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Introduction

Gaussian process models

Let f: D c R — R be a function which value is known on a
DoE X = (x',...,x").

The kriging model relies on the choice of the kernel K
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Introduction

Gaussian process models

When the dimension of the input space increases, the kriging
model really becomes a black-box.

m(x) = k(x)TK'Y

Major drawbacks for usual kernels :

@ The models cannot easily be interpreted.
o Without computation, what is the effect of x' on m(x) ?
@ The importance of the variables x’ is supposed to be
similar.
o What if the variance is not the same in each direction ?
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Introduction

outline

We present here a method inspired from the ANOVA
decomposition that allows to tackle those issues.

The talk is organized as follow : J

@ Kernel ANOVA Decomposition (KAD)
@ Selection of relevant terms : the HKL method.
@ Example of application : The MARTHE benchmark.
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Kernel ANOVA Decomposition

Any square integrable function f: D — R may be written

ANOVA Decomposition

d
f)=fh+> fx)+ > fij(xix)++fi alx, ... xa)

i=1 1<i<j<d

where :
@ Any two terms of the decomposition are L in L?(D),
@ the integral of f,, ..., (x) with respect to any x,, is null.
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Kernel ANOVA Decomposition

For D C R, the space L?(D) may be decomposed as follows :

:/Df(s)ds+ <f(x)—/Df(s)ds>

2 . 1
L2(D) = Lo & L

where Ly is the space of the functions equal to a constant and
L1 the space of function with zero mean.

ForD =D x --- x Ddc]R‘d we obtain
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Kernel ANOVA Decomposition

Similarly, let H be a one-dimensional RKHS with kernel k.
We call H the subspace of H with zero mean functions :

g € Hq @/Dg(s)ds:o

The Riesz theorem gives
3R € H such that Vg € ”H,/Dg(s)ds =(R,9)xu
Ho = span(R)

We have an orthogonal
decomposition of H : f

H = Hy & Hy / i

Hi
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Kernel ANOVA Decomposition

Using the reproducing property of k, we get the expression of
R(x) :

R(x) = (R, k(X,.))u = /D K(x, s)ds
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proposed ANOVA-like decomposition

Let kg and k4 be the reproducing kernels of Hg and ;.
As H = Ho + Hq, we have :

K(x,y) = ko(x,¥) + ki(x,y) )

Using the orthogonal projection on #, one can calculate :
/k(x, s)ds/k(y, s)ds
_JD D
/ k(s, t)dsdt
DxD
/k(x s ds/ k(y,s
ki(x,y) = k(x,y) -

/ k(s, t)dsdt
DxD

LE.
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proposed ANOVA-like decomposition

Probabilistic interpretation

Let Zy and Z; be centered GP with kernels ky and kq
ANOVA Decomposition for GP
Z(x) = Zo(x) + Zi(x)

with
@ 4y and Z; independent

) / Zi(x)dx =0 (with proba. 1)
D
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proposed ANOVA-like decomposition

Probabilistic interpretation

Zy and Z; may also be defined as :

k(x,s)d
Z(s)ds} /D{D e t)det/Z(s)ds

D

Then Zy and Z; have kernel kg and k;.
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proposed ANOVA-like decomposition
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Given Z, we can decompose any path Z(w) as Zy(w) + Z;(w)

=20+Z1
=20+Z1
0.0
I

Z:
Z:

o

Reciprocally, given Ky and Ky we can build paths of Z by
summing Zy(w) and Zj(w).
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proposed ANOVA-like decomposition

What happens for the multi-dimensional case ?

If K'is a tensor product kernel, the generalization is
straightforward :

K:ka:(k0+k1)><(ko+k1)
= koko + k1 kg + Kok1 + Kikq
= Koo + Kio + Kot + Ki1
Or similarly
Hk =HOH
i 1
= (Ho @ H1) ® (Ho ® H1)
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=Ho®Hg & H1®Hog & Ho®H1 D Hi® Hi
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proposed ANOVA-like decomposition

We use those kernels to simulates paths of Zyg, Zig, Z51 and
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As previously, the paths have original properties.

14/29



KAD # ANOVA kernels

Link with usual ANOVA kernels 4 :

Kanova(x,y) = [T (1 + k(. )

i

For this decomposition, we have
@ H, is a space of constant functions.
@ 74 is not the space of zero-mean functions.
@ We do not have anymore Hy L H1

9
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4. Stitson et Al, Support vector regression with ANOVA decomposition ker- 2

nels. Technical report, Royal Holloway, University of London, 1997. L
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Kernel ANOVA Decomposition

This decomposition may be used for many tasks :
@ visualize main effects without computation.
@ modify the weight of the sub-kernels :
K* = XooKoo + AMoKio + Ao1 Kot + A11Ki
or built sparse models

K* = Koo + K10 + Kot + K47

We will now consider those two points on two test functions.
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Application 1 : interpretation

We consider a test function ® with observation’s noise A'(0,1) :

f:10, 11" = R
x — 10sin(7x1X2) 4+ 20(x3 — 0.5)% + 10x4 + 5xs

The steps for approximating f with a GP model are :
1 Learn f on a DoE (here LHS maximin with 180 points)
2 estimate the kernel parameters ) (MLE),
3 build the kriging mean predictor f based on KV

o

As f is a function of 10 variables, the model can not easily be
represented : it is usually considered as a black-box.
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5. S.R.Gunn and J.S. Kandola. Structural modelling with sparse kernels. Machine learning, 2002
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Application 1 : interpretation

with KAD, f can be written as the sum of sub-models

Z K/(Xay) J

1e{0,1}4

\
f(x) = k(x)T(K + 721d)~'Y

.
( > m(x)) (K+7210)~"Y

1€{0,1}d

- ¥ (k( )T (K + 721d)~" ) 3 hx

1e{0,1}d Ie{0,1}¢ S
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Application 1 : interpretation
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The univariate sub-models are :

w - 0 - P 0 -
Vi
P Vi Z
TN Vi P
© Vi o Vi o 7
Vi Vi =
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LY x1 © 7 x4 | 9 x5
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( we had f(x) = 10sin(mxix2) + 20(xs — 0.5)2 + 10xs + 5xs )



Application 2 : HKL

In order to
@ Construct parsimonious models,
@ Change the weights of the sub-kernels,

we will use a method called Hierarchical Kernel Learning
(HKL) developed by F. Bach in 2009.
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Application 2 : HKL
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Hierarchical kernel Learning

Given a set of kernel {Kj, ..., Ky} the point is to select a limited
number of them adapted to the data :

{Ki,. .. Kn} = K* = MKq + doKo + AaKa + - - + Ak

Like other methods (COSSO, SUPANOVA), the sparsity and the
coefficients are obtained by minimizing a trade off between 2
norms :

criterion = “ ||f — |2 + c||f||1 "
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Application 2 : HKL

Let us combine KAD and HKL to model the test function f. )

The steps for modeling f are :
1 Construct a DoE X, and calculate the response Y = f(X)
2 Estimate the kernels parameter ¢» (MLE),
3 Decompose Ky, using KAD.
4 Apply HKL.
5 Get the final GP model.
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Application 2 : HKL
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Here, the total number of kernels is 29 = 1024.

As f(x) = 10sin(mxy x2) +20(x3 — 0.5)% 4+ 10x4 + 5x5 + £(x), we
could expect HKL to find 7 active kernels.

The algorithm gives 84 active kernels but the weight associated
to the unexpected ones is around 0.

To evaluate the quality of the model, we compare it to a usual
GP on 2000 test points. We compute

S £)?
%=1
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Application 2 : HKL

Varying X, we finally obtain :

0920 0925 0930 0935 0940 0945 0.950

T T
Q2 usual GP model Q2 KAD-HKL
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On this example, KAD-HKL performs significantly better. )

24/29



MARTHE

The Marthe case study
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The MARTHE case study is part of the GDR-mascotnum
benchmark.

Objective : estimation of an environmental impact

@ Radioactive waste storage on a Russian site from 1943 to
1974

@ Upper groundwater contamination in %8r.

The aim is to model the evolution of the radioactive plume. |
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MARTHE

The Marthe case study

The MARTHE computer code has
@ 20 input variables (7 permeabilities, 1 porosity, ... )

@ 10 output variables (locations to predict the °Sr
concentration)

We know the concentration for 2002, we want to predict it for
2010.

MARTHE
-
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MARTHE

The Marthe case study

The design is composed of 300 points. 250 are used for training
and 50 for external validation.

Results )

1.0
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Conclusion

Conclusion

Advantages of the proposed Kernel Anova Decomposition

@ Interpretation of High dimensional GP models
@ Allows to set various variance parameters

@ Allows to split multi-dimensional problems into
low-dimensional ones

@ Well designed for HKL

Applications
@ Model accuracy improvement
@ Calculation of Sobol indices.
@ Can be coupled with any kriging software
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Conclusion
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Thank you for your attention

Conclusion

F. Bach, High-Dimensional Non-Linear Variable Selection
through Hierarchical Kernel Learning, hal-00413473, 2009.
B. looss and A. Marrel, Benchmark of GdR MASCOT NUM —
Données MARTHE, 2008.
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