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Specific Contributions of Antoniadis

♠ Introduce the hard-thresholding penalty, now

generalized to MCP.
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Regularization of Wavelet Approximations

Anestis Antoniadis and Jianqing Fan

In this paper, we introduce nonlinear regularized wavelet estimators for estimating nonparametric regression functions when sampling

points are not uniformly spaced. The approach can apply readily to many other statistical contexts. Various new penalty functions are

proposed. The hard-thresholding and soft-thresholding estimators of Donoho and Johnstone are speci�c members of nonlinear regularized

wavelet estimators. They correspond to the lower and upper envelopes of a class of the penalized least squares estimators. Necessary

conditions for penalty functions are given for regularized estimators to possess thresholding properties. Oracle inequalities and universal

thresholding parameters are obtained for a large class of penalty functions. The sampling properties of nonlinear regularized wavelet

estimators are established and are shown to be adaptively minimax. To ef�ciently solve penalized least squares problems, nonlinear

regularized Sobolev interpolators (NRSI) are proposed as initial estimators, which are shown to have good sampling properties. The

NRS I is further ameliorated by regularized one-step estimators, which are the one-step estimators of the penalized least squares problems

using the NRSI as initial estimators. The graduated nonconvexit y algorithm is also introduced to handle penalized least squares problems.

The newly introduced approaches are illustrated by a few numerical examples.

KEY WORDS: Asymptotic minimax; Irregular designs; Nonquadrati c penality functions; Oracle inequalities; Penalized least-squares;

ROSE; Wavelets.

♠ Introduce folded concave penalties
sion of our work is to minimize, in the wavelet coef�cients

domain, the following penalized least squares:

X

4b5

˜z4b5 ƒ ˆ4b5˜
2 C

X

4b5

p‹4˜ˆ4b5˜51 (2)

where p‹4¢5 is a penalty function given in Theorem 1. Sim-

ilar to equation (3) of Professor Moulin’s contribution, the

�exibility can be further enhanced by introducing a weight

‹4b5 in the penalty part of (2) or more generally by using

♠ Introduce group penalty and/or group LASSO
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Rise of high-dimensionality

High-dim characterizes many statistical problems:

Biological science: disease classification / predicting

clinical outcomes using high-throughput data; association

studies;

Engineering: Doc or text classification, computer vision.

Economics, Finance, Marketing: sale data collected in

many regions.
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Growth of Dimensionality

�Dimen. grows rapidly w/ interactions: 5000 12.5m.

Synergy of Two Genes: colon cancer in Hanczar et al (2007).

e.g., Y = I(X1 +X2 > 3) and Y ⊥ X1.

G1

50% 50%

0%

white – patients; black – normal
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Aims of High-dimensional Regression and Classification

Bickel (2008) discussion of the SIS paper published in JRSS-B

(Fan & Lv, 08).

� To construct as effective a method as possible to predict

future observations.

� To gain insight into the relationship between features and

response for scientific purposes, as well as, hopefully, to

construct an improved prediction method.
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Popular Assumption: Sparsity

Dimen: logp = O(na) Intrinsic dim: s ≪ n. (Sparsity)

Sparse Structure
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�much easier to get sure screening than selection consistency.

Jianqing Fan Sparse inference



Impact of Dimensionality
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Impact of Dimensionality

�Computational cost �Stability

�Estimation accuracy: ⋆noise accumulation ⋆spurious corr

Key Idea: Large-scale screening + moderate-scale searching.
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1. Noise accumulation

Regression:

�Not directly implementable if p > n.

�Prediction error is (1+ p
n
)2, if p ≤ n.
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Classification: No implementation problems, but error rates

—depend on C2
p/
√

p (Fan & Fan 08), Cp is distance.

—perfectly classifiable if C2
p/
√

p → (Hall, Pittelkow & Ghosh,08).
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2. Spurious Correlations

An experiment: Generate n = 50 Z1, · · · ,Zp ∼i.i.d. N(0,1);

�compute r = maxj≥2 corr(Z1,Zj).
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�compute maximum multiple correlation:

R = max|S|=5 corr(Z1,ZS).
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False Statistical Inference

False statistical inferences: If Y = Z1 and fit

Y = XT

M̂
+ ,

the residual variance

̂2 =
yT (In −P

M̂
)y

n− ŝ
= (1− ̂2

n)
‖‖2

n− ŝ
.

Fraction of bias: 2
n = T P

M̂
/‖‖2 = OP(ŝ logp/n).

Naive two-stage: Use the selected model and refit the data.

Seriously underestimate the variance.
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Impact of spurious correlation on variance est

�p = 1000,n = 50 with various spurious variables ŝ.
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�Spurious variables are selected to predict noises:

Y = 2X1 +0.3X2 + 
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Penalized likelihood estimation

Fan and Lv (2011, IEEE-Information Theory)
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Penalized likelihood estimation

GLIM: fY (y |X = x ;) = exp
{
(y−b())/+ c(y ,)

}
with

canonial link : b′−1(μ) =  = xT.

Penalized likelihood:

n−1
n


i=1

{yix
T
i −b(xT

i )}−
p


j=1

p(|j |)

= n−1
[
yTX−1Tb(X)

]
−

p


j=1

p(|j|).

Sparsity: p′(0+) > 0, singularity at origin (Antoniadis & Fan, 01).
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Iterated reweighted L1-estimator

Penalty: Popular choice L1. Preferred: SCAD (Fan & Li, 01).

Q() = n−1n
i=1 L(Yi ,x

T
i )+p

j=1 p(|j|).

p(|(k)
j |)+ p′

(|
(k)
j |)(|j|− |(k)

j |)
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�(0) = 0 =⇒ LASSO. �Iteration reduces the bias

�Zero is a non-absorbing state (comparing wj = 1/|(k)
j |).
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Remarks

Convergence: A Majorization-Minimization (MM) algorithm:

Q((k+1)) ≤ Qapp((k+1)) ≤ Qapp((k)) = Q((k)).

Other algorithms: LQA (Fan & Li, 01); LLA (Zou & Li, 08);

PLUS (Zhang, 09); Coordinate optimization (Fu & Jiang, 99).

Capacity: handle NP-dimensionality with wider capacity.

�possesses an oracle property (Fan & Lv, 09),

reducing the bias of LASSO.
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Computing algorithms for SCAD

1 LQA algorithm (Fan and Li, 01).

2 LLA: Iterated reweighted LASSO (Zou and Li, 08).

3 PLUS: an extension of LARS Zhang (2009)

4 Coordinate optimization algorithm. (Fu and Jiang, 99, Li,

Bühman, Hastie, Tibshirani, Fan, Lv)

�L1-penalty does not have much computation advantages.
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Limited Capacity of L1-penalty

�Consistent condition for LASSO is limited(Zhao and Yu, 06):

‖(XT
1 X1)

−1XT
1 X2,j‖1 < 1, relaxed to min(

p′
(0+)

p′
(dn)

,O(n1))

�The capacity is about the same or weaker than for SIS.

[Fan and Lv (08), Fan and Song (10), Zhang (2010), Geneve, Jin,

Wasserman (11)].
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An executive summary

1 Give conditions under which FCPMLE is a global

maximizer or restricted global maximizer.

2 FCPMLE possesses an oracle property up to

NP-dimensionality:

selection consistency + uniform rates + asymp. normality.

3 The result is applicable to L1, but the condition for L1 is

much more restrictive than SCAD.

4 L1 penalty does not possess the oracle property. The

dimensionality and convergence rates need to compromise.
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Global optimality (p ≤ n)

�X full column rank and let ∗ of ℓn().

�Lc = { ∈ Rp : ℓn() ∈ [c, ℓn(∗)]} for some c < ℓn(0).

Theorem 1: FCPMLE ̂ is a global maximizer, if

min
∈Lc

min

[
n−1XT b′′ (X)X

]
≥ (p),

the maximum concavity.
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Restricted Global optimality (p > n)

�The true model supp(0) = {1, · · · ,s}
�Ss: Union of all s-dimensional coordinate subspaces of Rp.

Theorem 1’: If the conditions 1 of Theorem 1 hold for each

n× (2s) submatrix of X, then the FCPMLE ̂ is a global

maximizer on Ss.
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Technical conditions

�min signal: dn = min{|0,j | : 0,j �= 0}/2 ≫ n− logn.

�The design matrix X satisfies (for some C < 1)

∥∥∥
[
n−1XT

1 b′′ (0)X1

]−1
∥∥∥


= O(bs), bs → ; 0 = X0

∥∥∥XT
2 b′′ (0)X1

[
XT

1 b′′ (0)X1

]−1
∥∥∥

≤ min(C

p′
(0+)

p′
(dn)

,O(n1)).

For least squares, b′′(·) = 1, it reduces to

irrepresentable condition.

♣For Lasso, RHS is bounded by C (almost iff condition).

♣For SCAD, LHS = O(n1), much weaker.
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Model selection consistency and rate of convergence

�Choice of : Letting  = min(1
2
,2)−1,

p′n
(dn) = o(b−1

s n− logn) n ≫ n−(logn)2.

�Capacity: s = o(n), logp = O(n1−2)

Theorem 2: With probability ≥ 1−2[sn−1 +(p− s)e−n1−2 logn],

there exists an estimator, satisfying:

Sparsistency: ̂2 = 0;

Uniform rate of convergence: ‖̂1 −1‖ = O(n− logn).
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Oracle Property

Theorem 3: With probability tending to one, there exists a local

maximizer such that ̂2 = 0 and ‖̂−0‖2 = OP(
√

sn−1/2) with

the following asymptotic normality:

√
n

(
̂1 −1

)
D−→ N(0,

[
n−1XT

1 b′′ (0)X1

]−1
).

Fisher information bound of an oracle estimator

For any An such that AnAT
n → G,

An

[
XT

1 b′′ (0)X1

]1/2
(
̂1 −1

)
D−→ N(0,G).
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Logistic regression — small p

�Covariate x ∼ N(0,Σ) with Σ = (0.5|i−j|).

�1 = (2.5,−1.9,2.8,−2.2,3)T , n = 200, p = 25.

Measures Lasso SCAD MCP Oracle

PE 0.11(0.01) 0.10(0.01) 0.10(0.01) 0.09(0.00)

L2 loss 3.06(0.66) 0.94(0.55) 0.94(0.55) 0.88(0.34)

L1 loss 7.25(1.10) 1.87(1.46) 1.87(1.46) 1.73(0.77)

Deviance 129.4(19.2) 111.8(15.8) 111.82(15.80) 113.12(16.0

#S 9(2.97) 5(0.74) 5(0.74) 5(0)

FN 0(0) 0(0) 0(0) 0(0)
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Logistic regression — large p

Lasso SCAD MCP Oracle

0.1

0.12

0.14

0.16

0.18

P
E

p = 500

Lasso SCAD MCP Oracle

1

2

3

4

5

L
2
 l
o

s
s

p = 500

Lasso SCAD MCP Oracle
0

20

40

60

80

#
S

p = 500

Lasso SCAD MCP Oracle

0.1

0.15

0.2

P
E

p = 1000

Lasso SCAD MCP Oracle
0

2

4

L
2
 l
o

s
s

p = 1000

Lasso SCAD MCP Oracle
0

20

40

60

80

#
S

p = 1000

Jianqing Fan Sparse inference



Poisson regression

�n = 200, p = 1000, 1 = (1.25,−0.95,0.9,−1.1,0.6)T

Lasso SCAD MCP Oracle

PE 33.07(14.09) 5.52(2.03) 5.14(1.81) 3.68(0.77)

L2 loss 0.97(0.21) 0.21(0.09) 0.19(0.09) 0.108(0.047)

L1 loss 2.99(0.69) 0.49(0.23) 0.443(0.20) 0.20(0.09)

Deviance 200.0(22.9) 180.3(13.1) 181.2(15.3) 187.98(17.22)

#S 34(7.41) 11.5(4.08) 9(2.22) 5(0)

FN 0(0) 0(0) 0(0) 0(0)

�Bias of LASSO forces selecting more var. and increase PE.
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Neuroblastoma Data (MAQC-II)

1 251 patients of the German Neuroblastoma Trials

NB90-NB2004, diagnosed between 1989 and 2004, aged

from 0 to 296 months (median 15 months).

2 251 customized oligonucleotide microarray with

p = 10,707.

3 focus on “3-year Event Free Survival”, (n = 239 w/ 49 “+”

and 190 “−”).

4 Aims: To study which genes are responsible for

neuroblastoma and their risk association.
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Results

Training set and endpoints:

1 “3-y EFS”: Random 25 “+” and 100 “−”.

2 “Gender”: Random 120 males and 50 females. Total: 246.

Table: Classification errors in the neuroblastoma data set

3-year EFS Gender

Method # of genes Test error # of genes Test error

Lasso 56 23/114 4 5/126

SCAD 10 18/114 2 4/126

MCP 7 23/114 1 12/126

SIS 5 19/114 6 4/126

ISIS 23 22/114 2 4/126
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The ISIS Method

a two-scale framework
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Hydrogen Atom: Large scale-screening

Indep learning: Feature ranking by Marginal correlation (Fan &

Lv, 08) or generalized correlation (Hall & Miller, 09);

All possible variables Independence Screening

Classification: Feature ranking by two-sample t-tests or other

tests (Tibshirani, et al, 03; Fan and Fan, 2008).
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Extensions & Questions

Other methods: ⋆Marginal LR (Fan, Samworth & Wu, 09);

⋆MMLE (Fan and Song, 09); ⋆MPLE (Zhao & Li, 11);

⋆Nonparametric learning (Fan, Feng, Song, 09)

⋆Data-tilting; (Hall, Titterington & Xue, 09).

1 Sure screening property? In what capacity? (Fan & Lv, 08)

2 Model selection consistency? (Geneve, Jin, Wasserman, 11)

3 How to choose a thresholding parameter? (Zhao & Li, 11)

4 How to reduce FDR? (Fan, Samworth, Wu, 09)

5 What are the possible drawbacks?
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Potential Drawbacks

� False Negative: What if Xj marginally uncorrelated with Y ,

but jointly correlated with Y?

Y = X1 +X2 +X3 +4X4 +  s.t. cov(Y ,X4) = 0.

� False Positive: What if X2, · · · ,X99 highly correlated with

an important X1, but weakly correlated with Y conditionally?

Y = X1 +0.2X100 + 
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Oxygen Atom: Penalized likelihood estimation

Q() = n−1n
i=1 L(Yi ,x

T
i,d)+d

j=1 p(|j |)
�Simultaneously estimate coefs and choose variables.

Independence Screening Moderate−scale Selection

How high dimensionality can such methods handle?

What is the role of penalty functions?

Does it possess an oracle property? How to compute?
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Carbon Atom: Iteration

Iterative application of

large-scale screening and

moderate-scale selection.

d p

SIS

SCAD

MCP

LASSO

DS

�ISIS ((Fan & Lv, 08; Fan, Samworth & Wu, 09)), available in R.
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Iterative feature selection

1 �(screening): Apply SIS to pick a set A1;

�(selection): Employ a penalized likelihood to select a

subset M1 of these indices.

2 (conditional screening): Rank features according to the

additional contribution:

L
(2)
j = min

0,M1
,j

n−1
n


i=1

L(Yi ,0 +xT
i,M1

M1
+Xijj),

resulting in A2.
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Illustration of ISIS

All possible variables Independence Screening

Moderate−scale Selection All candidates
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Illustration of ISIS

All candidates Conditional Screening

Moderate−scale selection All candidates
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Iterative feature selection (II)

3 (selection): Minimize wrt M1
, A2

n


i=1

L(Yi ,0 +xT
i,M1

M1
+xT

i,A2
A2

)+ 
j∈M1∪A2

p(|j |),

resulting in M2 —allow deletion.

4 Repeat Steps 1–3 until |Mℓ| = d (prescribed) or

Mℓ =Mℓ−1.

d p

SIS

SCAD

MCP

LASSO

DS
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Applicability of ISIS idea

The idea of ISIS is widely applicable. It can be applied to

Classification (Fan, Samworth, & Wu, 09).

Survival analysis (Fan, Feng, & Wu, 09; Zhao & Li, 09).

Nonparametric learning (Fan, Feng, & Song, 09).

Robust and quantile regression (Bradic, Fan, & Wang, 11)
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Logistic regression, a very difficult case

1 = 4, 2 = 4, 3 = 4, 4 = −6
√

2, p+1 = 4/3, cov(X4,X
T⋆) = 0.

Bayes error: 0.1040. n = 400,p = 1000,Nsim = 100

Van-SIS ISIS LASSO NSC

med(‖− ̂‖1) 20.6 2.69 23.2 N/A

med(‖− ̂‖2
2) 9.46 1.36 9.11 N/A

True Positive 0.00 0.90 0.00 0.17

Med. model size 16 5 102 10

2Q(̂0, ̂)(training) 269 188 109 N/A

AIC 289 198 311 N/A

BIC 337 218 714 N/A

2Q(̂0, ̂) (test) 361 225 276 N/A

0-1 test error .193 .112 .146 .387
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Sure Independence Screening

Fan and Song (2010, Ann. Statist.)
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Model setting

Objective: Find sparse  to minimize Q() = n
i=1 L(Yi ,x

T
i ).

� GLIM: L(Yi ,x
T
i ) = b(xT

i )−Yix
T
i , as

fY (y |X = x ;) = exp
{
(y−b())/+ c(y ,)

}
,

canonial link : b′−1(μ) =  = xT.

� Classification: Y = ±1.

⋆SVM L(Yi ,x
T
i ) = (1−Yix

T
i )+.

⋆AdaBoost L(Yi ,x
T
i ) = exp(−Yix

T
i ).

� Robustness: L(Yi ,x
T
i ) = |Yi −xT

i |.
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Independence learning

M-Utilility: Wilks: L̂j = L̂0 −min0,j
n−1n

i=1 L(Yi ,0 +Xijj)

Wald: |̂M

j |, assuming EX2
j = 1.

Ranking: M̂n
= {j : L̂j ≥ n}, M̂ wald

n
= {j : |̂M

j | ≥ n}.

Marginal utility: L⋆
j = Eℓ(Y ,M

0 )−minEℓ(Y ,0 +jXj).

Theorem 1: L⋆
j = 0 ⇐⇒ cov(Y ,Xj) = 0 ⇐⇒ M

j = 0.
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Theoretical Basis

True model: M⋆ = {j : ⋆
j �= 0}.

Theorem 2: If |cov(Y ,Xj)| ≥ c1n
− for j ∈M⋆, then

min
j∈M⋆

|M
j | ≥ c1n−, min

j∈M⋆

|L⋆
j | ≥ c2n−2.

�If active indep of inactive, then L⋆
j = 0, j �∈M⋆

=⇒ model selection consistency.
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Sampling Aspect: Sure independence screening

Theorem 3: If n = cn−2 for  < 1/2, and logsn = o(n1−2),

then

P

(
M⋆ ⊂ M̂n

)
→ 1 exponentially fast

No conditions on covariance matrix!

� Note that L̂j −L⋆
j = O(n−1/2) and minimum signal O(n−2).

How to deal with it?

⋆Appeal to rank invariance under monotonic transform.

� Screening using Wald stat ̂
M

j has also SS property.
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Sampling Aspect: Controlling number of features

Theorem 4: If logpn = o(n1−2),

P[|M̂n
| ≤ O{n2max(Σ)}] → 1.

When max(Σ) = O(n), model size = O(n2+) (Fan and Lv, 08).

�More precise bound for |M̂n
| is

O(−2
n ‖Σ⋆‖2) = O{n2max(Σ)}.
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Screening by MMLE

Result holds for MMLE screening.

1 P(maxj |̂M
j −M

j | > c3n
−) = o(1), if logpn = o(n1−2).

2 P(minj∈M⋆
|̂M

j | ≥ n) → 1, if n = c0n
−, c0 < c1/2.

3 What is the selected model size? We establish

‖M‖2 = O(‖Σ⋆‖2) = O{max(Σ) ⋆TΣ⋆}= O(max(Σ))

4 The #{|M
j | ≥ n} is OP{−2

n max(Σ)}, and so is the

selected model size.
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Performance of Independence Screening

�compare minimum model size for sure screening w/ LASSO.

�Consistent condition for LASSO is stringent (Zhao and Yu, 06):

‖(XT
1 X1)

−1XT
1 X2,j‖1 < 1.

Design 1: {Xj =
j+aj√

1+a2
j

}q
j=1, rest indep.
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Linear regression, p = 40,000, q = 15

 n SIS-MLR SIS-MMLE n SIS-MLR SIS-MMLE

s = 3, ⋆ = (1,1.3,1)T s = 6, ⋆ = (1,1,3,1, . . .)T

0 80 12(18) 12(18) 150 42(157) 42(157)

0.2 80 3(0) 3(0) 150 6(0) 6(0)

0.4 80 3(0) 3(0) 150 6.5(1) 6.5(1)

0.6 80 3(0) 3(0) 150 6(1) 6(1)

0.8 80 3(0) 3(0) 150 7(1) 7(1)

s = 12, ⋆ = (1,1.3, . . .)T s = 15, ⋆ = (1,1.3, . . .)T

0 300 143(282) 143(282) 400 135.5(167) 135.5(167)

0.2 200 13(1) 13(1) 200 15(0) 15(0)

0.4 200 13(1) 13(1) 200 15(0) 15(0)

0.6 200 13(1) 13(1) 200 15(0) 15(0)

0.8 200 13(1) 13(1) 200 15(0) 15(0)
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Logistic regression, p = 5,000, q = 15

 n SIS-MLR SIS-MMLE LASSO SCAD

s = 6, ⋆ = (1,1.3,1,1.3,1,1.3)T

0.4 200 51(77) 64.5(76) 20(10) 16.5(6)

0.6 300 77.5(139) 77.5(132) 20(13) 19(9)

0.8 400 306.5(347) 313(336) 86(40) 70.5(35)

s = 12, ⋆ = (1,1.3, . . .)T

0.4 300 14(1) 14(1) 14(1861) 13(1865)

0.6 300 14(1) 14(1) 2552(85) 12(3721)

0.8 300 14(1) 14(1) 2556(10) 12(3722)

s = 15, ⋆ = (3,4, . . .)T

0.4 300 15(0) 15(0) 38(3719) 15(3720)

0.6 300 15(0) 15(0) 2555(87) 15(1472)

0.8 300 15(0) 15(0) 2552(8) 15(1322)
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Summary

Impact of dimensionality: Noise accumulation, spurious

correlation, computation.

Spurious relations arises easily in NP-dimensionality and

have adverse effect on statistical inference.

ISIS is effective in high-dimensional regression and

classification.

Fold-concave penalized MLE can handle NP-dimensionality.

It reduces significantly the biases of L1-penalty and requires

much less condition for selection consistency.
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