Estimating satellite collision probabilities via the
adaptive splitting technique
From Application to Theory

Rudy PASTEL, ONERA/DCPS-Palaiseau
Supervisor: Jérome MORIO, ONERA/DCPS-Palaiseau
Scientific director: Francois Le GLAND, INRIA de Rennes

January 2011



€ Introduction

© Iridium and Cosmos

© An adaptive splitting technique
@ AST's open issues

© Conclusion

@ Publications and communications

@ References



Introduction

Outline

@ Introduction



Introduction




Introduction

One might think of an empty outer space.



Introduction

One might think of an empty outer space.



Introduction

One would be wrong!



Introduction

One would be rong!



Introduction

Space debris urroud Earth and



Introduction

On Tuesday February the 10" 2009, satellites Iridium and Cosmos
collided.



Introduction

On Tuesday February the 10" 2009, satellites Iridium and Cosmos
collided.
What was the probability it happened?
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Iridium and Cosmos

Sizing, localisation and propagation

Satellites sizing: Rough estimates




Iridium and Cosmos

Sizing, localisation and propagation

Satellites sizing: Rough estimates

@ Real sizes are confidential.




Iridium and Cosmos

Sizing, localisation and propagation

Satellites sizing: Rough estimates

@ Real sizes are confidential.

@ For convenience sake, we assume spherical satellites.




Iridium and Cosmos

Sizing, localisation and propagation

Satellites sizing: Rough estimates

@ Real sizes are confidential.
@ For convenience sake, we assume spherical satellites.

o Radii decided based on field experience.
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Sizing, localisation and propagation

Satellites localisation: Two line element (TLE)
@ Provided by the NORAD and the NASA.

@ Position and motion at measurement time without accuracy
details.

@ Home made means of the orbit parameters.
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Sizing, localisation and propagation

Satellites propagation: Keplerian dynamics

@ Fast to compute.
e Easy to implement.
o Less accurate than the NASA model.
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Sizing, localisation and propagation

Iridium-Cosmos distance about collision time according to TLE

Iridium-Cosmos Distance on February 10' 2009
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Probability to estimate

Randomness at hand: initial conditions

o Keplerian dynamics is deterministic once initial conditions
are known.

@ We noised the TLE to cope with their unknown uncertainty.
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Probability to estimate

Notations and Noise

e Initial conditions given by TLEs (tm.i, fm,i, Vm,i)-
o Gaussian additive i.i.d. noise (fm,i, Zm i) ~ N (0g, £'L).
e Studied time interval / = [16h30,16h45].
@ Keplerian deterministic dynamics
Vt € 1, Ri(t) = (¢, tmi, (Fmi» Vi) + (Pmis Umi))-
@ Minimum distance during time interval

A(ﬁm,lu ﬁm,17ﬁm72,ﬁm,2) = Té?{”ﬁl(t) - éQ(t)|’}

]P)[A < dcol]?
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Crude Monte Carlo estimation.
d.o; = 100m,100 estimations based on 300000 throws.
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Crude Monte Carlo estimation.
d.o; = 100m,100 estimations based on 300000 throws.
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Crude Monte Carlo estimation.
d.o; = 100m,100 estimations based on 300000 throws.
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Figure: Probability estimations with their mean.
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CMC results

Crude Monte Carlo estimation.

d.o; = 100m,100 estimations based on 300000 throws.
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Figure: 100 estimations based on 300000 exactly simulations.
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Probability estimation via CMC results

Crude Monte Carlo estimation. dgy
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Figure: 100 estimations based on 300000 exactly simulations.

@ Mean estimate: 1.6-1075.

@ Empirical relative deviation: 1.7258.
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Crude Monte Carlo estimation. dgy
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Figure: 100 estimations based on 300000 exactly simulations.

@ Mean estimate: 1.6-1075.

@ Empirical relative deviation: 1.7258.

Unreliable!
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Probability estimation via CMC results

Crude Monte Carlo estimation. dgy
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Figure: 100 estimations based on 300000 exactly simulations.

@ Mean estimate: 1.6-1075.

@ Empirical relative deviation: 1.7258.

Unreliable!

Need for a well chosen rare event dedicated technique!
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Probability estimation via CMC results

Rare event technique requirements

@ Applicability: method must be able to operate on a black box
mapping and without prior.

o Affordability: method simulation cost should be as small as
possible.

e Engineer-friendliness: method should be as self-tuning as
possible.
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© An adaptive splitting technique
® The algorithm
® A closer look at Markovian resampling
® The AST in action
@ Probability estimation via AST results
® CMC versus AST
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A typical industrial probability estimation problem

@ h:X — RY is the transfer function and can be a black box.
@ X ~ fx is the input random variable on X.

o g:R? — R is the criterion function.

@ £ =5(X)=goh(X) is the observed random score.

e A C R is the target score set.

P[¢ € Al = P[X € s71(A)]?

If P[¢ € A] is small, Crude Monte Carlo won't do.
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The Splitting Technique in a nutshell

© Rephrase the sought probability

{ R=A4AD --DA.=A
Pl¢ € Al = [TiL; PI§ € Ail€ € Aj1]

@ Estimate the conditional probabilities iteratively.

From now on, suppose A = [T, o0
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The Adaptive Splitting Technique
step by step
O Generate {X] ,} points
according to fx|s(x)>s,_,- The Adaptive Splitting Technique

in images

Generate e’;i_‘ points according to 1&\? a,
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The Adaptive Splitting Technique
step by step

O Generate {X] ,} points

according to fx|s(x)>4,_, - The Adaptive Splitting Technique
© Define 6 as {s(X]_;)}'s in images
empirical ak—quant”e and set . Quantile positioning
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The algorithm
The Adaptive Splitting Technique
step by step
O Generate {X] ,} points

according to fx|s(x)>4,_; - The Adaptive Splitting Technique
© Define 6 as {s(X]_;)}'s in images
empirica| ak-quantile and set . Killing under the threshold

Ay = [0k, o0l a5
Q P[s(X) > | Ax-1] ~ a.
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The algorithm
The Adaptive Splitting Technique
step by step

O Generate {X] ,} points

© Define 6 as {s(X]_;)}'s in images
empirical ag-quantile and set Resampling above the uniformly with replacement
Ay = [0k, o0l 35
O P[s(X) > k[ Ax-1] ~ ak.
@ Replace points outside Ay
by choosing uniformly with
replacement among those in

A .
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Generation number
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The algorithm

The Adaptive Splitting Technique
step by step

O Generate {X] ,} points

according to fx|s(x)>4,_; - The Adaptive Splitting Technique
© Define 6 as {s(X]_;)}'s in images

empirical ak_quant”e and set Sampling conditionally to being above the threshold
4,
Ak = [5[(, OO[ 35
Q P[s(X) > | Ax-1] ~ a. N
.5
@ Replace points outside Ay -
by choosing uniformly with 15
replacement among those in i
Ak 0.5
0

© Use all the points to sample © " eneraionnmoer T
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The Adaptive Splitting Technique
step by step

O Generate {X] ,} points

according to fx|s(x)>4,_; - The Adaptive Splitting Technique
© Define 6 as {s(X]_;)}'s in images

empirical ag-quantile and set . New quantile positionning
Ay = [0k, o0l 35
Q P[s(X) > | Ax-1] ~ a. °
@ Replace points outside Ay M.z'z
by choosing uniformly with 15
replacement among those in 1
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© Use all the points to sample -
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O Back to step 2.
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The algorithm

The Adaptive Splitting Technique
step by step

O Generate {X] ,} points

according to fx|s(x)>4,_; - The Adaptive Splitting Technique
O . Define & as {s(X]_;)}'s in images

empirical ag-quantile and set . New quantile positionning
Ay = [0k, o0l 35
Q P[s(X) > | Ax-1] ~ a. °
@ Replace points outside Ay M.z'z
by choosing uniformly with 15
replacement among those in 1
A . 08
© Use all the points to sample -

according to fx|s(x)>s, -
O ' Back to step 2.
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The algorithm

T logigram

Generate according to the original
law.
k=0

!

Calculate empirical quantile
Calculate conditional probability

"Use” boi YES
Use' dz?ml?ﬂgin?m‘e Empirical quantile over Calculate E
conditionally to f’mg threshold? sought probability f)

above the quantile.
NO
k=k+1
Replace points under quantile with points above,

choosing uniformly with replacement.
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The algorithm

T logigram wi kovian resampli

Generate according to the original
law.
k=0

!

Calculate empirical quantile
Calculate conditional probability

Propose transitions with the

Reversible Markov Kernel. . " YES
. Empirical quantile over Calculate
Accept those above the quantile. threshold? sought probability End
Refuse the others )
(Repeat ad libitum)
NO
k=k+1
Replace points under quantile with points above,

choosing uniformly with replacement.
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A closer look at Markovian resampling

fx-reversible Markov Kernel
M(-,-) : X x X — R is mapping such that

Vx € X, M(x,-): X — R is a density function.
M is said to be a fx-reversible Markov Kernel if
V(x,y) € X x X, fx(x)M(x,y) = fx(y)M(y, x)

Meaning, if from a fx set, you use M to generate another,

@ the new set is distributed according to fx as well.

@ statistically, no one can say which set generated the other.
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A closer look at Markovian resampling

Sampling according to fx|s(x)>s, using a fx-reversible M.

Given Xj ~ fX|s(X)26k: set
@ Z according to M(Xy, ).
¢ | Z its(Z)> 6k
9 Xk _{ Xx  otherwise

i.e. given Xi, Xy ~ My (X, dy) where

My (X, dy) L (s(y))M(Xi, dy) + M(Xi, AL )dx, (dy)
Ay = [0k, +o0[

Xy is distributed according to fx|s(x)>s, aswell!
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A closer look at Markovian resampling

Generate according to the original
law.
k=0

!

Calculate empirical quantile

Propose transitions with the
Reversible Markov Kernel.

Refuse the others
(Repeat ad libitum)

Accept those above the quantile.

Calculate conditional probability

- q YES
Empirical quantile over

threshold?

NO

kovian resamplin

Calculate
sought probability

k=k+1
Replace points under quantile with points above,
choosing uniformly with replacement.

End

A global understanding of the AST with markovian resampling!
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The AST in action

Notations and Noise

@ Initial conditions given by TLEs (tm.i, fm,i, Vm,i)-
o Gaussian additive i.i.d. noise (fm,i, Zm.i) ~ N (0g, £'L).
@ Studied time interval / = [16h30,16h45].
@ Keplerian deterministic dynamics
Vt € 1, Ri(t) = 6(t, tm,i, (Fmiy Vi) + (Bimi» Fmi))-
@ Minimum distance during time interval

A (pm P Pim2s Pm2) = mind |Ra(£) — Ra(e) [}




An adaptive splitting technique

The AST in action

Notations and Noise Il




An adaptive splitting technique

The AST in action

Notations and Noise Il

© X = (Pm1,Vm1,Pm2,Vm2) is the Gaussian input.
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The AST in action

Notations and Noise Il

© X = (Pm1,Vm1,Pm2,Vm2) is the Gaussian input.
e ¢ = A(X) is the random minimum distance during /.

o A =[0,dc] is the target score set.
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The AST in action

Applied AST in images

Input points
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The AST in action

Applied AST in images

Random Iridium-Kosmos distances
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The AST in action

Applied AST in images

Random Iridium-Kosmos distances
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The AST in action

Applied AST in images

Random Iridium-Kosmos distances
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Find minima (A}(,--- ,AZ).
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The AST in action

Applied AST in images

Sorted Random Minimal Distance
T T T

1600

1400f

1200f

o

o

o
T

©

o

o
T

Minimal Distance

[o2]

o

o
T

|

50
Trial Number

L

Find minima (A}(,--- ,AZ).

n B

o o

S <2
e T
———e
e ———




An adaptive splitting technique

The AST in action

Applied AST in images

Sorted Random Minimal Distance
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The AST in action

Applied AST in images

Sorted Random Minimal Distance
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Define quantile 64 1.
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The AST in action

Applied AST in images

Sorted Random Minimal Distance
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Discard points over quantile.
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Applied AST in images

Sorted Random Minimal Distance
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Applied AST in images

Sorted Random Minimal Distance
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The AST in action

Applied AST in images
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An adaptive splitting technique

The AST in action

Applied AST in images
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Applied AST in images
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Applied AST in images
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An adaptive splitting technique

The AST in action

Applied AST in images

Input points after discarding
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An adaptive splitting technique

The AST in action
Applied AST in images
Input points after shaking
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Use the markov kernel and selected points to regenerate sample.
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AST estimation.
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AST estimation.
deor = 100m,100 estimations based on 309060(1 + 2%) throws.
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AST estimation.
deor = 100m,100 estimations based on 309060(1 + 2%) throws.
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AST estimation.
deor = 100m,100 estimations based on 309060(1 + 2%) throws.
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Probability estimation via AST results

AST estimation. d.,; = 100m
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Figure: 100 estimations based on 309060(1 £ 2%) simulations.
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Figure: 100 estimations based on 309060(1 £ 2%) simulations.

@ Mean estimate: 4.78 - 10~/

@ Empirical relative deviation: 0.3232.




An adaptive splitting technique

Probability estimation via AST results

AST estimation. d.,; = 100m
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(a) Probability estimations (b) Probability estimation histogram

Figure: 100 estimations based on 309060(1 £ 2%) simulations.

@ Mean estimate: 4.78 - 10~/

@ Empirical relative deviation: 0.3232.

Quite Reliable!
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CMC versus AST

CMC Vs AST

Figure: Estimations
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An adaptive splitting technique
CMC versus AST

CMC Vs AST
Figure: Estimations and means
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An adaptive splitting technique

CMC versus AST

CMC Vs AST

Figure: Histograms
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CMC versus AST

CMC Vs AST

Figure: Estimations
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AST's open issues
The key difficulties

T logigram wit rkovian resampli

Generate according to the original
law.
k=0

!

Calculate empirical quantile
Calculate conditional probability

Propose transitions with the

Reversible Markov Kernel. . " YES
. Empirical quantile over Calculate
Accept those above the quantile. - End
threshold? sought probability
Refuse the others

(Repeat ad libitum)

NO

k=k+1
Replace points under quantile with points above,
choosing uniformly with replacement.

A global understanding of the AST with markovian resampling!
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However, no rational quantile level choice...
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Generate according to the original
law.
k=0

!

Calculate empirical quantile
Calculate conditional probability

Propose transitions with the
Reversible Markov Kernel.

Calculate
sought probability

Empirical quantile over
threshold?

Accept those above the quantile.
Refuse the others

k=k+1
Replace points under quantile with points above,
choosing uniformly with replacement.

...nor Markovian choice and tuning!



AST's open issues
The key difficulties

T logigram wit rkovian resampling and difficulties

Generate according to the original
law.
k=0

Calculate empirical quantile
Calculate conditional probability

Propose transitions with the

Reversible Markov Kernel. Calculate

sought probability

Empirical quantile over
threshold?

Accept those above the quantile.
Refuse the others

k=k+1
Replace points under quantile with points above,
choosing uniformly with replacement.

Two issues to tackle!
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AST's open issues
Overview

The Adaptive Splitting Technique is
@ a interacting particle technique [2]
@ a variance reduction method

@ used as a rare event dedicated Monte Carlo method [5, 6].
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Overview

Basic Ingredients [1]

Given
fx Input Probability Density Function
T Threshold to exceed
N Simulation budget

Known or designed
M(-,-) fx-reversible Markov Kernel

Decided and deterministic

ay k" Quantile level
by kth kernel parameter set
Nk kt" step simulation budget

Observed and random
Ok kth empirical quantile
K Total number of quantiles
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The Reversible Markov Kernel

Gaussian-reversible Markov Kernel [1]

If X ~ N (0q4,/y), then a possible kernel choice is

X b2
Ml i)~ N (2 )

Up to now, parameter b is initiated heuristically and optionally self
tunes as a whole set dependent Markov chain.

v

General case

In other cases, no off-the-shelf reversible kernel.

Metropolis-Hasting algorithm can help [8].

A wider array of density-reversible Markov kernel pair is needed.
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The Reversible Markov Kernel

Sample dependence

Samples are correlated and identically distributed as they share
a common genealogy. This correlation can result into variance.
Iterating M (-, ) never hurts and can reduce variance [8, 7].

How to create independence?
How fast is independence reached?
How to create diversity?
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Quantile level

Most efficient combination of quantile levels

According to [4], to minimise variance, under mild assumptions, all
quantile levels a; should be equal, say to a.

Best level choice

There is no idea now of an optimal choice for a !

@ Extremely high value should be avoided as we want to avoid
rare events.

e Experimentally, a € [.20,.25] works fine [1].

@ Very low a too, when dealt with carefullly [3].

How to choose a to reduce variance?
How to choose a to respect the simulation budget?
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Conclusion

Key ideas to remember

o AST widely outperforms CMC when it comes to rare events .
@ Rule of the thumb tuning can do the trick...
@ ...but theoretical understanding is needed.
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Conclusion

Further work: theoretical mastery

@ Applying it to a wider class of random input via
Metropolis-Hasting and using empirical stopping criterion.

o Using extra knowledge P[X € A] € [p—, p™] to choose
parameters.

@ Should we resample all the points or only the doubloon?



Please, let me answer your questions.



Thank you for your attention.
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Publications and communications

Conferences

© Estimating satellite versus debris collision probabilities via the
adaptive splitting technique: 8" international workshop on rare
event simulation, Poster, 20-23 June 2010 Cambridge (UK), R.
Pastel, J. Morio & F. Le Gland.

© Representing Spatial Distribution via the Adaptive Splitting
technique and Isoquantile Curves : European Meeting of
Statisticians 2010, Présentation Orale sur résumé, 17-22 August
2010 Piraeus (Greece), R. Pastel, J. Morio & F. Le Gland.

© From satellite versus debris collision probabilities to the adaptive
splitting technique From Application to Theory : Rare Event
Simulation Workshop, Présentation Orale sur résumé, 28-29
October 2010 Bordeaux (France), R. Pastel, J. Morio & F. Le Gland.

@ Estimating satellite collision probabilities via the adaptive splitting
technique : International Conference in Computer Modeling and
Simulation, Présentation Orale sur article, 7-9 January 2011
Mumbai (India), R. Pastel, J. Morio & F. Le Gland.



Publications and communications

Revues

@ Sampling Technique for launcher impact safety zone
estimation : Acta astronautica, 66(5-6): 736-741, 2010, J.
Morio & R. Pastel.

@ An overview or importance splitting for rare event simulation :
European Journal of Physics, 31:1295-1303, 2010, J. Morio, R.
Pastel & F. Le Gland.

© Estimation De probabilités et de quantiles rares pour la
caractérisation d’une zone de retombée d'un engin :  Journal
de la Société Francaise de Statistique, pending subject to
modifications, J. Morio, R. Pastel & F. Le Gland.



References

Outline

@ References



[1] Frédéric Cérou, Pierre Del Moral, Teddy Furon, and Arnaud
Guyader.
Rare event simulation for a static distribution.
Technical report,
http://hal.inria.fr/inria-00350762/fr/, 2009.

[2] Pierre Del MORAL.
Feynman-Kac Formulae: Genealogical and Interacting Particle
Systems With Applications.
Springer, 2004.

[3] Arnaud Guyader, Nicolas W. Hengartner, and Eric
Matzner-Lgber.
Iterative Monte Carlo for extreme quantiles and extreme
probabilities.
Technical report, March 2010.
Paper and slideshow and presentation available on line.

[4] Agnés Lagnoux.



[5]

[6]

[7]

Rare event simulation.
PEIS, 20(1):45-66, January 2006.
Available on line.

Pierre L'Ecuyer, Francois Le Gland, Pascal Lezaud, and Bruno
Tuffin.

Splitting methods.

In Gerardo Rubino and Bruno Tuffin, editors, Monte Carlo
Methods for Rare Event Analysis, chapter 3, pages 39-61. John
Wiley & Sons, Chichester, 2009.

Francois LEGLAND.

Filtrage bayésien optimal et approximation particulaire.
Les Presses de |I'Ecole Nationale Supérieure de Techniques
Avancées, 2008.

Available on line in French.

S. P. Meyn and R. L. Tweedie.
Markow chains and stochastic stability.
Springer—Verlag, 1993.



[8] Luke TIERNEY.
Markov chains for exploring posterior distributions.
Annals of Statistics, 22:1701-1728, December 1994,

Available on line.



	Outline
	Introduction
	Iridium and Cosmos
	Sizing, localisation and propagation
	Probability to estimate
	Probability estimation via CMC results

	An adaptive splitting technique
	The algorithm
	A closer look at Markovian resampling
	The AST in action
	Probability estimation via AST results
	CMC versus AST

	AST's open issues
	The key difficulties
	Overview
	The Reversible Markov Kernel
	Quantile level

	Conclusion
	Publications and communications
	References

