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Outline

1. Brief survey on model selection in regression

2. MAP selection rule:

■ derivation

■ relations to other existing counterparts

■ basic properties: oracle inequality, adaptive minimaxity

3. Computational aspects

4. Special case: Normal Means problem

5. Main take-away messages
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Gaussian Linear Regression

Gaussian linear regression model with p possible predictors and n observations:

y = β1x1 + ... + βpxp + ǫ = Xβ + ǫ, ǫ ∼ Nn(0, σ2In)

■ p < n – classical setting

■ p ≫ n – modern setting

Key sparsity assumption: only some subset of predictors is really “relevant”.

Goal: to identify this “relevant subset” (the “best” model)



- p. 4/29

What is the “best” model?

The meaning of the “best” model depends on the particular goal at hand :
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What is the “best” model?

The meaning of the “best” model depends on the particular goal at hand :

■ identification of a true model

■ estimation of coefficients β

■ estimation (prediction) of the mean vector Xβ

■ prediction of future observations
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y = Xβ + ǫ, ǫ ∼ Nn(0, σ2In)

For a given model M :

◆ dj,M = I{xj ∈ M}, DM = diag(dM ), |M | =
∑p

j=1 dj,M = tr(DM )

◆ OLS, MLE : β̂M = (DMX ′XDM)+DMX ′y (β̂j,M = 0 if dj,M = 0)

◆ Quadratic risk (MSE): E||Xβ̂M − Xβ||2 = ||XβM − Xβ||2
︸ ︷︷ ︸

bias2

+ σ2|M |
︸ ︷︷ ︸

variance
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y = Xβ + ǫ, ǫ ∼ Nn(0, σ2In)

For a given model M :

◆ dj,M = I{xj ∈ M}, DM = diag(dM ), |M | =
∑p

j=1 dj,M = tr(DM )

◆ OLS, MLE : β̂M = (DMX ′XDM)+DMX ′y (β̂j,M = 0 if dj,M = 0)

◆ Quadratic risk (MSE): E||Xβ̂M − Xβ||2 = ||XβM − Xβ||2
︸ ︷︷ ︸

bias2

+ σ2|M |
︸ ︷︷ ︸

variance

The (ideally) best model (oracle) :

E||Xβ̂M − Xβ||2 → min
M

(note that the true underlying model is not necessarily the best)
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■ Empirical risk (least squares)

RSS = ||y − Xβ̂M ||2 → min
M

?

Trivial solution: a saturated model...
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■ Empirical risk (least squares)

RSS = ||y − Xβ̂M ||2 → min
M

?

Trivial solution: a saturated model...

■ Idea : penalized least squares with a complexity penalty

||y − Xβ̂M ||2 + Pen(|M |) → min
M

■ Key question: how to choose a “proper” penalty?
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Complexity Penalties

■ linear-type penalties Pen(k) = 2σ2λk

λ = 1 Cp (Mallows, ’73), AIC (Akaike, ’73)

λ = lnn/2 BIC (Schwarz, ’79)

λ = ln p RIC (Foster & George, ’94)
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■ linear-type penalties Pen(k) = 2σ2λk

λ = 1 Cp (Mallows, ’73), AIC (Akaike, ’73)

λ = lnn/2 BIC (Schwarz, ’79)

λ = ln p RIC (Foster & George, ’94)

■ 2k ln(p/k)-type nonlinear penalties Pen(k) = 2σ2λk(ln(p/k) + ζp,k),
where ζp,k is “negligible”

(Birgé & Massart, ’01, ’07; Johnstone, ’02; Abramovich et al., ’06; Bunea,
Tsybakov & Wegkamp, ’07; Abramovich & Grinshtein, ’10)
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Complexity penalties

k

P
e

n
(k

)
AIC
RIC
2k (ln(p/k)+1)
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Bayesian approach

Why “to Bayes”?
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Bayesian approach

Why “to Bayes”?

■ (orthodox) Bayesians : since this is the (only) right way to do statistics!

■ (intellectual) Bayesians : since this is the (only) right way to think statistics!

■ (orthodox) Frequentists : really, why?!!!

■ (intellectual) Frequentists :

provides intuition and interpretation for various frequentist procedures
(e.g., ridge regression, spline smoothing)

an efficient tool to obtain different types of estimators (e.g., shrinkage)
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Bayesian approach to Model Selection

Model: y = Xβ + ǫ, ǫ ∼ Nn(0, σ2In)

rank(X) = r ≤ min(p, n) and any r columns of X are linearly independent
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Bayesian approach to Model Selection

Model: y = Xβ + ǫ, ǫ ∼ Nn(0, σ2In)

rank(X) = r ≤ min(p, n) and any r columns of X are linearly independent

Prior:

■ P (|M | = k) = π(k) > 0, k = 0, ..., r

■ P (M
∣
∣|M | = k) =

(
p
k

)−1
, k = 0, ..., r − 1; P (M

∣
∣|M | = r) = 1

■ β|M ∼ Np(0, γσ2(DMX ′XDM)+) (g-prior – Zellner, ’86)

Posterior:

P (M |y) ∝ π(|M |)

(

p

|M |

)
−1

(1+γ)−
|M|
2 exp

{
γ

γ + 1

y
′XDM (DMX ′XDM )+DMX ′

y

2σ2

}

(without the binomial coefficient for |M | = r)
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MAP rule

MAP rule :

P (M |y) ∝ π(|M |)
(

p

|M |

)−1

(1+γ)−
|M|
2 exp

{
γ

γ + 1

y′XDM(DMX ′XDM )+DMX ′y

2σ2

}

or, equivalently,

||y − Xβ̂M ||2
︸ ︷︷ ︸

RSS

+ 2σ2(1 + 1/γ) ln

{(
p

|M |

)

π−1(|M |)(1 + γ)
|M|
2

}

︸ ︷︷ ︸

complexity penalty Pen(|M |)

→ min
M

MAP model selector : penalized least squares with complexity penalty

Pen(|M |) =







2σ2(1 + 1/γ) ln
{(

p
|M |

)
π−1(|M |)(1 + γ)

|M|
2

}

|M | = 0, ..., r − 1

2σ2(1 + 1/γ) ln
{
π−1(r)(1 + γ)

r
2

}
|M | = r
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Examples of priors

A specific type of penalty depends on the choice of prior π(|M |) :
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Examples of priors

A specific type of penalty depends on the choice of prior π(|M |) :

1. (truncated) binomial prior B(p, ξ)

Pen(k) = 2kσ2(1 + 1/γ) ln
(

1−ξ
ξ

√
1 + γ

)

∼ 2kσ2 ln
(

1−ξ
ξ

√
γ
)

– linear penalty

◆ Cp, AIC: ξ ∼ √
γ/(e +

√
γ)

◆ RIC: ξ ∼ √
γ/(p +

√
γ)

◆ BIC: ξ ∼ √
γ/(

√
n +

√
γ)
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Examples of priors

A specific type of penalty depends on the choice of prior π(|M |) :

1. (truncated) binomial prior B(p, ξ)

Pen(k) = 2kσ2(1 + 1/γ) ln
(

1−ξ
ξ

√
1 + γ

)

∼ 2kσ2 ln
(

1−ξ
ξ

√
γ
)

– linear penalty

◆ Cp, AIC: ξ ∼ √
γ/(e +

√
γ)

◆ RIC: ξ ∼ √
γ/(p +

√
γ)

◆ BIC: ξ ∼ √
γ/(

√
n +

√
γ)

2. (truncated) geometric prior π(k) ∝ qk

Pen(k) = 2σ2(1 + 1/γ)k(ln(p/k) + ζ(γ, q)) – 2k ln(p/k)-type penalty
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Oracle inequality

How good is MAP selector w.r.t. an oracle?

Oracle risk: infM E||Xβ̂M − Xβ||2

No estimator can attain a risk smaller than within ln(p)-factor of that of an oracle
(Foster & George, ’94; Donoho & Johnstone, ’95)

Assumption (P). Assume that π(k) ≤
(

p
k

)
e−c(γ)k, k = 0, ..., r − 1, and π(r) ≤ e−c(γ)r ,

where c(γ) = 8(γ + 3/4)2 (≥ 9/2).

■ holds for any π(k) for all k ≤ pe−c(γ)

■ for “sparse” priors π(k) ≈ 0 for large k.
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Oracle inequality (cont.)

Theorem (oracle inequality). Let π(k) satisfies Assumption (P) and, in addition,

π(0) ≥ p−c, π(k) ≥ p−ck, k = 1, ..., r for some c > 0. Then,

E||Xβ̂M̂ − Xβ||2 ≤ c2(γ) ln p (inf
M

E||Xβ̂M − Xβ||2
︸ ︷︷ ︸

oracle risk

+σ2)

for some c2(γ) ≥ 2.

Examples:

■ binomial prior B(p, 1/p) (RIC)

■ geometric prior (2k ln(p/k)-type penalty)
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Risk bounds for sparse settings

Sparsity assumption : true model M0 is sparse, i.e. |M0| = ||β||0 = p0 ≤ r
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Sparsity assumption : true model M0 is sparse, i.e. |M0| = ||β||0 = p0 ≤ r
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sup
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E||Xβ̂M̂ − Xβ||2 ≤ C1(γ)σ2 min(p0(ln(p/p0) + 1), r)
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Risk bounds for sparse settings

Sparsity assumption : true model M0 is sparse, i.e. |M0| = ||β||0 = p0 ≤ r

Theorem (upper bound). Let the prior π(·) satisfy Assumption (P) and, in addition,

π(p0) ≥ (p0/(pe))cp0 if p0 < r and π(r) ≥ e−cr if p0 = r for some c > c(γ). Then,

sup
β:||β||0≤p0

E||Xβ̂M̂ − Xβ||2 ≤ C1(γ)σ2 min(p0(ln(p/p0) + 1), r)

Let τ [k] be the ratio between the minimal and maximal eigenvalues of all
k × k submatrices of X ′X generated by any k columns of X .

Theorem (minimax lower bound). There exists C2 > 0 such that

inf
ŷ

sup
β:||β||0≤p0

E||ŷ − Xβ||2 ≥
{

C2σ
2τ [2p0] p0(ln(p/p0) + 1), 1 ≤ p0 ≤ r/2

C2σ
2τ [p0] r, r/2 ≤ p0 ≤ r

Raskutti et al. (’09), Rigollet & Tsybakov (’10) for p0 ≤ r/2; Abramovich & Grinshtein (’10)
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Asymptotic setup

“Classical” asymptotics : n → ∞, p is fixed or, at most, pn ≪ n

“Modern” asymptotics : n → ∞, pn → ∞ and it might be pn > n or even pn ≫ n

Sequences of designs Xn,pn
= Xp, coefficients vectors βp, priors πp(·), etc.

y = Xpβp + ǫ, ǫ ∼ N(0, σ2In)

rank(Xp) = r → ∞ and any r columns of Xp are linearly independent (τp[r] > 0)
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Two types of design

upper bound : C1σ
2 min(p0(ln(p/p0) + 1), r)

lower bound :







C2σ
2τp[2p0] p0(ln(p/p0) + 1), 1 ≤ p0 ≤ r/2

C2σ
2τp[p0] r, r/2 ≤ p0 ≤ r
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Two types of design

upper bound : C1σ
2 min(p0(ln(p/p0) + 1), r)

lower bound :







C2σ
2τp[2p0] p0(ln(p/p0) + 1), 1 ≤ p0 ≤ r/2

C2σ
2τp[p0] r, r/2 ≤ p0 ≤ r

Remark : lower bound depends on Xp only through τp[p0] and τp[2p0]

◆ τp[r] 6→ 0 – nearly-orthogonal design

◆ τp[r] → 0 – multicollinear design
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Nearly-orthogonal design

■ p = O(r) and, therefore, p = O(n)
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Nearly-orthogonal design

■ p = O(r) and, therefore, p = O(n)

■ The minimax risk over Mp0
= {M : |M | ≤ p0} is of order p0(ln(p/p0) + 1)

■ Let

1. πp(k) ≤
(

p
k

)
e−c(γ)k, k = 0, ..., r − 1 and πp(r) ≤ e−c(γ)r (Assumption (P))

2. πp(k) ≥ (k/(pe))c1k, k = 1, ..., r − 1 and πp(r) ≥ e−c2r, c1, c2 > c(γ)

Then, the MAP model selector is asymptotically minimax simultnaneously
over all Mp0

, 1 ≤ p0 ≤ r

■ ||Xpβ̂p − Xpβp|| ≍ ||β̂p − βp|| – all the results remain true for estimating

coefficients βp (not true for multicollinear design!)
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Examples of priors

■ geometric prior (2k ln(p/k)-type penalty)
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Examples of priors

■ geometric prior (2k ln(p/k)-type penalty)

■ no binomial prior B(p, ξ) (hence, no linear penalty) can satisfy the conditions
for both sparse (p0 ≪ p) and dense (p0 ∼ p) cases :

RIC (ξ ∼ 1/p): O(σ2p0 ln p) ∼ O(σ2p0(ln(p/p0) + 1)) for sparse cases

AIC (ξ ∼ const): O(σ2p) ∼ O(σ2p0(ln(p/p0) + 1)) for dense cases
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Examples of priors

■ geometric prior (2k ln(p/k)-type penalty)

■ no binomial prior B(p, ξ) (hence, no linear penalty) can satisfy the conditions
for both sparse (p0 ≪ p) and dense (p0 ∼ p) cases :

RIC (ξ ∼ 1/p): O(σ2p0 ln p) ∼ O(σ2p0(ln(p/p0) + 1)) for sparse cases

AIC (ξ ∼ const): O(σ2p) ∼ O(σ2p0(ln(p/p0) + 1)) for dense cases

■ Remark: Lasso and Dantzig selectors – similar to RIC under stronger
nearly-orthogonality restrictions (Bickel, Ritov & Tsybakov ’09)
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Multicollinear design

■ Necessarily appears for p ≫ n setup
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■ Idea : exploit strong correlations between predictors to reduce the model’s
size (decrease the variance) without paying much extra price in bias –
“blesssing of multicollinearity” (?)
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Multicollinear design

■ Necessarily appears for p ≫ n setup

■ There is a gap between upper and lower bounds

■ Idea : exploit strong correlations between predictors to reduce the model’s
size (decrease the variance) without paying much extra price in bias –
“blesssing of multicollinearity” (?)

■ MAP model selector indeed remains asymptotically minimax under certain
additional constraints on Xp and ||βp||∞ (see Abramovich & Grinshtein, ’10

for technical detail)
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Welcome to the real world...

1. Estimation of prior parameters and σ2

◆ fully Bayesian approach – priors on parameters

◆ empirical Bayes – EM algorithm or its modifications (George & Foster, ’00)
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Welcome to the real world...

1. Estimation of prior parameters and σ2

◆ fully Bayesian approach – priors on parameters

◆ empirical Bayes – EM algorithm or its modifications (George & Foster, ’00)

2. MAP solution

RSS(M) + Pen(|M |) → min
M

combinatorical search (NP problem)!
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Computational aspects

RSS(M) + Pen(|M |) = ||y − Xβ̂M ||2 + Pen(||β̂M ||0) → min
M

■ Greedy algorithms (forward selection, matching pursuit) – approximate the
global solution by a stepwise sequence of local ones

■ Convex relaxation methods (for linear penalties – Lasso, Dantzig selector) –
replace the original combinatorial problem by a related convex

program: e.g., Lasso replaces ||β̂M ||0 in the linear penalty by ||β̂M ||1

■ Stochastic search variable selection (SSVS) – exploits Bayesian nature of
the selector by generating a sequence of models from the posterior
distribution P (M |y) (George & McCullogh, ’93, ’97)
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Stochastic search variable selection

General idea : generate a sequence of models from the posterior distribution
P (M |y) or, equivalently, P (dM |y)

Key point : we need just the posterior mode, no need to generate the entire
distribution of size 2p. Models with highest posterior probabilities will appear
more frequently and can be identified even for a relatively small (≪ 2p) sample
size

Gibbs sampler : generate a sequence of models (indicator vectors) d1, ...,dM

componentwise by sampling consecutively from the conditional distributions of
dj |(d(−j),y) ∼ B(1, P (dj = 1|(d(−j),y)), j = 1, ..., p
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Special case: Normal Means problem

yi = µi + ǫi, i = 1, ..., n, ǫ
i.i.d.∼ N(0, σ2) (X = In)

Stein phenomenon: µ̂i = yi (“naive” MLE estimate) is inadmissible!

James-Stein estimate: µ̂JS
i =

(

1 − n−2
∑

n
j=1

y2

j

)

+
yi

Key extra assumption: µ is “sparse” (to be quantified later).

Optimal strategy – thresholding (Donoho and Johnstone) : keep large yi – they
are “signal”; kill “small” yi – they are “noise”.

µ̂i =

{

yi, |yi| ≥ λ

0, |yi| < λ

(e.g., universal threshold λU = σ
√

2 lnn of Donoho and Johnstone)
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MAP estimation

n∑

i=1

(yi − µ̂i)
2 + 2σ2(1 + 1/γ) ln

{(
n

k

)

π−1
n (k)(1 + γ)

k
2

}

→ min
µ̂,k

(k = ||µ̂||0)

which is equivalent to

1.
∑n

i=k+1 y2
(i) + 2σ2(1 + 1/γ) ln

{(
n
k

)
π−1

n (k)(1 + γ)
k
2

}

→ mink

2. µ̂∗
i =

{

yi, |yi| ≥ |y|(k̂)

0, otherwise
– data-driven thresholding

Computationally simple: no need in combinatorical search
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Sparsity

Assume that the unknown µ is “sparse”. How to measure sparsity?



- p. 26/29

Sparsity

Assume that the unknown µ is “sparse”. How to measure sparsity?

■ l0-balls. Number/proportion of non-zero components:
||µ||0 = #{i : µi 6= 0, i = 1, ..., n}.

l0[η] = {µ ∈ R
n : ||µ||0 ≤ ηn}



- p. 26/29

Sparsity

Assume that the unknown µ is “sparse”. How to measure sparsity?

■ l0-balls. Number/proportion of non-zero components:
||µ||0 = #{i : µi 6= 0, i = 1, ..., n}.

l0[η] = {µ ∈ R
n : ||µ||0 ≤ ηn}
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Sparsity

Assume that the unknown µ is “sparse”. How to measure sparsity?

■ l0-balls. Number/proportion of non-zero components:
||µ||0 = #{i : µi 6= 0, i = 1, ..., n}.

l0[η] = {µ ∈ R
n : ||µ||0 ≤ ηn}

■ weak lp-balls. Proportion of “large” components:

mp[η] = {µ ∈ R
n : |µ|(i) ≤ ση(n/i)1/p, i = 1, ..., n}

#{i : (µi/σ) ≥ ∆}
n

≤
( η

∆

)p

■ (strong) lp-balls. lp-norm: lp[η] = {µ ∈ R
n : 1

n

∑n
i=1 |µi|p ≤ (ση)p}
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Adaptive optimality of MAP estimator

Sparsity Zones:

1. η 6→ 0 − dense case

2. η → 0 − sparse case

3. η < n−1/ min (2,p)
√

log n (p > 0) − super-sparse case
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Adaptive optimality of MAP estimator

Sparsity Zones:

1. η 6→ 0 − dense case

2. η → 0 − sparse case

3. η < n−1/ min (2,p)
√

log n (p > 0) − super-sparse case

Theorem. Assume Assumption (P) and that

1. πn(0) ≥ n−c1 for some c1 > 0

2. πn(k) ≥ (k/n)c2k for all k = 1, ..., e−c(γ)n for some c2 > 0

3. πn(n) ∼ e−c(γ)n

Then, the MAP estimator µ̂∗ is asymptotically minimax simultaneously for all dense and

sparse (though not super-sparse) balls, that is, for all p and η > n−1/ min(p,2)
√

log n.
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Main Take-Away Messages

AM1 MAP model selector implies a wide class of penalized least squares
estimators with various complexity penalties
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AM1 MAP model selector implies a wide class of penalized least squares
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AM2 ◆ Neither linear complexity penalties (e.g., AIC, RIC, BIC), nor Lasso and
Dantzig estimators can “kill two birds with one stone” (sparse and dense
cases) – bad news

◆ There exists the class of priors and associated nonlinear penalties (e.g.,
2k ln(p/k)-type) that do yield such a wide adaptivity range – good news
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Main Take-Away Messages

AM1 MAP model selector implies a wide class of penalized least squares
estimators with various complexity penalties

AM2 ◆ Neither linear complexity penalties (e.g., AIC, RIC, BIC), nor Lasso and
Dantzig estimators can “kill two birds with one stone” (sparse and dense
cases) – bad news

◆ There exists the class of priors and associated nonlinear penalties (e.g.,
2k ln(p/k)-type) that do yield such a wide adaptivity range – good news

AM3 Multicollinearity – “curse” for model identification or coefficients estimation
but may be “blessing” for mean vector estimation

AM4 SSVS can be an alternative computational tool for model selection
procedures (further study is needed)
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Thank You!
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