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FORMULATION OF THE PROBLEM

PROBLEM: Estimate an unknown response function f(-) based
on observations from the noisy convolutions

1
3("“‘:.- t) tel = [O'| 1]'| u € [a":-' b]:
T

y(u,t) = /Tf(t — x)g(u, z)dr +

Here y(u,t) = Y (u,t)/o(u) and g(u,z) = G(u,z)/o(u).
Consequently, without loss of generality, we consider only the
case when

o(u)=1




DISCRETIZATION

Consider a discretization of the functional deconvolution model
when y(u,t) is observed at n = N M points

(up,t;)),l=1,2,....M, i=1,2,... N.

Equation takes the form

y(uy,t;) = /Tf(t'i. —z)g(up,z)dz+ey, €T =[0,1], u € [a,b],

g;] are standard Gaussian random variables,
g;1 are independent for different + and L.




MOTIVATION

Continuous model can be viewed as a generalization of a
multitude of iInverse problems in mathematical physics where
one needs to recover initial or boundary conditions on the
basis of observations of a noisy solution of a partial differential
equation (Lattes & Lions (1967), Golubev & Khasminskii (1999),
Hesse (2007)).

However, in those problems, in real life, observations can be
made only at some particular points v;, [ = 1,2

Discrete model can be viewed as a a generalization of
multichannel deconvolution problem (Casey & Walnut (1994),
Pensky & Zayed (2002), De Canditiis & Pensky (2004, 2006))
Difference: the number of channels M can turn to infinity




CONSTRUCTION OF THE
ESTIMATORS

Let ¢;.(z) and ¢.(z) be the periodized version of Meyer scaling
and mother wavelet functions obtained as in Johnstone et al.
(2004). Denote the inner product in the Hilbert space L2(7T)
by ( > and B-m_.(t) — et2mmt

Denote the Fourier coefficients of ¢;.(+), ¥,.(-) and f(:) by

Fmiok — (e"m-: ¥ 013): '?vb-n'z.. ik — <e'm-.1 wjk) Jfm = (e’m-: f ) .

For each u € [a,b], denote the functional Fourier coefficients by

ym(uw) = (em,y(u,-)), gm(uw) = (em,g(xw,-)), z2m(u) = (em,z(u,-)).




ESTIMATING FOURIER COEFFICIENTS:
CONTINUOUS CASE

By properties of the Fourier transform, we have

ym (W) = gm(w) fn + 12 20 (), u € [a,b],
where z,,,(u) are Gaussian processes with zero mean and covari-
ance function

Elzmq (u1)zma(u2)] = 0(my1 —m2)d(ug —uz).

Multiply both sides of the equation by gm(w) and integrate over
u € [a,b]. Obtain

fon= (ngm(u)ym(u)du) / (Lb |gm(u)|2du) .

When a = b the estimator fm takes the form

fn = gm(@)ym (@) /lgm(a) .




ESTIMATING FOURIER COEFFICIENTS
DISCRETE CASE

Using properties of the discrete Fourier transform, derive

ym(ug) :gm(uf)fm_l_N_l/zzmlﬂ [’ — 132)"'JM3

where z,,; are Gaussian random variables with zero mean and
covariance function

E(anlllzmgig) = 0(my1 —mp)d(ly — l2).

Similarly to the continuous case, multiply both sides of the equa-
tion by g, (u;) and add them together to obtain

R M M
Jm = (Z Qm(ul)ym(ul)) / (Z gm(w)z) .

Here, and in what follows, we abuse notation and f,, refers to
both functional Fourier coefficients and their
discrete counterparts.




ESTIMATING WAVELET
COEFFICIENTS

By Plancherel's formula, the scaling and wavelet coefficients @jok
and bjk, respectively, of f can be represented as

Qjak — Z Jm®m jok» bj k== Z Jmm, gk
meC io me C'J

where, due to the fact that Meyer wavelets are band limited,
{'T?‘I. : 'Q#{"-'mjk: = 0} C 2n/3 [—2j+2, —2j] U [23-? 2j+2].

Substitute f,, by f,, and obtain

—

Aok = Z Jmem jok> bjk: o Z_ Jmm, gk
meC o me(C Vi




BLOCK THRESHOLDING
WAVELET ESTIMATORS

Divide the wavelet coefficients at each resolution level into blocks
of length Inn. Denote

= {r|r:1,2,...,25/|nn},
{k\k—o,l,...,2j—1; (r—l)lnngkgrlnn—l},

12
e
keU;,

Finally, reconstruct f(t) as

2701

fn(f) — Z aJok(Pjok(t) + Z Z Z Ajkﬂ(léjr‘ 2 ’\J)wgk(t):

=4 TEA LEU

where resolution levels jg and J and the thresholds A; will be
defined later.




THE RISK: NOTATIONS

For an r-regular multiresolution analysis with 0 < s < r,
denote by Bj  (A) a Besov ball BS (A) of radius A >0 with
1 < p,q < oo. Denote by ||g| the L?-norm of a function g(-) and

s*=s4+1/2-1/p, p'=min(p,2),

Denote u = (uy,uon,...,uys) and
1 M

2
ﬁz§1 ‘Qm(ﬂl)l -

b
Gm) = [Tlgm(w)Pdu and  r{(m,u, M) =
a

T he minimax risks of the estimators in the continuous and
discrete cases are determined by 7{(m) and Tf(m,g, M), re-
spectively.




MINIMAX LOWER BOUNDS
FOR THE RISK

Define the minimax L2-risks over the set Q as

R¢(2) = inf supE||f¢ — f||°, continuous
frn JeQ

Rg(Q,E,M) = inf SUDIEHfg — sz: discrete, fixed points
fd feQ

Rg(Q) = inj& Rﬁ(Q,g,M). discrete, total minimum
u

==

Let,

in the continuous case

m1(m) = 7{(m), R, (B; ,(A)) = R;,(B; ,(A))

In the discrete case

m1(m) = 7{(m,u. M), R};(B; ,(A)) = RI(B; (A),u. M).




MINIMAX LOWER BOUNDS FOR THE RISK

Assumption: for some constants v, A € R, « > 0, 8 > 0 and
K1 > 0, independent of m and n, but possibly dependent on
M and u,

r1(m) < Kep |m|2”(In |m|) " exp ( = a|m\‘8), v>0 if a=0.

Denote n* = ne,, and assume that &,, are such that

*
N —=MNeExy — O d5 N — 0.

Then, as n — oo,

( 2sA

2s
Cn 2s+2F1 (Inn)2s+2+I, if a =0, v(2 —p) < ps*,

% 2‘5#’\
Ri(Bpg(A) = ¢ ¢(1m2) ¥ ¥ (inn)2F, if a=0, v(2-p) 2 ps"
2s*
i C(lnn) &, if &> 0.




MINIMAX UPPER BOUNDS FOR THE RISK

Assumption: for some constants v,A € R, « > 0, 8 > 0 and
K1 > 0, independent of m and n, but possibly dependent on
M and u, Let, as before, n* = ne,, — oc and, in the case of « = 0,
the sequence ¢, be such that

—hyInn <In(l/sp) < (1 —hs)Inn
for some constants hy > 0 and ho € (0,1). Then for R, =
SUP e s () E||fn — f||?> one has

i _— . Ao BB
C(n*Y 22424 (Inn)* 242, if a=0, (2 —p) < ps*,
*
2s* )\

)23*“" (Inn)?T27F% | if a=0, v(2-p) > ps*,

| C(in(n) "7, if a>O0.




THE INTERPLAY BETWEEN CONTINUOUS
AND DISCRETE MODELS

The convergence rates depend on two aspects:
a) the total number of observations n = NM:;
b) the behavior of 71(m).

In the continuous model, the values of 7{(m) depend on m
only.

In the discrete model, the values of Tf(m,g, M) depend on m
and may depend on M and observation points wu.

If the values of Tf(m,g,M) are independent of the choice of
M and u, then the convergence rates in the discrete and
the continuous models coincide. Moreover, in this case, the
wavelet estimator is asymptotically optimal (in the minimax
sense), no matter what the choice of M is.




CONVERGENCE RATES EQUIVALENCY BETWEEN
DISCRETE AND CONTINUOS MODELS

Assume that there exist points u., u* € [a,b], independent of m,
such that, for any u € [a,b],

lgm(u)| < K|9m(’l~'4*)\ and |gm(u)| > K|gm(ux)|.

Necessary and sufficient conditions for convergence rates
equivalency. Let there exist constants v1 € R, v» € R, a1 > 0O,
an > 0, 1 >0 and > > 0, independent of m and n, such that

(gm(u)|? = |m| "2 exp(—aq|m|?1), 11 >0 if o =0,
gm(u)|? = [m| 7?2 exp(—azm|™2), w2 >0 if ap=0.

Then, the convergence rates in the discrete model are indepen-
dent of the choice of M and the selection of points u, and, hence,
coincide with the convergence rates in the continuous model, if
and only if

ajan >0 and 1 =G> Or a1 =ap» =0 and v; = .




CONDITIONS FOR EQUI-RATES

Conditions above can be divided into the following two
agroups:

Condition I. There exist constants v1 € R, 1 > 0 and 357 > 0
and a point u* € [a.b], independent of m and n, such that

gm(u)[2 < K|gm(u®)|? = [m| 21 exp(—aq|m[?1), vy >0if ay = 0.

Condition I*, There exist constants v, € R, a» > 0 and 3, > 0,
and a point ux € [a,b], independent of m and n, such that

g9m () > Kgm(u)? = [m| 22 exp(—an|m|®), 15> 0 if ap = 0.

Condition II. Either ajas > 0 and 31 = (8 or a1 = ap = 0 and

vy = 9.




SOME EXAMPLES
The following inverse Mathematical Physics problems can be
reformulated as a functional deconvolution problem.




Example 1: Estimation of the initial condition in the heat
conductivity equation.

Let h(t,z) be a solution of the heat conductivity equation

Oh(t,x) O2h(t,z)

ot ox2 7

with initial condition h(0,z) = f(z) and periodic boundary con-
ditions h(t,0) = h(t,1) and 0h(t,x)/0x|,—0 = Oh(t,z)/0x|,—1.

re[0,1], t€[a,b], a>0,b< 0,

A noisy solution y(t,z) = h(t,z) + n=1/22(t,z) is observed This
problem was considered by Lattes & Lions (1967) and further
studied by Golubev & Khasminskii (1999). One has

gm(u) = eXD(—4ﬂ'2m2u).

Then, us = b, u* = a, |gm(ux)| = exp(—472bm?) and |[gm(u*)| =
exp(—4m2am?).

Hence, Conditions I, I* and II hold with vy = v = 0, oy = 472b,
as = 47n2a and 31 = B3> = 2.




Example 2: Estimation of the boundary condition for the
Dirichlet problem of the Laplacian on the unit circle

Let h(x,w) be a solution of the Dirichlet problem of the Laplacian
on a region D on the plane

92h(x,w) n 92h(x, w) -
Ox? w2

with a boundary 9D and boundary condition h(:g,w)‘aD = F(x,w)

0, (z,w)e D CR?,

where D is the unit circle.

Rewrite the function i(-,-) in polar coordinates: h(xz.w) = h(u,t),
where u € [0, 1] is the polar radius and t € [0,2x] is the polar
angle.

Suppose that only a noisy version y(u,t) = h(u,t) + n=1/22(u,t)
is observed. This problem was investigated in Golubev & Khas-
minskii (1999) and Golubev (2004).




Example 2: Estimation of the boundary condition for the
Dirichlet problem of the Laplacian on the unit circle:
continuation

One has

gm(uw)| = Kul™ = K exp(=|m|In(1/u)) u € [0,r0],

so that uy = 0, u* = rg, |gm(u™)| = Kexp(—|m| In(1/rg)) and
\gm(us)| = 0.

Then, Condition I holds but Conditions I'* and II do not hold
since |gm(ux)| = 0.

Hence, one cannot be certain that the convergence rates in the
continuous and the discrete models coincide for any sampling
scheme. Actually, if sampling is carried out entirely at the
single point u, = 0, then r{l(m,u*, 1) = 0 and we cannot re-
cover the boundary condition f(-).




Example 3: Estimation of the speed of a wave on a finite
interval.

Let h(t,z) be a solution of the wave equation

82h,(t,:1:) - 32h(t,$)
o2 922
with initial-boundary conditions h(0,z) = 0, h(¢,0) = h(¢,1) =0
and 8h(t,a:)/6t‘t_ = f(x), =z € [0,1]. The goal is to recover the
speed of a wave (-) on the basis of observing a noisy solution
y(t,z) = h(t,z) + n~Y/22(+,2), where t € [a,b], a >0, b < 1. One

has

gm(u) = (2am) ™1 sin(2Qrmu), m € Z\ {0}, u € [a,b].

None of Conditions I, I’** and II hold.

The points ws and «* depend on m, hence, the convergence rates
depend on the selection of M and uw. Actually, it M =1 and u
IS an integer, then rf(m,u, 1) = 0 and we cannot recover the
speed of a wave f(-).




POSSIBLE CASES

Consider now the following three cases.

1. The uniform case: Conditions I, I’** and II hold.
Example: Estimation of the initial condition in the heat conduc-
tivity equation (Example 1)

2. The regular case: Condition I holds but Condition II
does not hold. Condition I*¥ holds or, possibly, |[gmn(ux)| = 0.
Example: Estimation of the boundary condition for the Dirichlet
problem of the Laplacian on the unit circle (Example 2)

3. The irregular case: Condition I does not hold.
Example: Estimation of the speed of a wave on a finite interval
(Example 3)




Let Condition I hold:

lgm(u)[? < Klgm(u*)]? < |m|~2"1 exp(—ay|m|P1), vy >0 if oy =

Then

RE(B3 ,(A)) > CRA(B2, (A);u*, 1) = RE(BI (A)).

Also, for any choice of M and u, we have
E|fY*—f1? < ¢ sup E|fi— fl°
feBg (A)

sup E||f3* — £|1°
FEBS o(A)

conclusion: sampling entirely at the single point «* leads
to the highest possible convergence rates in the discrete
model which are, possibly, higher than in continuous model.




PSEUDO-UNIFORM SAMPLING STRATEGIES

When the discrete model is replaced by the continuous model,
the underlying implicit assumption is that sampling is carried
out at M = M, equidistant points with M, — co.

Study an extension of this sampling scheme. In order to accom-
modate various sampling strategies, we consider a continuously
differentiable function S(x), = € [0, 1], such that

0 <s1<8(x) <sp<oo, S(0)=a, S(1)=b.

Example: S(z) = a4+ (b — a)z”, where 0 < h < oo (the case
h = 1 corresponds to the uniform sampling).

Let d € [0, 1] and let consider the sample

l—l—l—d)?

l=1,2,..., M.
M

uIZS(




RATE CONVERGENCE EQUIVALENCY:
ASSUMPTIONS FOR QUASI-UNIFORM SAMPLING
Let gm(w) satisfy the assumption

|Qm(u)|2 B |m|_2y(u) exp ( — a(u)\mrg(u)), u € U,

for some continuous functions v(u), a(uw) and G(u), v € U, such
that either a(u) = 0 and v(u) > 0 or a(u) > 0 and B(u) > O, for
all w e U. Denote

RS { argmin,cyv(u), if a(u) =0,
arg mingc B(w), if a(u) >0, B(u) # const.
Assume that, in the neighborhood of point « = u*, the function
3(-) is continuously differentiable (if a(u) > 0, uw € U) or the
function v(-) is k-times continuously differentiable (if a(u) = 0,
w € U), where k£ > 1 is such that

y(s)(u*) =l §=1;sxk—1, y(k)(u*) 7= 0,
with »(¢)(.) denoting the s-th derivative of the function v(-).




RATE CONVERGENCE EQUIVALENCY:
QUASI-UNIFORM SAMPLING

The convergence rates in the discrete and the continuous
models coincide up to, at most, a logarithmic factor if

a(u) =0 and nli_)mOOMn_llnn:'r1<oo,

or

a(u) >0 and lim M, Ininn =7, < cc.

If, moreover, |gm(u)|? = K|m|=2"(%) for some continuously dif-
ferentiable function v(u), v € U, and also

lim M1 (Inn)1+1/k =0,

n—>o0

where k is such that v(*)(u*) # 0, then the convergence rates
in the discrete and the continuous models coincide up to a
constant.




EXAMPLE 2: CONTINUATION

Recall that |gm(u)|? = exp(—2In(1/u)|m|), v € [0,rg], so that
g =1, a(u) = 2In(1/u) and u* = rg. If the discrete model is
sampled entirely at the single point «*, then the convergence
rates in the continuous and the discrete models coincide.

In the case of the pseudo-uniform sampling, the convergence
rates in the discrete and the continuous models coincide for any
value of M. This follows from the fact that, for any M, one has

,u, M ) Tg | |

W, M) > 0.5 exp(—2|m|l0g(2/s1)).




EXAMPLE 4: SAMPLING AT THE BEST
POINT

Let g, (u) satisfy

|gﬂ'1_('uf)|2 = eXD (—Cl:'"???a|u) y O < (1 <_: U S b < oo.’

for some constant a > 0, independent of m. Then u* = a,

T{l (m,u*,1) = |gm(u") |2 = exp (—a|lm|?)
Ti(m) > C|m| ~b(In im)™! exp(—alm|?).

Hence, the convergence rates in the continuous and the
discrete models coincide if sampling is carried out entirely
at the single point u*.




EXAMPLE 4: PSEUDO-UNIFORM SAMPLING

Let d € [0,1] and ulzs(l—ﬁjd), l=1.,2,..., M.

If d > 0, then condition thkﬁggmﬂglnﬂnvazzrg<:oois neces-
sary in order the converdgence rates in the discrete and the
continuous models to coincide up to at most a constant.
Then, as n — oo,

_2s"
R, (B, ,(A)) (Inn)™"a,
_ 2sF
Rg(Bf?:q(A)rﬁz Mpy) (Inn) atd/Mn,

so that

n—00

lim Re(B; ,(A),u, Mn)/RSI(B;q(A)) — o

if M = M, is such that lim,— M1 InInn = .




EXAMPLE 5: SAMPLING AT THE BEST
POINT

et the functional Fourier coefficients gy, (u) satisfy
2 —2v 3
gm(w)[? = [m| 72 exp(—ulm|”), 0 <u<b< o,

for some constants » > O and 3 > 0O, independent of m. Then,
uw* =0 and

i om,u*, 1) = |gm(u)|? = |m| =2,

On the other hand, it is easy to check that

b
T1(m) = |m\_2"”f0 exp(—u|m|?)du = |m|~ (V0

Hence, when sampling is carried out entirely at the single
point «* = 0, the convergence rates in the continuous model
are worse than in the discrete model.




EXAMPLE 5: SAMPLING AT THE BEST
POINT, CONTINUATION

In particular,

25
Cn 2st2v+p+1 if p(2 —p) < ps™,

2s*
O(“‘—”)QS T2HE if (2 - p) > ps

R(B) ,(A)) =

n

and

2s
d d Cn 2s¥2F1,if v(2—p) <ps”,
Ry (Bpg(A)) = Ry (Bpy(A),u’, 1) > e\
C(—n) , i v(2—-p) > ps",

T

Hence, the convergence rates, in both discrete and con-
tinuous models, are polynomial, and the convergence rates
are inferior in the continuous model.




EXAMPLE 5: PSEUDO-UNIFORM SAMPLING

For the pseudo-uniform sampling, one obtains, by direct calcula-
tions, that

K ‘m‘—2u8—32d|m|ﬁ/ﬂ/f

K |m‘—2ue—sld|m|5/ﬂff
M (1 _ 6—32|m|5/Mr) M (1 _ 6—81|m|5/Mr) ’
Therefore, the convergence rates in the discrete model de-

pend on the value of 4 and the asymptotic behavior of
m|%/ My

< 7{(m,u, M) <

1. If M, is large, so that |m|?/M,, — 0 as n — oo, then
7 (m, u, M) = [m|~(2V+0)

and the convergence rates in the discrete and the continuous
models coincide.




2. It M = M,, is Tinite and d > 0, then the convergence rates
in the discrete model are logarithmic

*

2s
R (By (A),u, M) > C(Inn) ™ 5.

and are inferior to the polynomial convergence rates in the
continuous model.

3. It M = M, iIs finite and d = 0, then the convergence rates
in the discrete model coincide with Rﬁ(B;jq(A)) and are superior
to those in the continuous model.

4. If M, is small, so that |m|’/M, — oo as n — oo, then

i i I .8 / — — — 3 /
K M, 1 Im)| 2v, sod|m|P /My, < Tf(m,g, M,) < K M 1 m| 2v,, s1d|m|”/Mp

The convergence rates in the discrete model are inferior to
the convergence rates in the continuous model (the difference

depends on the rate of \mn\ﬁ/Mn as n — oo). One can obtain
2s*

convergence rates in between R;{(B;JQ(A)) and C(lnn) 7 .




IRREGULAR CASE: BOX-CAR BLURRING
FUNCTION

For any u
d -2
1 (m,u, M) < Km™~.

Hence, the rates of convergence in discrete model cannot
be higher than in continuous model.

Note, 'rii(m,@, M) is not bounded from below by a quantity
iIndependent from M and points v;, [ = 1,2,..., M.

For example, if M =1 and uq is an integer, Tf(m,ul, 1) =0.

Hence, the choice of M and the selection of points v, | =
1.2,..., M, really matter.




SOME BACKGROUND IN NUMBER THEORY

An irrational number a is called Badly Approximable (BA) if
sup,, an < oo. If a is A BA, then for some constant C'(a)
inf {||ka| : 1 <k <gq}> B(a)/q.

The notion of a BA number can be extended to an M-tuple. We
say that M-tuple of irrational numbers ay,ao.--- ,a); is Badly
Approximable (BA) if

max inf (llka:|) > Bg—1/M
i 1§k:§(1(“ a;l|) = Bq




BOX-CAR DISCRETE MODEL: FIXED M

Recall : v =1 in the continuous model.

M = 1: If up is a BA irrational number, then v = 3/2 (John-
stone, Kerkyacharian, Picard & Raimondo (2004)).

M > 2, fixed: If one of the w;'s is a BA irrational number,

and wuy,uo,...,up; is @ BA M -tuple, then v = 1+ 1/(2M) in
the upper bound of the risk (De Canditiis & Pensky (2006)).

M = M, — oo as n — oo require non-trivial results in
number theory.




BOX-CAR: EQUI-RATES

Recall that 7{(m,u, M) < Km~2 for any u.

If M = M, — oo fast enough, then an appropriate selection
of points v;, [ = 1,2,..., M, can secure an opposite inequality,
so that the rates of convergence in the discrete and the
continuous models are equal.

If M > Mg, = (327/3)(b—a)nt/3 and w; = a + (b —a)l/M, | =
1,2,...,M. Then for n and |m| large enough,

i (m,u, M) > Km™2,

and the asymptotical minimax rates of convergence for the
risk coincide in the discrete and the continuous models.




BOX-CAR: SMALLER VALUES OF M

If M, — oo but at a slow rate, one has to employ a BA M-
tuple.

Since in max; infy<j<,(||ka;||) > Bq~1/M the constant B depends
on M, i.e.B = B(M), results for finite M cannot be generalized

automatically.

In addition, one needs a procedure for construction a BA
M-tuple in a specified interval [a,b].




BA M-TUPLE

We suggested the algorithm for construction of a BM-tuple

31, 32,...,08p of increasing length AM on an arbitrary interval
(a,b), of a non-asymptotic length.

We showed that, M — oo, one has

_max  |B;q —pi| > Boexp(~6M In M) g UM
1= sy

for any integer numbers ¢ > O and pq,po,...,pyp, and for some

constant By > O, independent of M, ¢ and p1,po2,...,pr, SO that

B(M) = Bgexp(—6M InM).




BOX-CAR: CONVERGENCE RATES

Let (31,82....,08y) be a BA M-tuple constructed on the interval
(2a,2b) and let one of 31,085,...,8y be a BA number. Choose
h=m2 1=1,2,...,M, and

M = My = v/Inn/(Ininn)

for some v < 1/\/6, independent of n. Then, as n — oc¢,

2s
Cn ZH A, If s>3(1/p—1/2),

Rg(ng(A)aﬁz ﬂ’[n) § s’
| c ('”—”) e, 10 8 300e 105,

TL
where A, is given by
Aq 1
N = exp ¥nunvining == 3w +——] +o{1)| },
Ao Aov
and Aq, A>, A3 are functions of s.

A, increases slower than any power of n but faster than any
power of |logn as n — oc.




SUMMARY

1. The uniform case: Conditions I, I* and II hold.

The convergence rates in the discrete model are independent of
the number M and the choice of sampling points v« and coincide
with the convergence rates in the continuous model.

2. The regular case: Condition I holds but Condition II does
not hold. Condition I* holds or, possibly, [gm(us)| = 0.

One can point out the sampling scheme which delivers the fastest
convergence rates, namely, sampling entirely at “the best possi-
ble" point ™.

The uniform, or a more general pseudo-uniform, sampling may
lead to convergence rates which differ from the convergence rates
in the continuous model and are lower than when sampling is
carried out entirely at the “best possible” point u*.




SUMMARY

3. The irregular case: Condition I does not hold.

The convergence rates in the discrete model depend on a sam-
pling strategy and, in addition, one cannot design a sampling
scheme which delivers the highest convergence rates.

Example: the box-car kernel.

. Sampling at any one point is, by far, not the best possible
choice.

. The highest convergence rates occur in the the continuous
model.

. T he best choice for the discrete model is uniform sampling
with a large value of M = nl/3 which is impractical in many
situations.




CONCLUSIONS

In the regular case, one should be extremely careful when
replacing a discrete model by its continuous counterpart.

In the irregular case, deal with the model at hand (dis-

crete or COﬂtiI’lUOUS) paying uttermost attention to sam-
pling strategies
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