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Metric for Classification

e Classification requires finding a metric to compare signals, with:

- small distances d(f, g) within a class

- large distances d(f, g) across classes.

o If one finds a representation &( f) such that
A(f,9) = |®(f) — B(g)| (kernel metric)

then the classification may be linearized (SVM, PCA,...).

e Is there an appropriate kernel metric, which & ?

e Should 1t increase dimensionality ?
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e Invariant to translation or scaling.

e Stable to elastic deformations.




e Invariant to translation or scaling.

e Stable to elastic deformations.

Translation orbit in L*(R?)
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Deformation




Distance from Representations

e Distance: ||2(f) — ®(g)| -

Invariance to groups of operators{D. }, such as rigid
translations D, f(x) = f(z —7):

(D, f) = P(f) if 7 = cst, weak property.

Lipschitz continuity to deformations D, f(x) = f(x — 7(x))
T(x) = 7(x0) + V7 (20)(T — 20)
|2(f) = (D) < ClANVTloo -

[inearizes local deformations.
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|‘,--3";.v .. Texture Discrimination '

e A texture F'is stationary but typically non-Gaussian

and non-Markovian process.

Textures with same power spectrum

e We want to find ® so that:
- Invariance: ®(F') = E{®(F)} with probability 1.

- Lipschitz continuity to random deformations:

E{|®(F) — ®(D-F)|*} < C E{|F|"} E{|IV7I5.} -
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L - .
#X F. Overview =y

e Failures of Fourier and wavelet representations.

e Invariance and continuity through scattering space contraction.

e Representation of stationary processes

e Scattering PCA classification of patterns and textures

e Learning invariance and contraction for classification.
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£X i Deformation Instability of Fourier_.

e Elastic deformation D, f(x) = f(z — 7(z)) with |V71| < 1.

e The Fourier modulus 1s translation invariant:

If 7(x)=cst then |D,f(w)|=|f(w) :®(f)=|f|.

e High frequencies are not Lipschitz continuous to deformations:

If 7(x) # cst then 7(x) =~ 7(xg) + V7(20) - (T — x0) affine.

A

If f(w) has energy at high frequencies &:

= | Do f| = I ~ [IV7 - €]l
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. Sparsity and Discriminability

e Modulus reduces discriminability for non-sparse signals:

§(x) and e have same Fourier modulus (constant).

e In an orthonormal basis B = {¢., }mez, for any f:

s 1 gmd| = 1(f, gm) |}

has a dimension equal to the number of non-zero (f, g.)-

e The loss of discriminability with a modulus is small

for classes of sparse signals in B (Kolmogorov entropy).
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L -
#X . Wavelet Transforms o

e In L?%(R), dilated wavelets: ¢;(x) = a ¢ (a 7 x) with a > 1.

e In L?(R?), x = (71, x2), dilated and rotated wavelets:

i (2) = 9—2] w(g—ijx) where IR, is a rotation by +.

e Wavelet transform of f for all v € I" and 27 < 2/

Wif(x) = ( ff**ify(fz) ) j<J~er

where ¢ () filters lower frequencies: [ ¢j(z)dz = 1.
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. Wavelet Contraction/Unitary

Proposition: A wavelet transform is contractive
W2 = [(If e ou@P 4 3 1f %y (a)) do < |11
1<J,vel

if and only if for almost all w € R

95 (W) + 5 Z (wm )P + |1 (— )|2) <1

7<J,y
and unitary if it is an equality:.
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. Wavelet Contraction/Unitary

Proposition: A wavelet transform is contractive

W2 = [(If e ou@P 4 3 1f %y (a)) do < |11

1< J,yel’

if and only if for almost all w & R*

B+ 5 3 (1854@)F + 184 (-0)?) <1

J<L7
and unitary if it is an equality:.

A __

D@C\

o ()T

0
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Image and Audio Descriptors

e How to build invariant descriptors from wavelet coefficients ?

e If /1s translated then f x 1), - is translated
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Image and Audio Descriptors

e How to build invariant descriptors from wavelet coefficients ?

e If /1s translated then f x 1), - is translated

o |f 1, | is almost invariant to translations by 7 < 27 .

o |f x| * ¢y is almost invariant to translations by 7 < 2/

e Problem: Important loss of information by averaging.

e Can we recover information that remains locally invariant 7

Thursday, March 24, 2011



. Scattering Operators

High frequencies are removed from |f % ;, ~,| * ¢

Thursday, March 24, 2011



. Scattering Operators

High frequencies are removed from |f x 1, ~, | x @.

Recovered with fine scale wavelet coeflicients:

' J
|f*¢j1,’¥1|*¢j2,’¥2 for 272 <2° .

Local invariance by removing the phase and averaging:

Hf*wjlfyl‘ *wjzﬁz‘ *¢J -

Co-occurrence at scales 271, 272 and directions 71, 7.
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#€X F.  Scattering Operators oy

High frequencies are removed from |f x 1, ~, | x @.

Recovered with fine scale wavelet coeflicients:

' J
|f*¢j1,’¥1|*¢j2,’¥2 for 272 <2° .

Local invariance by removing the phase and averaging:

Hf*wjlfyl‘ *wjzﬁz‘ *¢J -

Co-occurrence at scales 271, 272 and directions 71, 7.

Lost high frequencies recovered with wavelets coeflicients...
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Scattering Cascade
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Scattering Cascade
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Scattering Cascade

J*xoy
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“,Tﬁ'jiv - Scattering Cascade it 3
f

‘f*wjla')’l‘ * Qg
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‘f*wﬁ,’h‘ *¢J

| ‘f *¢j1,71| *¢j2,’}’2| * ng

‘ | ‘f*wjla’h‘ *wjz,vz‘ *¢j3,”73|
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‘f*wﬁ,’)’l‘ *¢J

1 * gl -

* wjma’)/m ‘ * ¢J

Cascade of contractive wavelet and modulus operators.
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Scattering Representation

fxos(x)
[ iy | * D ()

ij(ll?) — Hf*wj1,71|*¢j2,72|*¢<](x)

\| \f*%‘lm\ *wjm,7m|*¢<]($)/ Vi1 9m




Scattering Representation

fxos(x)
[ iy | * D ()

ij(llf) — Hf*wj1,71|*¢j2,72|*¢<](x)

\| \f*%‘lm\ *wjm,7m|*¢<](ﬂ?)/ Vi1 9m

Euclidean norm: |S;f(x)|?

Scattering norm: ||SJf||2:/\SJf(x)|2dx
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Scattering Representation

fxos(x)
[ iy | * D ()

SJf(CE) — Hf*wj1,71|*¢j2,72|*¢<](x)

\| ‘f*wﬁﬁl‘ *wjm,7m|*¢J(x)/ V1. Im

Euclidean norm: |S;f(x)|?

Scattering norm: ||SJf||2:/\SJf(x)|2dx

Contractive because cascade of contractive operators:

1S7f —Ssgll <\ f —all-
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. Scattering Energy Conservation

Theorem: For appropriate complex wavelets

lim Z H ‘ |f*%1 ’71| ‘*wjmﬁm| H2 =0

T — OO . )
(J1.---dm)EZ™
(’Yl---’)’m)erm

and S fIIF = 11" .
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Computational Complexity

o If f(n) is of size N

Compute only S;f(27n) : 272/ N scattering vectors.

For K directional wavelets and 227 = N:

O(K™(log N)™) scattering coefficients

computed with O(/N log N) operations.

For images: K =6, m < 3.

Thursday, March 24, 2011
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_Translation Invariance

e When 27 goes to oo coefficients converge to L' norms:

lim ZCU‘ ‘f*@bjl,’yl"--*wjmﬁm‘*¢J(x) :/"f*wjlﬁl‘“'*wjmﬁm(u)‘du'

J— 00

Theorem: lim ||S;f — Sjg|l converges and

J — 00

if D,f(x)= f(x —7) is a translation then

lim ||S;f—S;(D-f)]| =0

J— 00
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. Continuity to Deformations

Theorem If D, f(z) = f(z — 7(x)) with ||V7| <1

then for .J > log g

17 lloo

VTl

1Ssf = Ss(D-H)l < Cm|fl| tog (o) 197

Proof: ||S; — S;D-|| < ||D-S5— 55| + |IS5, D-]|

IS, D]l < Cm||[Wy, D-||

T |loo
W5, Do)l < € tog (ol ) 197
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Scattering Stationary Processes

If F'(x) is a stationary process then

E{F}
E{S;F(z)} = E{‘F’.‘(ﬁb]’l,%u
B F % gy | oo %} | S0

does not depend upon J and x.

Theorem: For appropriate complex wavelets

E{|S;F(z)[*} = E{|F ()"} .
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Scattering Stationary Processes

Conjecture: for a wide class of "ergodic” stationary processes

lim E{|S;F — E{S;F}|*} =0 exponentialy

J— 00

)@E{SJF}
Theorem: for J > log ||HVTTH|C|>O

Tlloo \?2
B{IS/F - S4(D,F)*) < Cm* B{|FP} Bflog (10 ) IVrl)
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-._Classification : Joan Bruna

e K classes corresponding to K (non stationary) processes { Fi } 1< i
e Each class is represented by the centroid E{S;F}}

e Intra class variance reduction by eliminating the space Vg4 x

of the d principal variance components (main deformations):

A A

1
Via

Fi
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. Scattering PCA Classification

e PCA calculation of the d dimensional spaces Vi 4 of maximum
variability of SyFx — E{S;F})} from training samples of F}

e Classification of a signal 1 :

_ : _ 2
k(f) = arg min_|[Py; (Ssf = E{S,F})]

e Cross-validation:

- d : dimension of the variability reduction.
- J : maximum scattering scale.

e Class per class classification models: not discriminative.
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Rotations and
1llumination

61 classes o
variations.

Scattering J = log, N

Training | PCA SVM LBP  Mark. Rand. 8§
perclass | m=2 m =2
23 0.9% 18.23% 22.43%
46 0.09% 1.7% 3.96% 2.46%

Thursday, March 24, 2011



e Usual approaches use high order moments: bad estimators. Does
not work for 1mage textures.

e Can characterize non-gaussian processes with first and second
order moments of scattering vectors.

e Scattering estimation of multifractal properties without moments
(Bacry, Duvernet)
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Scattering with J = 3

Training | Conv. Net. PCA  SVM

m=2 m=2

300 7.18 6.05 21.5
1000 3.21 2.39 3.06
2000 2.53 1.71 1.87
5000 1.52 1.22 1.54
10000 0.85 1.17 1.15
20000 0.76 1.4 0.96
40000 0.65 0.78 0.85
60000 0.53 0.77 0.7
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#X Fi.  Combined Scattering .y

e Translation invariance is not sufficient for complex classes.

e Non-linear class variability need to be further reduced:

f— |5 —| ST | — ..

e Scattering Sg;, over a compact Lie group G with iterated

wavelet tranforms over L?(G) (instead of L#(R?)) and

cascaded with modulus operators.

Thursday, March 24, 2011



e Non-linear space contraction along the Lie Algebra

to reduce variability within classes.

e Eistimating a Lie Algebra with a Haar wavelet basis:

e Scattering by cascading the Haar wavelet transform.
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e Find the local directions of variability in classes: a Lie Algebra,
no manifold model. 0 -2

e Non-linear space contraction along the Lie Algebra

to reduce variability within classes.

e Eistimating a Lie Algebra with a Haar wavelet basis:
o ©® %,
e
0 ®
®o g 0

e Scattering by cascading the Haar wavelet transform.
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Lie Algebra Learning

e Find the local directions of variability in classes: a Lie Algebra,

no manifold model. 0 %2
il
° (]
Y

e Non-linear space contraction along the Lie Algebra

to reduce variability within classes.

e Eistimating a Lie Algebra with a Haar wavelet basis:

e Scattering by cascading the Haar wavelet transform.
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Lie Algebra Learning

e Find the local directions of variability in classes: a Lie Algebra,

no manifold model. 0 %2
il
° (]
Y

e Non-linear space contraction along the Lie Algebra

to reduce variability within classes.

e Eistimating a Lie Algebra with a Haar wavelet basis:

&

D0
QO

0 9

e
Cc
&
o

)

e Scattering by cascading the Haar wavelet transform.
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e Find the local directions of variability in classes: a Lie Algebra,
no manifold model. 0 -2

e Non-linear space contraction along the Lie Algebra

to reduce variability within classes.

e Eistimating a Lie Algebra with a Haar wavelet basis:

[6) ()

(0 ()

o %0
(0]

e Scattering by cascading the Haar wavelet transform.
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e Find the local directions of variability in classes: a Lie Algebra,
no manifold model. 0 -2

e Non-linear space contraction along the Lie Algebra

to reduce variability within classes.

e Eistimating a Lie Algebra with a Haar wavelet basis:

[6) )

(0 (0]

o ©0
(0]

e Scattering by cascading the Haar wavelet transform.
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e Find the local directions of variability in classes: a Lie Algebra,
no manifold model. 0 -2

e Non-linear space contraction along the Lie Algebra

to reduce variability within classes.

e Eistimating a Lie Algebra with a Haar wavelet basis:

e Scattering by cascading the Haar wavelet transform.
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lw’  §

e Multiscale scattering contractions yield invariants that are
Lipschitz continuous to deformations.

e [terative scattering contractions 1s effective for high dimensional
non-discriminative classification.

e New representation of stationary processes to explore.

e [terative filter bank contractions seem to exist in audio cortex.

e An approach to understand some biological architectures ?

e Papers/softwares: www.cmap.polytechnique.fr/scattering
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