Model Selection in Regression:

some new (?) thoughts on the old (?) problem

Felix Abramovich, Tel Aviv University

(joint work with Vadim Grinshtein, The Open University of Israel)

Anestis & His Friends Villard de Lans, 24-25 March, 2011

- 1. Brief survey on model selection in regression
- 2. MAP selection rule:
 - derivation
 - relations to other existing counterparts
 - basic properties: oracle inequality, adaptive minimaxity
- 3. Computational aspects
- 4. Special case: Normal Means problem
- 5. Main take-away messages

Gaussian linear regression model with p possible predictors and n observations:

$$\mathbf{y} = \beta_1 \mathbf{x}_1 + \dots + \beta_p \mathbf{x}_p + \epsilon = X \boldsymbol{\beta} + \epsilon, \quad \epsilon \sim N_n(0, \sigma^2 I_n)$$

- p < n classical setting
- $p \gg n \text{modern setting}$

Key sparsity assumption: only some subset of predictors is really "relevant".

Goal: to identify this "relevant subset" (the "best" model)

The meaning of the "best" model depends on the particular goal at hand :

identification of a true model

What is the "best" model?

- identification of a true model
- \blacksquare estimation of coefficients β

What is the "best" model?

- identification of a true model
- estimation of coefficients β
- estimation (prediction) of the mean vector $X\beta$

What is the "best" model?

- identification of a true model
- estimation of coefficients β
- estimation (prediction) of the mean vector $X\beta$
- prediction of future observations

$$\mathbf{y} = X\boldsymbol{\beta} + \boldsymbol{\epsilon}, \quad \boldsymbol{\epsilon} \sim N_n(0, \sigma^2 I_n)$$

For a given model M:

•
$$d_{j,M} = I\{x_j \in M\}, \quad D_M = diag(\mathbf{d}_M), \quad |M| = \sum_{j=1}^p d_{j,M} = tr(D_M)$$

• OLS, MLE : $\hat{\boldsymbol{\beta}}_M = (D_M X' X D_M)^+ D_M X' \mathbf{y}$ ($\hat{\beta}_{j,M} = 0$ if $d_{j,M} = 0$)

• Quadratic risk (MSE): $E||X\hat{\beta}_M - X\beta||^2 = \underbrace{||X\beta_M - X\beta||^2}_{bias^2} + \underbrace{\sigma^2|M|}_{variance}$

$$\mathbf{y} = X\boldsymbol{\beta} + \boldsymbol{\epsilon}, \quad \boldsymbol{\epsilon} \sim N_n(0, \sigma^2 I_n)$$

For a given model M:

•
$$d_{j,M} = I\{x_j \in M\}, \quad D_M = diag(\mathbf{d}_M), \quad |M| = \sum_{j=1}^p d_{j,M} = tr(D_M)$$

• OLS, MLE :
$$\hat{\boldsymbol{\beta}}_M = (D_M X' X D_M)^+ D_M X' \mathbf{y} \quad (\hat{\beta}_{j,M} = 0 \text{ if } d_{j,M} = 0)$$

• Quadratic risk (MSE): $E||X\hat{\beta}_M - X\beta||^2 = \underbrace{||X\beta_M - X\beta||^2}_{bias^2} + \underbrace{\sigma^2|M|}_{variance}$

The (ideally) best model (oracle) :

$$E||X\hat{\boldsymbol{\beta}}_M - X\boldsymbol{\beta}||^2 \to \min_M$$

(note that the true underlying model is not necessarily the best)

Empirical risk (least squares)

$$RSS = ||\mathbf{y} - X\hat{\boldsymbol{\beta}}_M||^2 \to \min_M ?$$

Trivial solution: a saturated model...

Empirical risk (least squares)

$$RSS = ||\mathbf{y} - X\hat{\boldsymbol{\beta}}_M||^2 \to \min_M ?$$

Trivial solution: a saturated model...

■ Idea : *penalized* least squares with a complexity penalty $||\mathbf{y} - X\hat{\boldsymbol{\beta}}_{M}||^{2} + Pen(|M|) \rightarrow \min_{M}$

Empirical risk (least squares)

$$RSS = ||\mathbf{y} - X\hat{\boldsymbol{\beta}}_M||^2 \to \min_M ?$$

Trivial solution: a saturated model...

- Idea : *penalized* least squares with a complexity penalty $||\mathbf{y} - X\hat{\boldsymbol{\beta}}_{M}||^{2} + Pen(|M|) \rightarrow \min_{M}$
- Key question: how to choose a "proper" penalty?

• linear-type penalties $Pen(k) = 2\sigma^2 \lambda k$

- $\lambda = 1$ C_p (Mallows, '73), AIC (Akaike, '73)
- $\lambda = \ln n/2$ BIC (Schwarz, '79)
- $\lambda = \ln p$ RIC (Foster & George, '94)

• linear-type penalties $Pen(k) = 2\sigma^2 \lambda k$

- $\lambda = 1$ C_p (Mallows, '73), AIC (Akaike, '73)
- $\lambda = \ln n/2$ BIC (Schwarz, '79)
- $\lambda = \ln p$ RIC (Foster & George, '94)
- $2k \ln(p/k)$ -type nonlinear penalties $Pen(k) = 2\sigma^2 \lambda k (\ln(p/k) + \zeta_{p,k})$, where $\zeta_{p,k}$ is "negligible"

(Birgé & Massart, '01, '07; Johnstone, '02; Abramovich *et al.*, '06; Bunea, Tsybakov & Wegkamp, '07; Abramovich & Grinshtein, '10)

• (orthodox) Bayesians : since this is the (only) right way to do statistics!

- (orthodox) Bayesians : since this is the (only) right way to do statistics!
- (intellectual) Bayesians : since this is the (only) right way to think statistics!

- (orthodox) Bayesians : since this is the (only) right way to do statistics!
- (intellectual) Bayesians : since this is the (only) right way to think statistics!
- (orthodox) Frequentists : really, why?!!!

- (orthodox) Bayesians : since this is the (only) right way to do statistics!
- (intellectual) Bayesians : since this is the (only) right way to think statistics!
- (orthodox) Frequentists : really, why?!!!
- (intellectual) Frequentists :

provides intuition and interpretation for various frequentist procedures (e.g., ridge regression, spline smoothing)

an efficient tool to obtain different types of estimators (e.g., shrinkage)

Bayesian approach to Model Selection

Model: $\mathbf{y} = X\boldsymbol{\beta} + \epsilon, \quad \epsilon \sim N_n(0, \sigma^2 I_n)$

 $rank(X) = r \le \min(p, n)$ and any r columns of X are linearly independent

Bayesian approach to Model Selection

Model: $\mathbf{y} = X\boldsymbol{\beta} + \epsilon, \quad \epsilon \sim N_n(0, \sigma^2 I_n)$

 $rank(X) = r \le \min(p, n)$ and any r columns of X are linearly independent

Prior:

Bayesian approach to Model Selection

Model: $\mathbf{y} = X\boldsymbol{\beta} + \epsilon, \quad \epsilon \sim N_n(0, \sigma^2 I_n)$

 $rank(X) = r \le \min(p, n)$ and any r columns of X are linearly independent

Prior:

 $\blacksquare \ P(|M|=k)=\pi(k)>0, \ k=0,...,r$

Model: $\mathbf{y} = X\boldsymbol{\beta} + \epsilon, \quad \epsilon \sim N_n(0, \sigma^2 I_n)$

 $rank(X) = r \le \min(p, n)$ and any r columns of X are linearly independent

Prior:

$$\blacksquare P(|M| = k) = \pi(k) > 0, \ k = 0, ..., r$$

• $P(M||M|=k) = {\binom{p}{k}}^{-1}, \ k = 0, ..., r-1; \quad P(M||M|=r) = 1$

Model: $\mathbf{y} = X\boldsymbol{\beta} + \epsilon, \quad \epsilon \sim N_n(0, \sigma^2 I_n)$

 $rank(X) = r \le \min(p, n)$ and any r columns of X are linearly independent

Prior:

$$\bullet \ P(|M| = k) = \pi(k) > 0, \ k = 0, ..., r$$

- $P(M||M|=k) = {\binom{p}{k}}^{-1}, \ k = 0, ..., r-1; \quad P(M||M|=r) = 1$

Model: $\mathbf{y} = X\boldsymbol{\beta} + \epsilon, \quad \epsilon \sim N_n(0, \sigma^2 I_n)$

 $rank(X) = r \le \min(p, n)$ and any r columns of X are linearly independent

Prior:

•
$$P(|M| = k) = \pi(k) > 0, \ k = 0, ..., r$$

- $P(M||M|=k) = {\binom{p}{k}}^{-1}, \ k = 0, ..., r-1; \quad P(M||M|=r) = 1$

Posterior:

$$P(M|\mathbf{y}) \propto \pi(|M|) {\binom{p}{|M|}}^{-1} (1+\gamma)^{-\frac{|M|}{2}} \exp\left\{\frac{\gamma}{\gamma+1} \frac{\mathbf{y}' X D_M (D_M X' X D_M)^+ D_M X' \mathbf{y}}{2\sigma^2}\right\}$$

(without the binomial coefficient for |M| = r)

MAP rule :

$$P(M|\mathbf{y}) \propto \pi(|M|) {\binom{p}{|M|}}^{-1} (1+\gamma)^{-\frac{|M|}{2}} \exp\left\{\frac{\gamma}{\gamma+1} \frac{\mathbf{y}' X D_M (D_M X' X D_M)^+ D_M X' \mathbf{y}}{2\sigma^2}\right\}$$

or, equivalently,

$$\underbrace{||\mathbf{y} - X\hat{\boldsymbol{\beta}}_M||^2}_{RSS} + \underbrace{2\sigma^2(1 + 1/\gamma)\ln\left\{\binom{p}{|M|}\pi^{-1}(|M|)(1 + \gamma)^{\frac{|M|}{2}}\right\}}_{complexity\ penalty\ Pen(|M|)} \to \min_M$$

MAP model selector : penalized least squares with complexity penalty

$$Pen(|M|) = \begin{cases} 2\sigma^2(1+1/\gamma)\ln\left\{\binom{p}{|M|}\pi^{-1}(|M|)(1+\gamma)^{\frac{|M|}{2}}\right\} & |M| = 0, ..., r-1\\ 2\sigma^2(1+1/\gamma)\ln\left\{\pi^{-1}(r)(1+\gamma)^{\frac{r}{2}}\right\} & |M| = r \end{cases}$$

A specific type of penalty depends on the choice of prior $\pi(|M|)$:

A specific type of penalty depends on the choice of prior $\pi(|M|)$:

1. (truncated) binomial prior $B(p,\xi)$

 $Pen(k) = 2k\sigma^2(1+1/\gamma)\ln\left(\frac{1-\xi}{\xi}\sqrt{1+\gamma}\right) \sim 2k\sigma^2\ln\left(\frac{1-\xi}{\xi}\sqrt{\gamma}\right) - \text{linear penalty}$

- C_p , AIC: $\xi \sim \sqrt{\gamma}/(e + \sqrt{\gamma})$
- **RIC**: $\xi \sim \sqrt{\gamma}/(p + \sqrt{\gamma})$
- BIC: $\xi \sim \sqrt{\gamma}/(\sqrt{n} + \sqrt{\gamma})$

A specific type of penalty depends on the choice of prior $\pi(|M|)$:

1. (truncated) binomial prior $B(p,\xi)$

 $Pen(k) = 2k\sigma^2(1+1/\gamma)\ln\left(\frac{1-\xi}{\xi}\sqrt{1+\gamma}\right) \sim 2k\sigma^2\ln\left(\frac{1-\xi}{\xi}\sqrt{\gamma}\right) - \text{linear penalty}$

- C_p , AIC: $\xi \sim \sqrt{\gamma}/(e + \sqrt{\gamma})$
- **RIC**: $\xi \sim \sqrt{\gamma}/(p + \sqrt{\gamma})$
- BIC: $\xi \sim \sqrt{\gamma}/(\sqrt{n} + \sqrt{\gamma})$
- 2. (truncated) geometric prior $\pi(k) \propto q^k$

 $Pen(k) = 2\sigma^2(1+1/\gamma)k(\ln(p/k) + \zeta(\gamma,q)) - 2k\ln(p/k)$ -type penalty

How good is MAP selector w.r.t. an oracle?

Oracle risk: $\inf_M E||X\hat{\boldsymbol{\beta}}_M - X\boldsymbol{\beta}||^2$

No estimator can attain a risk smaller than within $\ln(p)$ -factor of that of an oracle (Foster & George, '94; Donoho & Johnstone, '95)

Assumption (P). Assume that $\pi(k) \leq {p \choose k} e^{-c(\gamma)k}$, k = 0, ..., r - 1, and $\pi(r) \leq e^{-c(\gamma)r}$, where $c(\gamma) = 8(\gamma + 3/4)^2 \ (\geq 9/2)$.

- holds for any $\pi(k)$ for all $k \leq pe^{-c(\gamma)}$
- for "sparse" priors $\pi(k) \approx 0$ for large k.

Oracle inequality (cont.)

Theorem (oracle inequality). Let $\pi(k)$ satisfies Assumption (P) and, in addition, $\pi(0) \ge p^{-c}, \ \pi(k) \ge p^{-ck}, \ k = 1, ..., r$ for some c > 0. Then,

$$E||X\hat{\boldsymbol{\beta}}_{\hat{M}} - X\boldsymbol{\beta}||^{2} \leq c_{2}(\gamma)\ln p (\inf_{M} E||X\hat{\boldsymbol{\beta}}_{M} - X\boldsymbol{\beta}||^{2} + \sigma^{2})$$
oracle risk

for some $c_2(\gamma) \ge 2$.

Examples:

- binomial prior B(p, 1/p) (RIC)
- geometric prior ($2k \ln(p/k)$ -type penalty)

Sparsity assumption : true model M_0 is sparse, i.e. $|M_0| = ||\beta||_0 = p_0 \le r$

Risk bounds for sparse settings

Sparsity assumption : true model M_0 is sparse, i.e. $|M_0| = ||\beta||_0 = p_0 \le r$

Theorem (upper bound). Let the prior $\pi(\cdot)$ satisfy Assumption (P) and, in addition, $\pi(p_0) \ge (p_0/(pe))^{cp_0}$ if $p_0 < r$ and $\pi(r) \ge e^{-cr}$ if $p_0 = r$ for some $c > c(\gamma)$. Then, $\sup_{\boldsymbol{\beta}:||\boldsymbol{\beta}||_0 \le p_0} E||X\hat{\boldsymbol{\beta}}_{\hat{M}} - X\boldsymbol{\beta}||^2 \le C_1(\gamma)\sigma^2 \min(p_0(\ln(p/p_0) + 1), r)$

Risk bounds for sparse settings

Sparsity assumption : true model M_0 is sparse, i.e. $|M_0| = ||\beta||_0 = p_0 \le r$

Theorem (upper bound). Let the prior $\pi(\cdot)$ satisfy Assumption (P) and, in addition, $\pi(p_0) \ge (p_0/(pe))^{cp_0}$ if $p_0 < r$ and $\pi(r) \ge e^{-cr}$ if $p_0 = r$ for some $c > c(\gamma)$. Then, $\sup_{\boldsymbol{\beta}:||\boldsymbol{\beta}||_0 \le p_0} E||X\hat{\boldsymbol{\beta}}_{\hat{M}} - X\boldsymbol{\beta}||^2 \le C_1(\gamma)\sigma^2 \min(p_0(\ln(p/p_0) + 1), r)$

Let $\tau[k]$ be the ratio between the minimal and maximal eigenvalues of all $k \times k$ submatrices of X'X generated by any k columns of X.
Risk bounds for sparse settings

Sparsity assumption : true model M_0 is sparse, i.e. $|M_0| = ||\beta||_0 = p_0 \le r$

Theorem (upper bound). Let the prior $\pi(\cdot)$ satisfy Assumption (P) and, in addition, $\pi(p_0) \ge (p_0/(pe))^{cp_0}$ if $p_0 < r$ and $\pi(r) \ge e^{-cr}$ if $p_0 = r$ for some $c > c(\gamma)$. Then, $\sup_{\boldsymbol{\beta}:||\boldsymbol{\beta}||_0 \le p_0} E||X\hat{\boldsymbol{\beta}}_{\hat{M}} - X\boldsymbol{\beta}||^2 \le C_1(\gamma)\sigma^2 \min(p_0(\ln(p/p_0) + 1), r)$

Let $\tau[k]$ be the ratio between the minimal and maximal eigenvalues of all $k \times k$ submatrices of X'X generated by any k columns of X.

Theorem (minimax lower bound). There exists $C_2 > 0$ such that

$$\inf_{\hat{\mathbf{y}}} \sup_{\boldsymbol{\beta}:||\boldsymbol{\beta}||_{0} \leq p_{0}} E||\hat{\mathbf{y}} - X\boldsymbol{\beta}||^{2} \geq \begin{cases} C_{2}\sigma^{2}\tau[2p_{0}] \ p_{0}(\ln(p/p_{0}) + 1), & 1 \leq p_{0} \leq r/2 \\ C_{2}\sigma^{2}\tau[p_{0}] \ r, & r/2 \leq p_{0} \leq r \end{cases}$$

Raskutti *et al.* ('09), Rigollet & Tsybakov ('10) for $p_0 \le r/2$; Abramovich & Grinshtein ('10)

"Classical" asymptotics : $n \to \infty$, p is fixed or, at most, $p_n \ll n$

"Modern" asymptotics : $n \to \infty$, $p_n \to \infty$ and it might be $p_n > n$ or even $p_n \gg n$

Sequences of designs $X_{n,p_n} = X_p$, coefficients vectors β_p , priors $\pi_p(\cdot)$, etc.

$$\mathbf{y} = X_p \boldsymbol{\beta}_p + \boldsymbol{\epsilon}, \quad \boldsymbol{\epsilon} \sim N(0, \sigma^2 I_n)$$

 $rank(X_p) = r \to \infty$ and any r columns of X_p are linearly independent ($\tau_p[r] > 0$)

Two types of design

upper bound : $C_1 \sigma^2 \min(p_0(\ln(p/p_0) + 1), r)$

lower bound :

$$C_{2}\sigma^{2}\tau_{p}[2p_{0}] p_{0}(\ln(p/p_{0})+1), \quad 1 \leq p_{0} \leq r/2$$
$$C_{2}\sigma^{2}\tau_{p}[p_{0}] r, \qquad r/2 \leq p_{0} \leq r$$

Two types of design

upper bound : $C_1 \sigma^2 \min(p_0(\ln(p/p_0) + 1), r)$

$$\begin{cases} C_2 \sigma^2 \tau_p[2p_0] \ p_0(\ln(p/p_0) + 1), & 1 \le p_0 \le r/2 \\ C_2 \sigma^2 \tau_p[p_0] \ r, & r/2 \le p_0 \le r \end{cases}$$

lower bound :

Remark : lower bound depends on X_p only through $\tau_p[p_0]$ and $\tau_p[2p_0]$

Two types of design

upper bound : $C_1 \sigma^2 \min(p_0(\ln(p/p_0) + 1), r)$

$$\begin{cases} C_2 \sigma^2 \tau_p[2p_0] \ p_0(\ln(p/p_0) + 1), & 1 \le p_0 \le r/2 \\ C_2 \sigma^2 \tau_p[p_0] \ r, & r/2 \le p_0 \le r \end{cases}$$

lower bound :

Remark : lower bound depends on X_p only through $\tau_p[p_0]$ and $\tau_p[2p_0]$

- $\tau_p[r] \not\rightarrow 0$ nearly-orthogonal design
- $\tau_p[r] \rightarrow 0$ multicollinear design

• p = O(r) and, therefore, p = O(n)

- p = O(r) and, therefore, p = O(n)
- The minimax risk over $\mathcal{M}_{p_0} = \{M : |M| \le p_0\}$ is of order $p_0(\ln(p/p_0) + 1)$

• p = O(r) and, therefore, p = O(n)

• The minimax risk over $\mathcal{M}_{p_0} = \{M : |M| \le p_0\}$ is of order $p_0(\ln(p/p_0) + 1)$

Let

1. $\pi_p(k) \leq {p \choose k} e^{-c(\gamma)k}$, k = 0, ..., r - 1 and $\pi_p(r) \leq e^{-c(\gamma)r}$ (Assumption (P)) 2. $\pi_p(k) \geq (k/(pe))^{c_1k}$, k = 1, ..., r - 1 and $\pi_p(r) \geq e^{-c_2r}$, $c_1, c_2 > c(\gamma)$

Then, the MAP model selector is asymptotically minimax *simultnaneously* over all \mathcal{M}_{p_0} , $1 \le p_0 \le r$

• p = O(r) and, therefore, p = O(n)

• The minimax risk over $\mathcal{M}_{p_0} = \{M : |M| \le p_0\}$ is of order $p_0(\ln(p/p_0) + 1)$

Let

1. $\pi_p(k) \leq {p \choose k} e^{-c(\gamma)k}$, k = 0, ..., r - 1 and $\pi_p(r) \leq e^{-c(\gamma)r}$ (Assumption (P)) 2. $\pi_p(k) \geq (k/(pe))^{c_1k}$, k = 1, ..., r - 1 and $\pi_p(r) \geq e^{-c_2r}$, $c_1, c_2 > c(\gamma)$

Then, the MAP model selector is asymptotically minimax *simultnaneously* over all \mathcal{M}_{p_0} , $1 \le p_0 \le r$

■ $||X_p\hat{\beta}_p - X_p\beta_p|| \approx ||\hat{\beta}_p - \beta_p|| - all the results remain true for estimating coefficients <math>\beta_p$ (not true for multicollinear design!)

Examples of priors

• geometric prior $(2k \ln(p/k))$ -type penalty)

- geometric prior $(2k \ln(p/k))$ -type penalty)
- no binomial prior $B(p,\xi)$ (hence, no linear penalty) can satisfy the conditions for both sparse ($p_0 \ll p$) and dense ($p_0 \sim p$) cases :

RIC $(\xi \sim 1/p)$: $O(\sigma^2 p_0 \ln p) \sim O(\sigma^2 p_0 (\ln(p/p_0) + 1))$ for sparse cases

AIC ($\xi \sim const$): $O(\sigma^2 p) \sim O(\sigma^2 p_0(\ln(p/p_0) + 1))$ for dense cases

• geometric prior $(2k \ln(p/k))$ -type penalty)

■ no binomial prior $B(p,\xi)$ (hence, no linear penalty) can satisfy the conditions for both sparse ($p_0 \ll p$) and dense ($p_0 \sim p$) cases :

RIC $(\xi \sim 1/p)$: $O(\sigma^2 p_0 \ln p) \sim O(\sigma^2 p_0 (\ln(p/p_0) + 1))$ for sparse cases

AIC ($\xi \sim const$): $O(\sigma^2 p) \sim O(\sigma^2 p_0(\ln(p/p_0) + 1))$ for dense cases

Remark: Lasso and Dantzig selectors – similar to RIC under stronger nearly-orthogonality restrictions (Bickel, Ritov & Tsybakov '09)

 \blacksquare Necessarily appears for $p \gg n$ setup

- \blacksquare Necessarily appears for $p \gg n$ setup
- There is a gap between upper and lower bounds

- \blacksquare Necessarily appears for $p \gg n$ setup
- There is a gap between upper and lower bounds
- Idea : exploit strong correlations between predictors to reduce the model's size (decrease the variance) without paying much extra price in bias "blesssing of multicollinearity" (?)

- \blacksquare Necessarily appears for $p \gg n$ setup
- There is a gap between upper and lower bounds
- Idea : exploit strong correlations between predictors to reduce the model's size (decrease the variance) without paying much extra price in bias – "blesssing of multicollinearity" (?)
- MAP model selector indeed remains asymptotically minimax under certain additional constraints on X_p and $||\beta_p||_{\infty}$ (see Abramovich & Grinshtein, '10 for technical detail)

- 1. Estimation of prior parameters and σ^2
 - fully Bayesian approach priors on parameters
 - empirical Bayes EM algorithm or its modifications (George & Foster, '00)

- 1. Estimation of prior parameters and σ^2
 - fully Bayesian approach priors on parameters
 - empirical Bayes EM algorithm or its modifications (George & Foster, '00)

2. MAP solution

$$RSS(M) + Pen(|M|) \to \min_{M}$$

combinatorical search (NP problem)!

$$RSS(M) + Pen(|M|) = ||\mathbf{y} - X\hat{\boldsymbol{\beta}}_M||^2 + Pen(||\hat{\boldsymbol{\beta}}_M||_0) \to \min_M$$

$$RSS(M) + Pen(|M|) = ||\mathbf{y} - X\hat{\boldsymbol{\beta}}_M||^2 + Pen(||\hat{\boldsymbol{\beta}}_M||_0) \to \min_M$$

Greedy algorithms (forward selection, matching pursuit) – approximate the global solution by a stepwise sequence of local ones

$$RSS(M) + Pen(|M|) = ||\mathbf{y} - X\hat{\boldsymbol{\beta}}_M||^2 + Pen(||\hat{\boldsymbol{\beta}}_M||_0) \to \min_M$$

- Greedy algorithms (forward selection, matching pursuit) approximate the global solution by a stepwise sequence of local ones
- Convex relaxation methods (for linear penalties Lasso, Dantzig selector) replace the original combinatorial problem by a related convex program: e.g., Lasso replaces $||\hat{\beta}_M||_0$ in the linear penalty by $||\hat{\beta}_M||_1$

$$RSS(M) + Pen(|M|) = ||\mathbf{y} - X\hat{\boldsymbol{\beta}}_M||^2 + Pen(||\hat{\boldsymbol{\beta}}_M||_0) \to \min_M$$

- Greedy algorithms (forward selection, matching pursuit) approximate the global solution by a stepwise sequence of local ones
- Convex relaxation methods (for linear penalties Lasso, Dantzig selector) replace the original combinatorial problem by a related convex program: e.g., Lasso replaces $||\hat{\beta}_M||_0$ in the linear penalty by $||\hat{\beta}_M||_1$
- Stochastic search variable selection (SSVS) exploits Bayesian nature of the selector by generating a sequence of models from the posterior distribution P(M|y) (George & McCullogh, '93, '97)

General idea : generate a sequence of models from the posterior distribution $P(M|\mathbf{y})$ or, equivalently, $P(\mathbf{d}_M|\mathbf{y})$

Key point : we need just the posterior mode, no need to generate the entire distribution of size 2^p . Models with highest posterior probabilities will appear more frequently and can be identified even for a relatively small ($\ll 2^p$) sample size

Gibbs sampler : generate a sequence of models (indicator vectors) $\mathbf{d}_1, ..., \mathbf{d}_M$ componentwise by sampling consecutively from the conditional distributions of $d_j | (\mathbf{d}_{(-j)}, \mathbf{y}) \sim B(1, P(d_j = 1 | (\mathbf{d}_{(-j)}, \mathbf{y})), \ j = 1, ..., p$

$$y_i = \mu_i + \epsilon_i, \quad i = 1, ..., n, \quad \epsilon \stackrel{i.i.d.}{\sim} N(0, \sigma^2) \quad (X = I_n)$$

Stein phenomenon: $\hat{\mu}_i = y_i$ ("naive" MLE estimate) is inadmissible!

James-Stein estimate:
$$\hat{\mu}_i^{JS} = \left(1 - \frac{n-2}{\sum_{j=1}^n y_j^2}\right)_+ y_i$$

Key extra assumption: μ is "sparse" (to be quantified later).

Optimal strategy – thresholding (Donoho and Johnstone) : *keep* large y_i – they are "signal"; *kill* "small" y_i – they are "noise".

$$\hat{\mu}_i = \begin{cases} y_i, & |y_i| \ge \lambda \\ 0, & |y_i| < \lambda \end{cases}$$

(e.g., universal threshold $\lambda_U = \sigma \sqrt{2 \ln n}$ of Donoho and Johnstone)

$$\sum_{i=1}^{n} (y_i - \hat{\mu}_i)^2 + 2\sigma^2 (1 + 1/\gamma) \ln\left\{\binom{n}{k} \pi_n^{-1}(k)(1 + \gamma)^{\frac{k}{2}}\right\} \to \min_{\hat{\mu}, k} \quad (k = ||\hat{\mu}||_0)$$

which is equivalent to

.

1.
$$\sum_{i=k+1}^{n} y_{(i)}^2 + 2\sigma^2 (1+1/\gamma) \ln\left\{\binom{n}{k} \pi_n^{-1}(k)(1+\gamma)^{\frac{k}{2}}\right\} \to \min_k$$

2.
$$\hat{\mu}_i^* = \begin{cases} y_i, & |y_i| \ge |y|_{(\hat{k})} \\ 0, & \text{otherwise} \end{cases}$$
 - data-driven thresholding

Computationally simple: no need in combinatorical search

■ l_0 -balls. Number/proportion of non-zero components: $||\mu||_0 = \#\{i : \mu_i \neq 0, i = 1, ..., n\}.$

 $l_0[\eta] = \{\mu \in \mathbb{R}^n : ||\mu||_0 \le \eta n\}$

■ l_0 -balls. Number/proportion of non-zero components: $||\mu||_0 = \#\{i : \mu_i \neq 0, i = 1, ..., n\}.$

 $l_0[\eta] = \{\mu \in \mathbb{R}^n : ||\mu||_0 \le \eta n\}$

• weak l_p -balls. Proportion of "large" components:

$$m_p[\eta] = \{\mu \in \mathbb{R}^n : |\mu|_{(i)} \le \sigma \eta (n/i)^{1/p}, \ i = 1, ..., n\}$$
$$\frac{\#\{i : (\mu_i/\sigma) \ge \Delta\}}{n} \le \left(\frac{\eta}{\Delta}\right)^p$$

■ l_0 -balls. Number/proportion of non-zero components: $||\mu||_0 = \#\{i : \mu_i \neq 0, i = 1, ..., n\}.$

 $l_0[\eta] = \{\mu \in \mathbb{R}^n : ||\mu||_0 \le \eta n\}$

• weak l_p -balls. Proportion of "large" components:

$$m_p[\eta] = \{ \mu \in \mathbb{R}^n : |\mu|_{(i)} \le \sigma \eta (n/i)^{1/p}, \ i = 1, ..., n \}$$
$$\frac{\#\{i : (\mu_i/\sigma) \ge \Delta\}}{n} \le \left(\frac{\eta}{\Delta}\right)^p$$

• (strong) l_p -balls. l_p -norm: $l_p[\eta] = \{\mu \in \mathbb{R}^n : \frac{1}{n} \sum_{i=1}^n |\mu_i|^p \le (\sigma \eta)^p\}$

Adaptive optimality of MAP estimator

Sparsity Zones:

1. $\eta \not\rightarrow 0$ - dense case 2. $\eta \rightarrow 0$ - sparse case 3. $\eta < n^{-1/\min(2,p)}\sqrt{\log n}$ (p > 0) - super-sparse case

Adaptive optimality of MAP estimator

Sparsity Zones:

1. $\eta \not\rightarrow 0$ - dense case 2. $\eta \rightarrow 0$ - sparse case 3. $\eta < n^{-1/\min(2,p)}\sqrt{\log n}$ (p > 0) - super-sparse case

Theorem. Assume Assumption (P) and that 1. $\pi_n(0) \ge n^{-c_1}$ for some $c_1 > 0$ 2. $\pi_n(k) \ge (k/n)^{c_2 k}$ for all $k = 1, ..., e^{-c(\gamma)}n$ for some $c_2 > 0$ 3. $\pi_n(n) \sim e^{-c(\gamma)n}$

Then, the MAP estimator $\hat{\mu}^*$ is asymptotically minimax simultaneously for all dense and sparse (though not super-sparse) balls, that is, for all p and $\eta > n^{-1/\min(p,2)}\sqrt{\log n}$.

AM1 MAP model selector implies a wide class of penalized least squares estimators with various complexity penalties

- AM1 MAP model selector implies a wide class of penalized least squares estimators with various complexity penalties
- AM2 Neither linear complexity penalties (e.g., AIC, RIC, BIC), nor Lasso and Dantzig estimators can "kill two birds with one stone" (sparse and dense cases) – bad news
 - There exists the class of priors and associated nonlinear penalties (e.g., $2k \ln(p/k)$ -type) that do yield such a wide adaptivity range good news

- AM1 MAP model selector implies a wide class of penalized least squares estimators with various complexity penalties
- AM2 Neither linear complexity penalties (e.g., AIC, RIC, BIC), nor Lasso and Dantzig estimators can "kill two birds with one stone" (sparse and dense cases) – bad news
 - There exists the class of priors and associated nonlinear penalties (e.g., $2k \ln(p/k)$ -type) that do yield such a wide adaptivity range good news
- AM3 Multicollinearity "curse" for model identification or coefficients estimation but may be "blessing" for mean vector estimation

- AM1 MAP model selector implies a wide class of penalized least squares estimators with various complexity penalties
- AM2 Neither linear complexity penalties (e.g., AIC, RIC, BIC), nor Lasso and Dantzig estimators can "kill two birds with one stone" (sparse and dense cases) – bad news
 - There exists the class of priors and associated nonlinear penalties (e.g., $2k \ln(p/k)$ -type) that do yield such a wide adaptivity range good news
- AM3 Multicollinearity "curse" for model identification or coefficients estimation but may be "blessing" for mean vector estimation
- AM4 SSVS can be an alternative computational tool for model selection procedures (further study is needed)

Thank You!