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Anestis Antoniadis

• XIVth International Biometrics Conference in Namur, Belgium, in

July 1988

• first reading:

“Nonparametric penalized maximum likelihood estimation of the

intensity of a counting process”, AISM, 1989

• joint work on

• model selection using wavelet decomposition (with G.

Grégoire)

• change point detection

• change point detection in hazard function (with B.

MacGibbon)

• unfolding sphere size distributions using wavelets (with J. Fan)
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• penalized wavelet monotone regression (with J. Bigot)

• smoothing non equispaced heavy noisy data with wavelets

(with Jean-Michel Poggi)

• penalized likelihood regression for generalized linear models

with nonquadratic penalties (with Mila Nikolova)

• variable selection in additive models and in varying coefficient

models using P-splines (with Anneleen Verhasselt and Sophie

Lambert-Lacroix)
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Seminal contributions to many areas

• wavelets and their applications

• intensity function estimation

• survival analysis and point processes

• inverse problems (in particular Poisson inverse problems)

• constraint estimation

• analysis of functional data

• development of statistical methods for microarray data

• · · ·

excellent and very dynamic researcher

extremely broad knowledge
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Some characteristics

• many services to the profession

• associate editor of several international journals

• serving in scientific evaluation boards for many years

• · · ·

• very supporting to young (moderate and old) researchers

• always helping with scientific advise

• a remarkable honesty and modesty

• · · ·

an admirable personality; an example for many ...
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THANK YOU!



Additive models: introduction

Y : response variable

(X1, . . . , Xd) vector of d explanatory variables

additive model Y = f0 +
d∑

j=1

fj(Xj) + ε E (fj(Xj)) = 0

ε random noise term; mean 0 and variance σ2

fj unknown univariate functions

often only a few components fj are different from 0

aim: to select and estimate the non-zero fj components
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Nonnegative garrote method

Original nonnegative garrote method

proposed by Breiman (1995) in a multiple linear regression model

data (Yi, Xi1, . . . , Xid) from

Yi = β0 +
d∑

j=1

βjXij + εi i = 1, . . . , n

β̂OLS
j ordinary least squares estimator for βj

Workshop in honor of Anestis, Villard de Lans, March 2011 p.7



basic idea: the nng method shrinks the least squares estimators β̂OLS
j

shrinkage done via: cj β̂OLS
j with cj ≥ 0 and a bound on

d∑

j=1

cj

task : how to find the shrinkage factors cj?
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the nonnegative garrote shrinkage factors ĉj are found by solving





(ĉ1, . . . , ĉd) = argminc1,...,cd

1

2

n∑

i=1

(
Yi − β̂OLS

0 −
d∑

j=1

cj β̂
OLS
j Xij

)2

s.t. 0 ≤ cj (j = 1, . . . , d),
d∑

j=1

cj ≤ s

for given s, or equivalently





(ĉ1, . . . , ĉd) = argminc1,...,cd





1
2

n∑

i=1

(
Yi − β̂OLS

0 −
d∑

j=1

cj β̂
OLS
j Xij

)2

+ θ
d∑

j=1

cj





s.t. 0 ≤ cj (j = 1, . . . , d)

for given θ > 0

s > 0 and θ > 0; regularization parameters (see e.g. Xiong (2010))
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the nonnegative garrote estimator of the regression coefficient βj is

β̂NNG
j = ĉj β̂

OLS
j

special case: orthogonal design, i.e. X′X = In

ĉj =
(
1 −

θ

(β̂OLS
j )2

)

+
z+ = max(z, 0)

the larger θ, the stronger the shrinkage effect
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Figure 1: Shrinkage effect of the nonnegative garrote for different θ’s
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Relation with other estimation methods

LASSO





(β̂Lasso
1 , . . . , β̂Lasso

d ) = argminβ

∑n
i=1

(
Yi − β0 −

∑d
j=1 βjXij

)2

s.t.
∑d

j=1 |βj | ≤ s

Ridge :





(β̂Ridge
1 , . . . , β̂Ridge

d ) = argminβ

∑n
i=1

(
Yi − β0 −

∑d
j=1 βjXij

)2

s.t.
∑d

j=1 β2
j ≤ s
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More relations with (other) thresholding rules

(see, e.g., literature on wavelet methods, work by Anestis Antoniadis)

hard-thresholding rule δH
λ

(
β̂j

)
=





0 if |β̂j | ≤ λ

β̂j if |β̂j | > λ

soft-thresholding rule δS
λ

(
β̂j

)
=





0 if |β̂j | ≤ λ

β̂j − λ if β̂j > λ

β̂j + λ if β̂j < −λ

⋄ hard-thresholding (a discontinous function): ‘keep’ or ‘kill’ rule

⋄ soft-thresholding (a continuous function): ‘shrink’ or ‘kill’ rule

Bruce & Gao (1996) and Marron, Adak, Johnstone, Newmann & Patil

(1998), ...,

Gao (2008), ...
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another thresholding rule

Antoniadis & Fan (2001) suggested the SCAD (Smoothed Clipped

Absolute Deviation) thresholding rule

δSCAD
λ

(
β̂j

)
=





sign

(
β̂j

)
max

(
0, |β̂j |λ

)
if |β̂j | ≤ 2λ

(a − 1)β̂j − aλsign

(
β̂j

)

a − 2
if 2λ < |β̂j | ≤ aλ

β̂j if |β̂j | > aλ

where a > 2

this is also a ‘shrink’ or ‘kill’ rule (a piecewise linear function)

this rule does not over-penalize large values of |β̂j | and hence does

not create excessive bias when the regression coefficients are large

Antoniadis & Fan (2001), based on a Bayesian argument, have

recommended to use the value a = 3.7
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thresholding functions δλ
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Functional nonnegative garrote method

extension of the nng to additive models: see Cantoni, Fleming &

Ronchetti (2011) and Yuan (2007)

start with an initial estimator f̂ init
j (Xj) of fj(Xj)

the nonnegative garrote shrinkage factors are then found via





minc1,...,cd

{
1
2

∑n
i=1

(
Yi − f̂ init

0 −
∑d

j=1 cj f̂
init
j (Xij)

)2

+ θ
∑d

j=1 cj

}

s.t. 0 ≤ cj (j = 1, . . . , d)

the nonnegative garrote estimate of fj is f̂NNG
j (·) = ĉj f̂

init
j (·)

Cantoni, Fleming & Ronchetti (2011): use smoothing splines for the

initial estimator

using P-splines ...
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univariate P-spline estimation

P-splines, introduced by Eilers & Marx (1996), in the univariate

nonparametric smoothing context

Yi = f(Xi) + εi for i = 1, . . . , n

P-splines are an extension of regression splines with a penalty on

the coefficients of adjacent B-splines

(Xi, Yi), for i = 1, . . . , n, with Xi ∈ [0, 1] ⊂ IR

regression spline model: approximate f(x) with

m∑

j=1

αjBj(x; q)

where {Bj(·; q) : j = 1, . . . , K + q = m} is the q-th degree B-spline

basis, using normalized B-splines such that
∑

j Bj(x; q) = 1, with

K + 1 equidistant knot points t0 = 0, t1 = 1
K , . . . , tK = 1 in [0, 1]

α = (α1, . . . , αm)′ : unknown column vector of regression coefficients
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penalized least squares estimator α̂ is the minimizer of

S(α) =

n∑

i=1

(
Yi −

m∑

j=1

αjBj(Xi; q)
)2

+ λ

m∑

j=k+1

(∆kαj)
2

λ > 0 : smoothing parameter

∆ the differencing operator: ∆kαj =
∑k

t=0(−1)t
(
k
t

)
αj−t, with k ∈ IN

examples: k = 1 : ∆1αj = αj − αj−1

k = 2 : ∆2αj = αj − 2αj−1 + αj−2

rewriting in matrix-notation:

S(α) = (Y − Bα)′(Y − Bα) + λα′D′

kDkα

the elements Bij of B (∈ IRn×m) are Bj(Xi; q)

Dk (∈ IR(m−k)×m) : matrix representation of the kth order

differencing operator ∆k
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Additive model: Nonnegative garrote with P-splines initial estimator

additive model Y = f0 +
d∑

j=1

fj(Xj) + ε E (fj(Xj)) = 0

key ingredients to prove the consistency of the nonnegative garrote

with P-splines

• (i) consistency result for (univariate) P-splines (Claeskens,

Krivobokova & Opsomer (2009))

• (ii) extension of a univariate smoothing estimator to additive

models via backfitting (rely on results from Horowitz, Klemelä &

Mammen (2006))

• (iii) on a consistency result for the functional nonnegative garrote

(e.g. Yuan (2007))
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Consistency of nonnegative garrote with P-splines

notation : fj = (fj(X1j), · · · , fj(Xnj))
′

Theorem:

Under some assumptions, and if θ
n tends to 0 such that

κn = n
−(q+1)
2q+3 = o( θ

n), then (given Xij = xij)

(1). P (f̂NNG
j = 0) → 1 for any j such that fj = 0

(2). supj
1
n ||fj − f̂NNG

j ||22 = OP

((
θ
n

)2)

in other words: the nonnegative garrote method with P-splines is

• variable selection consistent (1)

• estimation consistent (2)
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Other selection methods

• COSSO (Component Selection and Smoothing Operator, Lin &

Zhang (2006))

• ACOSSO (Adaptive Component Selection and Smoothing

Operator, Storlie, Bondell, Reich & Zhang (2010))

• APSO (Adaptive P-splines Selection Operator, Antoniadis et al.

(2011))
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Varying coefficient models: introduction

(Fan and Zhang (2000), ...)

Y (t) = β0(t) +
d∑

p=1

X(p)(t)βp(t) + ε(t) = X(t)′β(t) + ε(t)

Y (t) is the response at time t (t ∈ T = [0, T ])

X(t) = (X(0)(t), . . . , X(d)(t))′ covariate vector at time t with

X(0)(t) ≡ 1

β(t) = (β0(t), . . . , βd(t))
′ the vector of coefficients at time t

β0(t) is the baseline effect

ε(t) a mean zero stochastic process at time t
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longitudinal data, i.e. samples with n independent subjects or

individuals each measured repeatedly over a time period

the j-th measurement for subject i of (t, Y (t),X(t)) is denoted by

(tij , Yij ,Xij)

1 6 i 6 n, 1 6 j 6 Ni

Ni is the number of repeated measurements of subject i

tij is the measurement time, Yij is the observed response at time tij

and Xij = (X
(0)
ij , . . . , X

(d)
ij )′

N =
n∑

i=1

Ni is the total number of observations

Workshop in honor of Anestis, Villard de Lans, March 2011 p.23



P-spline estimation in varying coefficient

models

(see Lu, Zhang & Zhu (2008), Wang & Huang (2008), ...)

suppose: each unknown function βp(t), p = 0, . . . , d, can be

approximated by a B-spline basis expansion

βp(t) =

mp∑

l=1

Bpl(t; qp)αpl

where {Bpl(·; qp) : l = 1, . . . , Kp + qp = mp} is the qp-th degree

B-spline basis with Kp + 1 equidistant knots for the p-th component
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the P-spline estimates of the regression coefficients αpl are obtained

by minimizing S(α) with respect to α = (α′

0, . . . , α
′

d)
′ ∈ IRdim×1,

where αp = (αp1, . . . , αpmp
)′ and dim =

∑
p mp:

S(α) =
n∑

i=1

1

Ni

Ni∑

j=1

(
Yij −

d∑

p=0

mp∑

l=1

X
(p)
ij Bpl(tij ; qp)αpl

)2

+
d∑

p=0

λpα
′

pD
′

kp
Dkp

αp

kp is the differencing order for the p-th component

λp are the smoothing parameters
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S(α) =
n∑

i=1

1

Ni

Ni∑

j=1

(
Yij −

d∑

p=0

mp∑

l=1

X
(p)
ij Bpl(tij ; qp)αpl

)2

+
d∑

p=0

λpα
′

pD
′

kp
Dkpαp

=
n∑

i=1

(Yi −Uiα)′Wi(Yi −Uiα) + αQλα

Yi = (Yi1, . . . , YiNi
)′

B(t) =




B01(t; q0) . . . B0m0 (t; q0) 0 . . . 0 0 . . . 0

0 . . . 0
. . . 0 . . . 0

0 . . . 0 0 . . . 0 Bd1(t; qd) . . . Bdmd
(t, qd)




U′

ij = X′

ijB(tij) ∈ IR1×dim

Ui = (U′

i1, . . . ,U′

iNi
)′ ∈ IRNi×dim

Wi = diag
(
N

−1
i , . . . , N

−1
i

)
∈ IRNi×Ni (a diagonal matrix with Ni times

N
−1
i on the diagonal)

Qλ = diag(λ0D
′

k0
Dk0

, . . . , λdD
′

kd
Dkd

) ∈ IRdim×dim (a block diagonal matrix

with the matrices λpD
′

kp
Dkp

on the diagonal)
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S(α) =
n∑

i=1

(Yi − Uiα)′Wi(Yi − Uiα) + αQλα

introducing further matrix notations:

||Ỹ − Ũα||22 + αQλα

Y = (Y′

1, . . .Y
′

n)′ ∈ IRN×1

W = diag(Wi)i=1,...,n ∈ IRN×N

Ỹ = W1/2Y

U = [U0, . . . ,Ud]

Ũ = W1/2U
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consistency results are proved for the case that the number of knots

Kp + 1 (and thus mp = Kp + mp) grows with n

βp(·) is not a spline function itself, but can be approximated by a

spline function

theoretical results

• consistency result

‖β̂p(t) − βp(t)‖L2 = OP

((
1

n2

∑n
i=1

1
Ni

)q/(2q+1)
)

• asymptotic normality
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Nonnegative garrote selection method

the nonnegative garrote shrinkage factors ĉ = (ĉ0, . . . , ĉd)
′ are

obtained from the optimization problem





minc0,...,cd

∑n
i=1

1
Ni

∑d
j=1

(
Yij −

∑d
p=0 X

(p)
ij cpβ̂

init
p (tij)

)2

+ θ
∑d

p=0 cp

s.t. 0 6 cp (p = 0, . . . , d)

β̂ init
p (·) : initial estimator for the regression coefficient function βp(·)

θ > 0 is a regularization parameter

we use the P-spline estimator as an initial estimator
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some more matrix notations:




minc ||Ỹ − Z̃c||22 + θ
∑d

p=0 cp

s.t. 0 6 cp (p = 0, . . . , d)

where

Y = (Y′

1, . . .Y
′

n)′ ∈ IRN×1

W = diag(Wi)i=1,...,n ∈ IRN×N

Ỹ = W1/2Y

z
(p)
i = (X

(p)
i1 , . . . , X

(p)
iNi

) diag(β̂ init
p (tij))j=1,...,Ni

∈ IR1×Ni

Zp = (z
(p)
1 , . . . , z(p)

n )′ ∈ IRN×1

Z = [Z0, . . . ,Zd]

Z̃ = W1/2Z

c = (c0, . . . , cd)
′
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the P-spline estimator

f̂p(t) = X(p)(t)β̂p(t)

for the p-th component fp(t) = X(p)(t)βp(t) is consistent

it can be shown that the nonnegative garrote estimator with the

P-spline estimator as initial estimator for βp(t)

f̂NNG
p (t) = ĉpf̂p(t)

is · estimation consistent

· variable selection consistent

other selection methods: Adaptive P-spline Selection Operator

(APSO) ...
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example: CD4 data example

the data are a subset from the Multicenter AIDS Cohort Study

(Kaslow et al. (1987))

contain repeated measurements of physical examinations, laboratory

results, CD4 cell counts and CD4 percentages of 283 homosexual

men who became HIV-positive between 1984 and 1991

unequal numbers of repeated measurements and different

measurement times for each individual

aim: try to evaluate the effects of cigarette smoking, pre-HIV infection

CD4 cell percentage and age at HIV infection on the mean CD4

percentage after infection

the number of repeated measurements ranged from 1 to 14, with a

median of 6 and mean of 6.57

Workshop in honor of Anestis, Villard de Lans, March 2011 p.32



the number of distinct time points was 59

covariates:

◦ X
(1)
i the smoking status of the i-th individual (1 or 0 if the

individual ever or never smoked cigarettes)

◦ X
(2)
i the centered age at HIV infection for the i-th individual

◦ X
(3)
i the centered pre-infection CD4 percentage
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varying coefficient model for Yij

Yij = β0(tij) +
∑3

p=1 X
(p)
i βp(tij) + εij

β0(t) is the baseline CD4 percentage, represents the mean CD4

percentage t years after the HIV infection for a nonsmoker with

average pre-infection CD4 percentage and average age at infection

Table 1: Aids data. Summary parameters.

method NS RSS

ngp 2 110.7756

APSO 2 113.1924
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Figure 2: Aids data. Fitted (a) baseline effect; (b) coefficient of smoking status; (c)

coefficient of age at HIV infection; (d) coefficient of pre-infection CD4.
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Grouped regularization methods

Y (t) = β0(t) +

d∑

p=1

X(p)(t)βp(t) + ε(t) = X(t)′β(t) + ε(t)

approximation in terms of a basis of smooth functions

βp(t) ≈

Lp∑

ℓ=1

B
(p)
ℓ (t)γpℓ (Lp large)

as before, introducing the appropriate matrix notations

n∑

i=1

1

Ni

Ni∑

j=1

(
Yi(tij) −

p∑

k=1

Lk∑

ℓ=1

γk,ℓX
(k)
i (tij)B

(k)
ℓ (tij)

)2

≡ ‖Ỹ − Z̃γ‖2
2

Z̃ : dimension N × (
∑d

p=0 Lp) γ : dimension (
∑d

p=0 Lp) × 1
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grouped Lasso regularization

minimize

1

2n
‖Ỹ − Z̃γ‖2

2 + λ

d∑

p=0

wp‖γp‖2 wp =
√

Lp

with respect to the vector of parameters γ = (γ′

0, . . . , γ
′

d)
′

defining pλ(v) = λ v , for v ≥ 0, this can be written as

minimize
1

2n
‖Ỹ − Z̃γ‖2

2 +
d∑

p=0

pλ

(
wp‖γp‖2

)
wp =

√
Lp

Liu and Zhang (2008)
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grouped SCAD regularization

the SCAD penalty pλ(v) , for v ≥ 0, is

pλ(v) =





λv if 0 ≤ v ≤ λ

−
v2 − 2aλv + λ2

2(a − 1)
if λ < v < aλ

(a + 1)λ2

2
if v ≥ aλ

grouped SCAD procedure: minimize

1

2n
‖Ỹ − Z̃γ‖2

2 +
d∑

p=0

pλ(ωp‖γp‖2) wp =
√

Lp

with respect to the vector of parameters γ
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possible approach

a Taylor expansion of pλ(v) for v around v0 gives

pλ(v) ≈ pλ(v0) +
1

2

p′λ(v0)

v0
(v2 − v2

0)

(see Fan and Li (2001))

this leads to solving a Ridge-regression type of problem

(restricted to dn < n)
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first grouped SCAD regularization procedure

minimize

1

2n
‖Ỹ − Z̃γ‖2

2 +
d∑

p=0

pλ(ωp‖γp‖2) wp =
√

Lp

with respect to the vector of parameters γ

second grouped SCAD regularization procedure

minimize with respect to γ

1

2n
‖Ỹ − Z̃γ‖2

2 +
d∑

p=0

pλ(‖γp‖1)

algorithm for solving this optimization problem: in Breheny & Huang

(2009)
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grouped Bridge regularization

penalty function, for v > 0,

pλ(v) = λ|v|q with 0 < q < 1

grouped Bridge approach: minimizing the objective function

1

2n
‖Ỹ − Z̃γ‖2

2 +
d∑

p=0

pλ(ωp‖γp‖2)

an algorithm for solving this optimization problem: from Breheny &

Huang (2009)
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Simulation studies

comparison of 5 methods of grouped regularization methods

• gbridge: grouped Bridge (q = 1/2); local coordinate descent

algorithm from Breheny & Huang (2009)

• gscad: grouped SCAD; idem

• gMCP: grouped MCP; idem

• glasso 1: grouped Lasso; idem

• glasso 2: grouped Lasso; implemented by Meier, van de Geer

& Bühlman (2008)
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tuning parameter λ chosen by a BIC-type of criterion:

log
(RRSλ

n∑

i=1

Ni

)
+

log(
n∑

i=1

Ni)

n∑

i=1

Ni

dfλ

where RSSλ is the residual sum of squares

dfλ is the number of nonzero coefficients of γ̂
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simulation model

(from Huang, Wu & Zhou (2002) and Wang, Li & Huang (2008))

Yi(tij) = β0(tij)+
23∑

p=1

βp(tij)X
(p)
i (tij)+εi(tij), i = 1, . . . , n j = 1, . . . , Ñ

intercept term and the three true relevant variables:

β0(t) = 15 + 20 sin

(
πt

60

)
β1(t) = 2 − 3 cos

(
π(t − 25)

15

)

β2(t) = 6 − 0.2t β3(t) = −4 +
(20 − t)3

2000
t ∈ [1, 30]

remaining coefficients: βp(t) = 0, p = 4, . . . , 23

time points tij given by 1, 2, . . . , 30 (Ñ = 30) and n = 100
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simulation of three relevant variables X
(k)
i (t), k = 1, . . . , 3:

at any point t, the variable X
(1)
i (t) is sampled uniformly from

[t/10, 2 + t/10]

conditioning on X
(1)
i (t), the variable X

(2)
i (t) is centered

Gaussian with variance given by (1 + X
(1)
i (t))/(2 + X

(1)
i (t))

the variable X
(3)
i (t) is independent of X

(1)
i and X

(2)
i and is a

Bernoulli random variable with success rate equal to 0.6

the irrelevant variables X
(k)
i , k = 4, . . . , 23 are paths of centered

Gaussian process with covariance function

Cov(X
(k)
i (t), X

(k)
i (s)) = 4 exp(−|t − s|)

the irrelevant variables are independent between them and of the

others three first variables
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three levels of noise for the random error: σ = 1, 1.25 and 2

corresponds to signal-to-noise ratio (SNR) : 6.39, 5.11 and 3.19

SNR is defined by γT ZT Zγ/N

for each simulated data set: use cubic splines with five equidistant

internal knots

number of simulations: 500
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reported criteria:

• mean value of the tuning parameter λ

• the average number of variables selected

• the average number of truly zero variables that where selected

(false positives)

• the average number of truly nonzero variables that where not

selected (false negatives)

• the mean and standard deviation of the model error:

(γ̂ − γ)T ZT Z(γ̂ − γ)/N
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Table 2: Selection model ability

λ S FP FN ME

σ = 1

gbridge 0.006 4.038 0.038 0 0.0121 (0.0033)

gscad 0.199 8.088 4.088 0 0.0324 (0.0142)

gMCP 0.206 7.360 3.360 0 0.0311 (0.0124)

glasso 1 0.114 4.000 0.000 0 0.0141 (0.0066)

glasso 2 0.061 4.102 0.102 0 3.1458 (0.0497)

σ = 2

gbridge 0.0146 4.052 0.052 0 0.0482 (0.0137)

gscad 0.294 6.350 2.350 0 0.1222 (0.0316)

gMCP 0.299 6.050 2.050 0 0.1103 (0.0317)

glasso 1 0.145 4.000 0.000 0 0.0587 (0.0407)

glasso 2 0.110 4.586 0.586 0 3.5621 (0.1209)
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remarks from this simulation study:

• for all signal-to-noise ratios, gbridge and glasso 1 lead to the

best result for the selection ability and for the model error

compared to the other methods

• the gbridge method is better in model error while glasso 1

method is better in selection ability

• the gscad and gMCP procedures are not very good in selection

ability: the number of false positives is rather high

• the implementation of group lasso (glasso 2) gives relatively

correct result in selection model but leads to very bad result in

term of model error
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typical performance of the estimators of the four first coefficients for a

signal-to-noise ratio = 1.25

Figure 4:
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