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Conventional open pit mining
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Uranium in situ recovery
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Roll front deposit
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Uranium in situ recovery (ISR)
57% U world production [OECD-NEA & IAEA, 2020]

Schematic view of the Katco Uranium In situ recovery (ISR) mine and the ISR process [Collet

et al., 2022]
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Uranium in situ recovery (ISR)
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Modelling U ISR (HYTEC)
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Modelling U ISR (HYTEC)

| Flow }<

Provides velocity field

| Aqueous transport %Transport

1 mobile

| reagents

) 4{ Chemical speciation ‘
modifies mobile/
immobile fractions /

/

Next time step

8/36



Objectives

@ Propagate the geological uncertainty to the production prediction at the block
scale

@ Evaluate the impact on mine planning
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Geology of the deposit

U mineralization depends on spatially
variable factors

@ geological
@ geochemical

@ hydrogeological
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@ significant diversity of mineralized U
geometry

@ more or less elongated and continuous
bodies

@ lenticular or roll shapes

10/36



Block model adjustment

@ Roll front
@ Lithotype

@ Grade

Roll Front simulation
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Available data

» Exploration drillholes

+ Mining development drillholes
o Exploitation drillhcles

O Core drillholes

[ Geological block delineation
[ Exploitation zone delineation
I} Exploitation cells
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Available data

Borehole data

@ Roll front facies : oxydized - mineralized -
reduced

@ lithotype : sand (coarse to fine) or shale

o U grade
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Geostatistical modelling
Petit et al. [2012]

@ Facies

o Vertical proportions curves
o Truncated (thresholded) Gaussian — variogram

@ Lithotype

e Vertical proportions curves

o Contact rules

o Plurigaussian models — variograms of the latent Gaussian fields
© U grade (within the mineralized facies)

o Anamorphosis (Gaussian transform)
e Variogram
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Geostatistical modelling
Petit et al. [2012]
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Uncertainty Propagation

We generate a large set of realisations of the block model

We run HYTEC
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Uncertainty Propagation
Quantification of the production uncertainty

Cumulated i Juction (tons) during exploitation (days)
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Cumulative U production curves. In red : P10, P50, P90
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Uncertainty Propagation
Quantification of the production uncertainty

Cumulated i juction (tons) during exploitation (days)

100 150 200 250
L L

Uranium production {tons)

50

Q 100 200 300 400 500 600 700

Exploitation fima (days)
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Intractable in practice = Scenario reduction
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Scenario reduction
Scheidt and Caers [2009]

Ideas

@ only a handful of production curves is sufficient to compute (approximately) the
desired quantities

@ we can discriminate between the realisations in terms of their dynamic
behaviour by comparing some relevant features
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Features computation

We build the features so that the distance between the realisations in the feature space
is close to the distance between their production curves
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Instantaneous U production curves. In red : P10, P50, P90
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Features computation

Langanay et al. [2021]

Dynamic features
o U tracer
@ cinetic tracer

Static features

@ Mineralization volume

URANIUM TRACER RECOVERY

U average grade

]
@ U mass
]

20/36



Feature space representation

Langanay et al. [2021]
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Principal Component 1

Representation of the realisations in the feature space
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Clustering in feature space
Langanay et al. [2021]

principal Component 2
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Results of the clustering
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Clustering in feature space
Langanay et al. [2021]
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Results
Langanay et al. [2021]
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Instantaneous U production curves of eight selected realisations. In blue: P10, P50, P90 24/36



Results

Langanay et al. [2021]

Daily uranium production (mg/L)

o
=]
N

150

100

50

P10, P50 et P90 of the selected realizations (blue) and of the 100 realizations (red)

400

T T T
600 800 1000

Exploitation time (days)

1200

1400

25/36



More details
Langanay et al. [2021]

The method has been set up on block PB01, then validated on block PB02

Two sets of features have been considered: static (fast) and dynamic (slower)

PBO1 tonnage

PBO02 tonnage

static features

3.88t

581t

dynamic features

233t

272 t

RMSE over the P10, P50, P90
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More details
Langanay et al. [2021]

The method has been set up on block PB01, then validated on block PB02

Two sets of features have been considered: static (fast) and dynamic (slower)

PBO1 tonnage

PBO02 tonnage

static features

3.88t

581t

dynamic features

233t

272 t

RMSE over the P10, P50, P90

What is the impact on mine planning?
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Mine planning

Mine planning: temporal sequence of blocks start-up
@ mine operation management

@ computation of costs and investments
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Mine planning

Mine planning: temporal sequence of blocks start-up
@ mine operation management

@ computation of costs and investments

Constrained optimization of the planning
@ annual production objective
@ hydraulic constraints
@ drilling constraints
°

acid availability
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Mine planning

@ Annual production objective: 130 t
@ Block closing concentration: 20mg/L

@ Minimum waiting time between two
start-ups: 90 days

@ Start up sequence:
A—-B—-C—D
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Mine planning

8 selected realisations per block obtained by scenario reduction
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Mine planning

free start-up date
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Mine planning
Histogram of the start-up dates

Histogramme des dates d'ouverture des blocs de production
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Mine planning

Setting a reference time sequence of start-up dates from the P50s
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Mine planning

Variability of the production around the median scenario
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Conclusion

@ Propagation of the geological uncertainty to the U production thanks to scenario
reduction

@ Several sets of features proposed to achieve different balances between speed of
computation and accuracy

@ Highlighting of the consequences on mine planning
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Perspectives

Integration of other uncertainty sources (e.g. geochemical parameters)

Management of the dependencies between adjacent blocks

Industrial implementation

History matching — toward a numerical twin?
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