
Introduction KAD HKL MARTHE Conclusion

Kernel ANOVA Decomposition for Gaussian

process modeling

N. Durrande 1, D. Ginsbourger 2, O. Roustant1, L.Carraro 3

MASCOT NUM 2011 workshop

Villard de Lans, the 23th of March

1. CROCUS - Ecole des Mines de St Etienne

2. Institute of Mathematical Statistics and Actuarial Science - University of Berne

3. Telecom St Etienne

1/29



Introduction KAD HKL MARTHE Conclusion

Gaussian process models

Let f : D ⊂ Rd → R be a function which value is known on a

DoE X = (x1, . . . , xn).

The kriging model relies on the choice of the kernel K

m(x) = k(x)T
K
−1Y and v(x) = K (x , x)− k(x)T

K
−1k(x)
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Gaussian process models

When the dimension of the input space increases, the kriging

model really becomes a black-box.

m(x) = k(x)T
K
−1Y

Major drawbacks for usual kernels :

The models cannot easily be interpreted.

Without computation, what is the effect of x1 on m(x) ?

The importance of the variables x i is supposed to be
similar.

What if the variance is not the same in each direction ?
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outline

We present here a method inspired from the ANOVA

decomposition that allows to tackle those issues.

The talk is organized as follow :

Kernel ANOVA Decomposition (KAD)

Selection of relevant terms : the HKL method.

Example of application : The MARTHE benchmark.
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Kernel ANOVA Decomposition

Any square integrable function f : D → R may be written

ANOVA Decomposition

f (x) = f0 +
d
∑

i=1

fi(xi) +
∑

1≤i<j≤d

fi,j(xi , xj) + · · ·+ f1,...,d(x1, . . . , xd)

where :

Any two terms of the decomposition are ⊥ in L2(D),

the integral of fα1,...,αp(x) with respect to any xαi
is null.
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Kernel ANOVA Decomposition

For D ⊂ R, the space L2(D) may be decomposed as follows :

f (x) =

∫

D

f (s)ds +

(

f (x)−

∫

D

f (s)ds

)

L2(D) = L0

⊥
⊕ L1

where L0 is the space of the functions equal to a constant and

L1 the space of function with zero mean.

For D = D1 × · · · × Dd ⊂ Rd , we obtain

L2(D) =
d
∏

i=1

L2(Di) =
d
∏

i=1

(

Li
0

⊥
⊕ Li

1

)

=
∑

I∈{0,1}d

LI
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Kernel ANOVA Decomposition

Similarly, let H be a one-dimensional RKHS with kernel k .

We call H1 the subspace of H with zero mean functions :

g ∈ H1 ⇔

∫

D

g(s)ds = 0

The Riesz theorem gives

∃!R ∈ H such that ∀g ∈ H,

∫

D

g(s)ds = 〈R, g〉H

We have an orthogonal

decomposition of H :

H = H0

⊥
⊕ H1

g

H1

H0 = span(R)
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Kernel ANOVA Decomposition

Using the reproducing property of k , we get the expression of

R(x) :

R(x) = 〈R, k(x , .)〉H =

∫

D

k(x , s)ds
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proposed ANOVA-like decomposition

Let k0 and k1 be the reproducing kernels of H0 and H1.

As H = H0 +H1, we have :

k(x , y) = k0(x , y) + k1(x , y)

Using the orthogonal projection on H0 one can calculate :

k0(x , y) =

∫

D

k(x , s)ds

∫

D

k(y , s)ds
∫

D×D

k(s, t)dsdt

k1(x , y) = k(x , y)−

∫

D

k(x , s)ds

∫

D

k(y , s)ds
∫

D×D

k(s, t)dsdt
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proposed ANOVA-like decomposition

Probabilistic interpretation

Let Z0 and Z1 be centered GP with kernels k0 and k1

ANOVA Decomposition for GP

Z (x) = Z0(x) + Z1(x)

with

Z0 and Z1 independent
∫

D

Z1(x)dx = 0 (with proba. 1)
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proposed ANOVA-like decomposition

Probabilistic interpretation

Z0 and Z1 may also be defined as :

Z0(x) = E

[

Z (x)

∣

∣

∣

∣

∫

D

Z (s)ds

]

=

∫

D

k(x , s)ds
∫

D×D

k(s, t)dsdt

∫

D

Z (s)ds

Z1(x) = Z (x)− Z0(x)

Then Z0 and Z1 have kernel k0 and k1.
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proposed ANOVA-like decomposition

Given Z , we can decompose any path Z (ω) as Z0(ω) + Z1(ω)
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Reciprocally, given K0 and K1 we can build paths of Z by

summing Z0(ω) and Z1(ω).
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proposed ANOVA-like decomposition

What happens for the multi-dimensional case ?

If K is a tensor product kernel, the generalization is

straightforward :

K = k × k = (k0 + k1)× (k0 + k1)

= k0k0 + k1k0 + k0k1 + k1k1

= K00 + K10 + K01 + K11

Or similarly

HK = H⊗H

= (H0

⊥
⊕ H1)⊗ (H0

⊥
⊕ H1)

= H0 ⊗H0

⊥
⊕ H1 ⊗H0

⊥
⊕ H0 ⊗H1

⊥
⊕ H1 ⊗H1
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proposed ANOVA-like decomposition

We use those kernels to simulates paths of Z00, Z10, Z01 and

Z11 :
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As previously, the paths have original properties.
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KAD 6= ANOVA kernels

Link with usual ANOVA kernels 4 :

KANOVA(x , y) =
∏

i

(

1 + k(xi , yi)
)

For this decomposition, we have

H0 is a space of constant functions.

H1 is not the space of zero-mean functions.

We do not have anymore H0 ⊥ H1

4. Stitson et Al, Support vector regression with ANOVA decomposition ker-

nels. Technical report, Royal Holloway, University of London, 1997.
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Kernel ANOVA Decomposition

This decomposition may be used for many tasks :

visualize main effects without computation.

modify the weight of the sub-kernels :

K ∗ = λ00K00 + λ10K10 + λ01K01 + λ11K11

or built sparse models

K ∗ = K00 +✟
✟K10 + K01 +✟

✟K11

We will now consider those two points on two test functions.
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Application 1 : interpretation

We consider a test function 5 with observation’s noise N (0, 1) :

f : [0, 1]10 → R

x 7→ 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5

The steps for approximating f with a GP model are :

1 Learn f on a DoE (here LHS maximin with 180 points)

2 estimate the kernel parameters ψ (MLE),

3 build the kriging mean predictor f̂ based on Kψ

As f̂ is a function of 10 variables, the model can not easily be

represented : it is usually considered as a black-box.

5. S.R. Gunn and J.S. Kandola. Structural modelling with sparse kernels. Machine learning, 2002
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Application 1 : interpretation

with KAD, f̂ can be written as the sum of sub-models

Kψ(x , y) =
∑

I∈{0,1}d

KI(x , y)

⇓

f̂ (x) = k(x)T (K + τ 2
Id)−1Y

=





∑

I∈{0,1}d

kI(x)





T

(K + τ 2
Id)−1Y

=
∑

I∈{0,1}d

(

kI(x)
T (K + τ2

Id)−1Y
)

=
∑

I∈{0,1}d

f̂I(x)
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Application 1 : interpretation

The univariate sub-models are :
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we had f (x) = 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5

)
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Application 2 : HKL

In order to

Construct parsimonious models,

Change the weights of the sub-kernels,

we will use a method called Hierarchical Kernel Learning

(HKL) developed by F. Bach in 2009.
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Application 2 : HKL

Hierarchical kernel Learning

Given a set of kernel {K1, . . . ,Kn} the point is to select a limited

number of them adapted to the data :

{K1, . . . ,Kn} → K ∗ = λ1K1 +✟
✟
✟λ2K2 + λ3K3 + · · ·+✘✘✘λnKn

Like other methods (COSSO, SUPANOVA), the sparsity and the

coefficients are obtained by minimizing a trade off between 2

norms :

criterion = “ ||f − f̂ ||2 + c||f̂ ||1 ”
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Application 2 : HKL

Let us combine KAD and HKL to model the test function f .

The steps for modeling f are :

1 Construct a DoE X , and calculate the response Y = f (X )

2 Estimate the kernels parameter ψ (MLE),

3 Decompose Kψ using KAD.

4 Apply HKL.

5 Get the final GP model.
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Application 2 : HKL

Here, the total number of kernels is 2d = 1024.

As f (x) = 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5 + ε(x), we

could expect HKL to find 7 active kernels.

The algorithm gives 84 active kernels but the weight associated

to the unexpected ones is around 0.

To evaluate the quality of the model, we compare it to a usual

GP on 2000 test points. We compute

Q2 = 1 −

∑

(f̂i − fi)
2

∑

(fi − f̄ )2
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Application 2 : HKL

Varying X, we finally obtain :

Q2 usual GP model Q2 KAD−HKL
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On this example, KAD-HKL performs significantly better.
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The Marthe case study

The MARTHE case study is part of the GDR-mascotnum

benchmark.

Objective : estimation of an environmental impact

Radioactive waste storage on a Russian site from 1943 to

1974

Upper groundwater contamination in 90Sr.

The aim is to model the evolution of the radioactive plume.
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The Marthe case study

The MARTHE computer code has

20 input variables (7 permeabilities, 1 porosity, ... )

10 output variables (locations to predict the 90Sr

concentration)

We know the concentration for 2002, we want to predict it for

2010.

MARTHE
−→
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The Marthe case study

The design is composed of 300 points. 250 are used for training

and 50 for external validation.

Results
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Conclusion

Advantages of the proposed Kernel Anova Decomposition

Interpretation of High dimensional GP models

Allows to set various variance parameters

Allows to split multi-dimensional problems into

low-dimensional ones

Well designed for HKL

Applications

Model accuracy improvement

Calculation of Sobol indices.

Can be coupled with any kriging software
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Conclusion

Thank you for your attention

F. Bach, High-Dimensional Non-Linear Variable Selection

through Hierarchical Kernel Learning, hal-00413473, 2009.

B. Iooss and A. Marrel, Benchmark of GdR MASCOT NUM –

Données MARTHE, 2008.
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