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     The Best Image Classifier
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ψ(x) = θ(x)eiξx

 Psychophysics of Vision

[Wolf et Al.] 

Hypercolumns in V1:

  directional wavelets

Simple cells Gabor linear models
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ψ(x) = θ(x)eiξx

 Psychophysics of Vision

[Wolf et Al.] 

Hypercolumns in V1:

  directional wavelets

Simple cells Gabor linear models

Complex Cells

• Non-linear

• Large receptive fields

• Some forms of invariance

 «What» Pathway towards V4:

• More specialized invariance

• «Grand mother cells»
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    Audio Psychophysics

 Cochlea:

dilated wavelet filters

0 ω
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     Metric for Classification

• Classification requires finding a metric to compare signals, with:

• If one finds a representation            such that

then the classification may be linearized (SVM, PCA,...). 

• Is there an appropriate kernel metric, which     ?

• Should it increase dimensionality ?

Φ

- large distances d(f, g) across classes.

- small distances d(f, g) within a class

Φ(f)

d(f, g) = ‖Φ(f) − Φ(g)‖ (kernel metric)
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• Invariant to translation or scaling.

         Perceptual Distance

• Stable to elastic deformations.
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• Invariant to translation or scaling.

         Perceptual Distance

• Stable to elastic deformations.

‖Φ(f) − Φ(g)‖ ≤ C d(f, g)d(f, g)

Translation orbit in L
2(R2)

Φ

Φ(g)

Φ(f)f

Deformation

g
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  Distance from Representations

•Distance:

Invariance to  groups of operators             such as rigid 

translations                                     :

Lipschitz continuity to deformations

Linearizes local deformations.

{Dτ}τ

Dτf(x) = f(x− τ)

Φ(Dτf) = Φ(f) if τ = cst, weak property.

Dτf(x) = f(x− τ(x))

τ(x) ≈ τ(x0) + ∇τ(x0)(x − x0)

‖Φ(f) − Φ(Dτf)‖ ≤ C ‖f‖‖∇τ‖∞ .

‖Φ(f) − Φ(g)‖ .
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• We want to find Φ so that:

E{‖Φ(F ) − Φ(DτF )‖2} ≤ C E{|F |2}E{‖∇τ‖2

∞
} .

- Invariance: Φ(F ) = E{Φ(F )} with probability 1.

- Lipschitz continuity to random deformations:

• A texture F is stationary but typically non-Gaussian

and non-Markovian process.

Textures with same power spectrum

     Texture Discrimination
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        Overview

• Failures of Fourier and wavelet representations.

• Invariance and continuity through scattering space contraction.

• Representation of stationary processes

• Scattering PCA classification of patterns and textures 

• Learning invariance and contraction for classification.
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• Elastic deformation 

• The Fourier modulus is translation invariant:

• High frequencies are not Lipschitz continuous to deformations:

Deformation Instability of Fourier

Dτf(x) = f(x− τ(x)) with

If τ(x) = cst then |D̂τf(ω)| = |f̂(ω)| : Φ(f) = |f̂ | .

If τ(x) != cst then τ(x) ≈ τ(x0) + ∇τ(x0) · (x − x0) affine.

|∇τ | < 1.

If f̂(ω) has energy at high frequencies ξ:

⇒ ‖ |D̂τf |−| f̂ | ‖ ∼ ‖∇τ · ξ‖∞
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• Modulus reduces discriminability for non-sparse signals:

• In an orthonormal basis B = {gm}m∈Z, for any f :

has a dimension equal to the number of non-zero 〈f, gm〉.

δ(x) and e
ix

2

have same Fourier modulus (constant).

{

h : |〈h, gm〉| = |〈f, gm〉|
}

• The loss of discriminability with a modulus is small

for classes of sparse signals in B (Kolmogorov entropy).

  Sparsity and Discriminability
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ψj,γ(x) = 2−2j ψ(2−j
Rγx) where Rγ is a rotation by γ.

WJf(x) =

(

f ⋆ φJ(x)
f ⋆ ψj,γ(x)

)

j<J,γ∈Γ

• In L
2(R), dilated wavelets: ψj(x) = a

−jψ(a−j
x) with a > 1.

• Wavelet transform of f for all γ ∈ Γ and 2j < 2J

where φJ(x) filters lower frequencies:
∫

φJ(x) dx = 1.

     Wavelet Transforms

• In L
2(R2), x = (x1, x2), dilated and rotated wavelets:

Thursday, March 24, 2011



Proposition: A wavelet transform is contractive

and unitary if it is an equality.

if and only if for almost all ω ∈ R
d

|φ̂J(ω)|2 +
1

2

∑

j<J,γ

(

|ψ̂j,γ(ω)|2 + |ψ̂j,γ(−ω)|2
)

≤ 1

‖WJf‖2 =

∫

(

|f ⋆ φJ(x)|2 +
∑

j<J,γ∈Γ

|f ⋆ ψj,γ(x)|2
)

dx ≤ ‖f‖2

    Wavelet Contraction/Unitary
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Proposition: A wavelet transform is contractive

and unitary if it is an equality.

if and only if for almost all ω ∈ R
d

|φ̂J(ω)|2 +
1

2

∑

j<J,γ

(

|ψ̂j,γ(ω)|2 + |ψ̂j,γ(−ω)|2
)

≤ 1

‖WJf‖2 =

∫

(

|f ⋆ φJ(x)|2 +
∑

j<J,γ∈Γ

|f ⋆ ψj,γ(x)|2
)

dx ≤ ‖f‖2

    Wavelet Contraction/Unitary

|φ̂J(ω)|2

|ψ̂j,γ(ω)|2

ω1

ω2

|ψ̂j(ω)|2|φ̂J(ω)|2

0 ω

d = 1
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     Image and Audio Descriptors

•How to build invariant descriptors from wavelet coefficients ?

•If f is translated thenf ⋆ ψj,γ is translated

Thursday, March 24, 2011



     Image and Audio Descriptors

•How to build invariant descriptors from wavelet coefficients ?

•If f is translated thenf ⋆ ψj,γ is translated

• |f ⋆ ψj,γ | is almost invariant to translations by τ ≪ 2j .

Thursday, March 24, 2011



     Image and Audio Descriptors

•How to build invariant descriptors from wavelet coefficients ?

•If f is translated thenf ⋆ ψj,γ is translated

• |f ⋆ ψj,γ | is almost invariant to translations by τ ≪ 2j .

• |f ⋆ ψj,γ | ⋆ φJ is almost invariant to translations by τ ≪ 2J .

Thursday, March 24, 2011



     Image and Audio Descriptors

•How to build invariant descriptors from wavelet coefficients ?

•If f is translated thenf ⋆ ψj,γ is translated

• |f ⋆ ψj,γ | is almost invariant to translations by τ ≪ 2j .

• |f ⋆ ψj,γ | ⋆ φJ is almost invariant to translations by τ ≪ 2J .

• Problem: Important loss of information by averaging.

• Can we recover information that remains locally invariant ?
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High frequencies are removed from |f ⋆ ψj1,γ1
| ⋆ φJ .

    Scattering Operators
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High frequencies are removed from |f ⋆ ψj1,γ1
| ⋆ φJ .

Recovered with fine scale wavelet coefficients:

||f ⋆ ψj1,γ1
| ⋆ ψj2,γ2

| ⋆ φJ .

|f ⋆ ψj1,γ1
| ⋆ ψj2,γ2

for 2
j2 < 2

J .

Co-occurrence at scales 2j1 , 2j2 and directions γ1, γ2.

Local invariance by removing the phase and averaging:

    Scattering Operators
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High frequencies are removed from |f ⋆ ψj1,γ1
| ⋆ φJ .

Lost high frequencies recovered with wavelets coefficients...

Recovered with fine scale wavelet coefficients:

||f ⋆ ψj1,γ1
| ⋆ ψj2,γ2

| ⋆ φJ .

|f ⋆ ψj1,γ1
| ⋆ ψj2,γ2

for 2
j2 < 2

J .

Co-occurrence at scales 2j1 , 2j2 and directions γ1, γ2.

Local invariance by removing the phase and averaging:

    Scattering Operators
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     Scattering Cascade
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     Scattering Cascade
f
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     Scattering Cascade

|f ⋆ ψj1,γ1
|

f ⋆ φJ

|WJ |
f
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     Scattering Cascade

|f ⋆ ψj1,γ1
| ⋆ φJ

∀j1

∀γ1

| |f ⋆ ψj1,γ1
| ⋆ ψj2,γ2

|

|WJ |
|f ⋆ ψj1,γ1

|

f ⋆ φJ

|WJ |
f
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| | |f ⋆ ψj1,γ1
| ⋆ ψj2,γ2

| ⋆ ψj3,γ3
|

     Scattering Cascade

| |f ⋆ ψj1,γ1
| ⋆ ψj2,γ2

| ⋆ φJ

∀j1, j2

∀γ1, γ2

|WJ |

|f ⋆ ψj1,γ1
| ⋆ φJ

∀j1

∀γ1

| |f ⋆ ψj1,γ1
| ⋆ ψj2,γ2

|

|WJ |
|f ⋆ ψj1,γ1

|

f ⋆ φJ

|WJ |
f
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     Scattering Cascade

| |f ⋆ ψj1,γ1
| ⋆ ψj2,γ2

| ⋆ φJ

∀j1, j2

∀γ1, γ2

|WJ |

|f ⋆ ψj1,γ1
| ⋆ φJ

∀j1

∀γ1

| |f ⋆ ψj1,γ1
| ⋆ ψj2,γ2

|

|WJ |
|f ⋆ ψj1,γ1

|

f ⋆ φJ

|WJ |

Cascade of contractive wavelet and modulus operators.

· · · · · ·

| |f ⋆ ψj1,γ1
| · · · ⋆ ψjm,γm

|

|WJ |
| |f ⋆ ψj1,γ1

| · · · ⋆ ψjm,γm
| ⋆ φJ

∀j1...jm

∀γ1...γm

f
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∀j1...jm

∀γ1...γm

     Scattering Representation

SJf(x) =

f ⋆ φJ(x)

|f ⋆ ψj1,γ1
| ⋆ φJ(x)

||f ⋆ ψj1,γ1
| ⋆ ψj2,γ2

| ⋆ φJ(x)

| |f ⋆ ψj1,γ1
| · · · ⋆ ψjm,γm

| ⋆ φJ(x)
· · ·
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Scattering norm: ‖SJf‖2 =

∫
|SJf(x)|2 dx

Euclidean norm: |SJf(x)|2

∀j1...jm

∀γ1...γm

     Scattering Representation

SJf(x) =

f ⋆ φJ(x)

|f ⋆ ψj1,γ1
| ⋆ φJ(x)

||f ⋆ ψj1,γ1
| ⋆ ψj2,γ2

| ⋆ φJ(x)

| |f ⋆ ψj1,γ1
| · · · ⋆ ψjm,γm

| ⋆ φJ(x)
· · ·
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Scattering norm: ‖SJf‖2 =

∫
|SJf(x)|2 dx

Euclidean norm: |SJf(x)|2

∀j1...jm

∀γ1...γm

     Scattering Representation

SJf(x) =

f ⋆ φJ(x)

|f ⋆ ψj1,γ1
| ⋆ φJ(x)

||f ⋆ ψj1,γ1
| ⋆ ψj2,γ2

| ⋆ φJ(x)

| |f ⋆ ψj1,γ1
| · · · ⋆ ψjm,γm

| ⋆ φJ(x)
· · ·

Contractive because cascade of contractive operators:

‖SJf − SJg‖ ≤ ‖f − g‖.
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Theorem:

and

For appropriate complex wavelets

lim
m→∞

∑

(j1...jm)∈Zm

(γ1...γm)∈Γm

‖ | |f ⋆ ψj1,γ1
| · · · | ⋆ ψjm,γm

| ‖2
= 0

 Scattering Energy Conservation

‖SJf‖2
= ‖f‖2 .
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• If f(n) is of size N

Compute only SJf(2Jn) : 2−2JN scattering vectors.

For images: K = 6, m ≤ 3.

For K directional wavelets and 2
2J

= N :

computed with O(N log N) operations.

O(Km(log N)m) scattering coefficients

     Computational Complexity 

Thursday, March 24, 2011



20 40 60 80 100 120

20

40

60

80

100

120

20 40 60 80 100 120

20

40

60

80

100

120

0 2 4 6 8 10 12

x 10
5

10
−5

10
−4

10
−3

10
−2

10
−1

0 2 4 6 8 10 12

x 10
5

10
−5

10
−4

10
−3

10
−2

10
−1

 

 

order1

order2

order3

     Scattering Examples
f SJf
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Theorem: lim
J→∞

‖SJf − SJg‖ converges and

lim
J→∞

‖SJf − SJ(Dτf)‖ = 0 .

if Dτf(x) = f(x− τ) is a translation then

lim
J→∞

2dJ | |f ⋆ ψj1,γ1
|... ⋆ ψjm,γm

| ⋆ φJ(x) =

∫
| |f ⋆ ψj1,γ1

|... ⋆ ψjm,γm
(u)| du.

• When 2J goes to ∞ coefficients converge to L
1 norms:

   Translation Invariance
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If Dτf(x) = f(x − τ(x)) with ‖∇τ‖∞ < 1Theorem

then for J > log
‖τ‖∞
‖∇τ‖∞

‖SJf − SJ(Dτf)‖ ≤ C m ‖f‖ log
( ‖τ‖∞
‖∇τ‖∞

)

‖∇τ‖∞

Proof: ‖SJ − SJDτ‖ ≤ ‖DτSJ − SJ‖ + ‖[SJ , Dτ ]‖

‖[SJ , Dτ ]‖ ≤ C m ‖[WJ , Dτ ]‖

‖[WJ , Dτ ]‖ ≤ C log

(

‖τ‖∞
‖∇τ‖∞

)

‖∇τ‖∞

  Continuity to Deformations
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E{|SJF (x)|2} = E{|F (x)|2} .

E{F}

E{|F ⋆ ψj1,γ1
|}

E{| |F ⋆ ψj1,γ1
| · · · ⋆ ψjm,γm

|}

E{SJF (x)} =
· · ·

 Scattering Stationary Processes

If F (x) is a stationary process then

does not depend upon J and x.

Theorem: For appropriate complex wavelets

∀j1...jm

∀γ1...γm
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for a wide class of ”ergodic” stationary processes

Theorem: for J > log
‖τ‖∞
‖∇τ‖∞

E{|SJF − SJ(DτF )|2} ≤ C m
2
E{|F |2}E{log

( ‖τ‖∞
‖∇τ‖∞

)2

‖∇τ‖2

∞
}

Conjecture:

lim
J→∞

E{|SJF − E{SJ F}|2} = 0 exponentialy

E{SJF}

E{SJG}

 Scattering Stationary Processes

G

F

SJ

x

x
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• K classes corresponding to K (non stationary) processes  

    Classification : Joan Bruna

SJ

E{SJFk}

Fk
Vk,d

Fk′

X

X

E{SJFk′}

Vk′,d

{Fk}k≤K

• Each class is represented by the centroid E{SJFk}

• Intra class variance reduction by eliminating the space Vd,k

of the d principal variance components (main deformations):

V
⊥

k,d

V
⊥

k′,d
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    Scattering PCA Classification

• PCA calculation of the d dimensional spaces            of maximum            

variability of                                  from training samples of 

• Classification of a signal f :  

• Cross-validation:

– d : dimension of the variability reduction.

– J : maximum scattering scale.

• Class per class classification models: not discriminative.

Fk

Vk,d

SJFk − E{SJFk}

k(f) = arg min
1≤k≤K

‖PV⊥
k,d

(SJf − E{SJFk})‖
2
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Training PCA SVM LBP Mark. Rand. 8

per class m = 2 m = 2

23 0.9% 18.23% 22.43%

46 0.09% 1.7% 3.96% 2.46%

Scattering J = log
2
N

   Classification of Textures

61 classes

Rotations and 

illumination 

variations.
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Non-Gaussian Process Characterization

• Usual approaches use high order moments: bad estimators. Does 

not work for image textures.

• Can characterize non-gaussian processes with first and second 

order moments of scattering vectors.

• Scattering estimation of multifractal properties without moments 

(Bacry, Duvernet)
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Scattering with J = 3

Training Conv. Net. PCA SVM

m = 2 m = 2

300 7.18 6.05 21.5

1000 3.21 2.39 3.06

2000 2.53 1.71 1.87

5000 1.52 1.22 1.54

10000 0.85 1.17 1.15

20000 0.76 1.4 0.96

40000 0.65 0.78 0.85

60000 0.53 0.77 0.7

 Digit Classification: MNIST
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• Translation invariance is not sufficient for complex classes.

f −→ STrans

J −→ SG

J′ −→ ...

• Non-linear class variability need to be further reduced:

• Scattering SG

J′ over a compact Lie group G with iterated

wavelet tranforms over L
2(G) (instead of L

2(R2)) and

cascaded with modulus operators.

    Combined Scattering
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• Estimating a Lie Algebra with a Haar wavelet basis:

• Scattering by cascading the Haar wavelet transform.

       Lie Algebra Learning

• Non-linear space contraction along the Lie Algebra

to reduce variability within classes.
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• Find the local directions of variability in classes: a Lie Algebra, 

no manifold model.

• Estimating a Lie Algebra with a Haar wavelet basis:

• Scattering by cascading the Haar wavelet transform.

       Lie Algebra Learning

• Non-linear space contraction along the Lie Algebra

to reduce variability within classes.
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         Conclusion

• Multiscale scattering contractions yield invariants that are 

Lipschitz continuous to deformations.

• Iterative scattering contractions is effective for high dimensional 

non-discriminative classification.

• New representation of stationary processes to explore.

• Iterative filter bank contractions seem to exist in audio cortex.

• An approach to understand some biological architectures ?

• Papers/softwares:  www.cmap.polytechnique.fr/scattering 
Thursday, March 24, 2011

http://www.cmap.polytechnique.fr/scatteringmallwww.cmap.polytechnique.fr/scattering
http://www.cmap.polytechnique.fr/scatteringmallwww.cmap.polytechnique.fr/scattering

