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CART Classification And Regression Trees, Breiman et al. (1984)

◮ Learning set L = {(X1,Y1), . . . , (Xn,Yn)}, n i.i.d. observations of a

random vector (X ,Y )

◮ Vector X = (X 1, ...,X p) of explanatory variables, X ∈ R
p, and Y ∈ Y

where Y is either a class label or a numerical response

◮ For classification problems, a classifier t is a mapping t : Rp → Y and

the Bayes classifier is to estimate

◮ For regression problems, we suppose that

Y = f (X ) + ε

and f is the regression function to estimate
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CART Classification And Regression Trees, Breiman et al. (1984)

◮ nonparametric model + data partitioning

◮ numerical + categorical predictors

◮ easy to interpret models

◮ non linear modelling

◮ base rule for: bagging, boosting, random forests

◮ single framework for: regression, binary or multiclass classification

◮ see Zhang, Singer (2010) and Hastie, Tibshirani, Friedman (2009)

In honour of Anestis Antoniadis — March 2011 — J-M. Poggi Influence functions for CART





Introduction

Influence functions for CART

Exploring the Paris Tax Revenues dataset

CART

Motivation

Influence function

Growing step, stopping rule:

◮ recursive partitioning by maximizing local decreasing heterogeneity

◮ do not split a pure node or a node containing a few data

Pruning step:

◮ the maximal tree overfits the data

◮ an optimal tree is pruned subtree by penalizing the prediction error by

the model complexity

Penalized criterion

critα(T ) = Rn(f , f̂|T ,Ln) + α
|T̃ |

n

Rn(f , f̂|T ,Ln) the error term (MSE for regression or misclassification rate)

|T̃ | the number of leaves of T
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A typical result for regression problems (Gey, Nedelec 2005)

There exist C1,C2,C3 positive constants such that:

E

[
‖f̃ − f‖2|L1

]
6 C1 inf

T�Tmax

[
inf

u∈ST

‖u − f‖2 + σ
2 |T̃ |

n1

]
+

C2

n1

+ C3
ln n1

n2

where ST is the set of piecewise constant functions defined on the partition T̃

In the sequel, CART trees obtained using

◮ R package rpart

◮ the default parameters (Gini heterogeneity function to grow the maximal

tree and pruning with 10-fold CV)
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A boosting-based outlier detection

◮ Cheze, Poggi (2006)

◮ Outliers = observations not ”consistent” with most of data

Rousseeuw, Leroy 1987

◮ PCA and related robust methods Jolliffe (2002)

◮ Methods supported by robustness ideas and based on linear modeling:

◮ Minimum Covariance Determinant (MCD) Rousseeuw, Van Driessen (1999)
◮ Least Trimmed Squares (LTS) Rousseeuw, Leroy (1987)
◮ Least Median Squares (LMS) Rousseeuw (1984)

◮ General nonparametric regression design method

CART trees to ensure flexible estimation and weakly structured model

◮ Automatic data-driven outlier detection procedure

Boosting by adaptive resampling to explore different features of the data
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CART and stability

◮ CART instability

◮ Briand et al. (2009) sensitivity using a similarity measure between trees

◮ Bousquet, Elisseeff (2002) stability through jackknife

◮ Classically, robustness deals with model stability, considered globally

◮ Focus on individual observations diagnosis issues rather than model

properties or variable selection problems

◮ Huber (1981) influence curve theory to define

◮ different classes of robust estimators
◮ measure of sensitivity for usual estimators

◮ We use decision trees to perform diagnosis on observations

◮ We use influence function, a classical diagnostic method to measure the

perturbation induced by a single observation: stability issue through

jackknife
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Influence function

◮ X1, . . . ,Xn r.v. of common distribution function (df) F on R
d (d ≥ 1)

Statistic T (F ) naturally estimated by T (Fn) where Fn is the empirical df

Fn =
1

n

n∑

i=1

δXi

◮ The influence of an infinitesimal perturbation along δx (Hampel (1988))

ICT ,F (x) = lim
ǫ→0

T
(
(1 − ǫ)F + ǫ δx

)
− T

(
F
)

ǫ

is used to evaluate the importance of an observation x ∈ R
d

◮ Connection between influence function and jackknife (Miller (1974)):

let F
(i)
n−1 = 1

n−1

∑
j 6=i δxj

, then Fn = n−1
n

F
(i)
n−1 +

1
n
δxi

. If ǫ = − 1
n−1

, we have:

ICT ,Fn (xi) =
T
(
(1 − ǫ)Fn + ǫ δxi

)
− T

(
Fn

)

ǫ

≈ (n − 1)(T (Fn)− T (F
(i)
n−1))

≈ T
∗
n,i − T (Fn)
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Influence functions for CART

◮ Quantifying the differences between

◮ reference tree T obtained from the complete sample Ln

◮ jackknife trees
(
T (−i)

)
16i6n

obtained from (Ln \ {(Xi ,Yi )})16i6n

Three kinds of IF for CART

◮ we derive three kinds of IF based on jackknife trees

◮ influence on predictions focusing on predictive performance

◮ influence on partitions highlighting the tree structure

following a classical distinction, see Miglio and Soffritti (2004)

+
◮ CART specific influence derived from the pruned sequences of trees
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Influence on predictions

I1 and I2 are based only on the predictions

Definition I1 and I2

◮ I1, closely related to the resubstitution estimate of the prediction error,

evaluates the impact of a single change on all the predictions

I1(xi) =

n∑

k=1

1lT (xk ) 6=T (−i)(xk )

◮ I2, closely related to the leave-one-out estimate of the prediction error

I2(xi) = 1lT (xi ) 6=T (−i)(xi )
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Influence on predictions

I3 is based on the distribution of the labels in each leaf

Definition I3

◮ I3 measures the distance between the distribution of the label in the

nodes where xi falls

I3(xi) = d
(

pxi ,T , pxi ,T
(−i)

)

where d is the total variation distance

d(p, q) = max
A⊂{1;...;J}

|p(A)− q(A)| = 2
−1

J∑

j=1

|p(j)− q(j)|
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◮ 163 jackknife trees lead to a

nonzero number of

observations for which the

predicted label changes

◮ I1 and I3 for the 163

observations for which I1 is

nonzero

◮ 77 observations for which

I2 = 1 (i.e. T (xi) 6= T (−i)(xi))
lead to a distance between

pxi ,T and pxi ,T
(−i) larger than

0.6

◮ the others lead to a distance

smaller than 0.1
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Influence on partitions

Definition

◮ I4 measures the variations on the number of clusters in each partition

I4(xi) = |T (−i)| − |T |

◮ I5 is based on the dissimilarity difference between the two partitions

I5(xi) = 1 − J
(

T̃ , T̃
(−i)

)

where J
(

T̃ , T̃ (−i)
)

is the Jaccard dissimilarity between the partitions of

L defined by T̃ (−i) and T̃ (the sets of the leaves of the trees)

◮ Jaccard coefficient J(C1,C2) =
a

a+b+c

a = number of pairwise points of L in the same cluster in both partitions C1 and C2

b (resp. c)= number of pairwise points in the same cluster in C1, but not in C2

(resp. in C2, but not in C1)
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◮ 160 jackknife trees T̃ (−i) having one leaf less

than T and 163 leading to a partition different

from T̃

◮ I5 of 160 observations for which the jackknife

tree has one leaf less than T

◮ 139 lead to a partition T̃ (−i) of dissimilarity
larger than 0.05

◮ 21 trees with one less leaf than T , but leading
to a similar partition

◮ all jackknife trees partitions are of

dissimilarity smaller than 0.06 from T̃ (very

local perturbations around xi )

◮ 163 trees leading to nearby partitions T̃ (−i)

different from T̃

= the 163 trees leading to a nonzero number

of mails classified differently
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CART specific influence

Focus on the cp complexity cost constant

◮ consider the Ncp 6 KT +
∑

16i6n KT (−i) distinct values {cp1; . . . ; cpNcp}
where KT is the length of the sequence leading to tree T

◮ usually Ncp<<KT +
∑

16i6n KT (−i) , since the jackknife sequences are the

same for many observations

Definition I6

◮ I6 is the number of complexities for which these predicted labels differ

I6(xi) =

Ncp∑

j=1

1l
Tcpj

(xi ) 6=T
(−i)
cpj

(xi )

1l
Tcpj

(xi ) 6=T
(−i)
cpj

(xi )
indicates if the reference and jackknife subtrees

corresponding to the same complexity cpj provide different predicted

labels for xi
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CART tree: pruning sequence

Penalized criterion

critα(T ) = Rn(f , f̂|T ,Ln) + α
|T̃ |

n

Rn(f , f̂|T ,Ln) the error term and |T̃ | the number of leaves

Pruning procedure: how to find Tα minimizing critα(T ) for any given α

◮ a finite decreasing (nested) sequence of subtrees pruned from Tmax

TK = {t1} ≺ TK−1 ≺ ... ≺ T1

corresponding to critical complexities

0 = α1 < α2 < ... < αK−1 < αK

such that if αk < β ∈< αk+1 then Tβ = Tαk
= Tk

◮ Remark: this sequence is a subsequence of the best trees of m leaves
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CART specific influence: spam dataset

Pruned subtrees sequences contain around 6 elements and lead to Ncp = 27

distinct values of the cp parameter (from 0.01 to 0.48)

I6 0 1 2 3 4 7 12 13 14 17 18 21

Nb. Obs. 2768 208 1359 79 62 1 1 66 30 2 23 2

Table: Frequency distribution of I6 over the 4601 emails

◮ 123 observations leading to different predictions for at least half of the

pruned subtrees

◮ the 2 most influential mails for I6 lead to 78% of the complexity values

for which predicting labels change

◮ these 2 mails are also the most influential for I2 and I4. They are a spam

and a nonspam mails defining the second split of the reference tree: the

threshold on remove is the middle of their corresponding values
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◮ Tax revenues of households in

2007 from the 143 cities

surrounding Paris

◮ Cities are grouped into four
counties (“département” in
french)

◮ Paris: 20 ”arrondissements”
(districts)

◮ Seine-Saint-Denis (north of
Paris): 40 cities

◮ Hauts-de-Seine (west of
Paris): 36 cities

◮ Val-de-Marne (south of
Paris): 48 cities

◮ Data freely available on

http://www.data-publica.

com/data
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PATARE dataset: the variables
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75: Paris

92: Haut de Seine

93: Seine Saint Denis

94: Val de Marne

◮ Variables = characteristics of

the distribution of the tax

revenues per city

◮ For each city:
◮ first and 9th deciles (D1, D9)
◮ quartiles (Q1, Q2 and Q3)
◮ mean, and % of the tax

revenues coming from the
salaries and treatments
(PtSal)
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PATARE dataset: the classification problem
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◮ supervised classification

problem (quaternary explained

variable): to predict the county

of the city with the

characteristics of the tax

revenues distribution

◮ it cannot be easily retrieved

from the explanatory variables

considered without the county

information

poor recovery of counties

through clusters: map of the

cities drawn according to a

k -means (k=4) clustering

superimposed with the borders

of the counties
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PATARE dataset: reference tree performance

◮ Surprisingly, the predictions are generally correct: resubstitution

misclassification rate = 24.3%

Actual
Predicted

75 92 93 94

Paris (75) 20 0 0 0

Haut de Seine (92) 0 30 1 5

Seine Saint Denis (93) 1 4 28 7

Val de Marne (94) 3 9 5 30

◮ Since the cities within each county are very heterogeneous, we look for

the cities which perturb the reference tree

◮ the 143 jackknife trees
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PATARE dataset: influential observations

◮ I1 and I3 computed on the 75 cities (over 143) for which I1 is nonzero
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◮ 45 cities (over 143) are classified differently by T and T (−i)

◮ 44 jackknife trees have a different number of leaves than T , i.e. I4 6= 0

I4 -3 -2 -1 0 1

Nb. Obs. 1 8 25 99 10

◮ I5 on the 45 observations of the PATARE dataset for which I4 is nonzero:
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PATARE dataset: I6-influential observations

Pruned subtrees sequences lead to Ncp = 29 distinct values of the cp

complexity parameter

I6 0-2 3 4 6 7 9 10 12 13 14 16 17 21 24 26
Nb 61 17 9 2 14 5 1 3 3 10 7 6 2 1 2

Table: Frequency distribution of I6 over the 143 cities

◮ 2 cities change prediction labels of trees for 26 complexities:

Asnieres-sur-Seine and Villemomble

◮ one city changes labels of trees for 24 complexities, and 2 cities for 21

complexities: Paris 13eme, and Bry-sur-Marne (from “Val-de-Marne”),

Rueil-Malmaison (from “Hauts-de-Seine”)

◮ these 5 cities change labels for more than 72% of the complexities

◮ 61 cities change labels of trees for less than 7% of the complexities
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Influential cities

PATARE dataset: back to unsupervised analysis
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◮ influential observations for PCA

are not related to influential cities

detected using I6 index

◮ in the plane of two first principal
components capturing more than
95% of the total variance,

each city = a symbol of size

proportional to its I6 index

◮ the influential points for PCA

(those far from the origin) are

generally of small influence for

influence index I6
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Thanks and greetings to Anestis, undoubtedly a highly ”influential”
statistician ...
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