to scenario
reduction

Several sets of features proposed to achieve different balances between speed of
computation and accuracy

Highlighting of the consequences on mine planning

34/36



Perspectives

Integration of other uncertainty sources (e.g. geochemical parameters)

Management of the dependencies between adjacent blocks

Industrial implementation

History matching → toward a numerical twin?
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