MASCOT NUM 2011 WORKSHOP In honour of Anostis Antoniadis Profession at Grenoble University

VILLARD-DE-LANS, March 23-25, 2011

Influence functions for CART

Jean-Michel Poggi

Orsay University

JOINT WORK WITH AVNER BAR-HEN AND SERVANE GEY

March 2011

In honour of Anestis Antoniacis --- March 2011 --- J-M. Poggi

Influence functions for CART

CART Motivation Influence function

Plan

Introduction

- CART
- Motivation
- Influence function

Influence functions for CART

- Presentation
- Influence on predictions
- Influence on partitions
- CART specific notion of influence

Exploring the Paris Tax Revenues dataset

- Presentation
- Classification problem
- Influential cities

Motivation Influence function

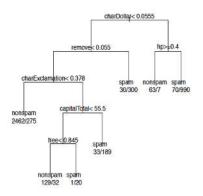
CART Classification And Regression Trees, Breiman et al. (1984)

- ► Learning set L = {(X₁, Y₁),..., (X_n, Y_n)}, n i.i.d. observations of a random vector (X, Y)
- ▶ Vector $X = (X^1, ..., X^p)$ of explanatory variables, $X \in \mathbb{R}^p$, and $Y \in \mathcal{Y}$ where \mathcal{Y} is either a class label or a numerical response
- For classification problems, a classifier t is a mapping t : ℝ^p → Y and the Bayes classifier is to estimate
- ► For regression problems, we suppose that

$$Y = f(X) + \varepsilon$$

and f is the regression function to estimate

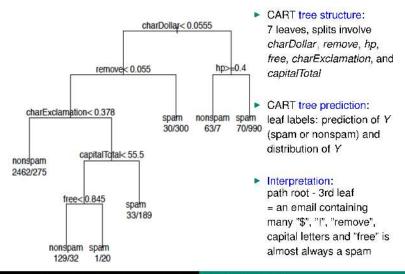
spam dataset



- Design an automatic spam detector (supervised learning problem)
- ftp.ics.uci.edu
- n=4601 email messages (1813 spams, 40%)
- p=57 predictors:
 - 54 are the % of words in the email matching a given word or character like "\$", "I", "remove", "free"
 - 3 related to the lengths of uninterrupted sequences of capital letters (average length, length of the longest one, sum of the lengths of such sequences)

CART Motivation Influence function

CART tree on spam dataset



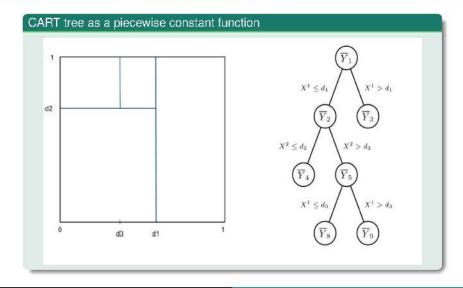
In honour of Anestis Antoniacis — March 2011 — J-M. Poggi Influence functions for CART

CART Classification And Regression Trees, Breiman et al. (1984)

- nonparametric model + data partitioning
- numerical + categorical predictors
- easy to interpret models
- non linear modelling
- ► base rule for: bagging, boosting, random forests
- single framework for: regression, binary or multiclass classification
- ▶ see Zhang, Singer (2010) and Hastie, Tibshirani, Friedman (2009)

CART Motivation Influence function

CART tree



Motivation Influence function

Growing step, stopping rule:

- recursive partitioning by maximizing local decreasing heterogeneity
- do not split a pure node or a node containing a few data

Pruning step:

- the maximal tree overfits the data
- an optimal tree is pruned subtree by penalizing the prediction error by the model complexity

Penalized criterion

$$crit_{\alpha}(T) = R_n(f, \hat{f}_{|T}, \mathcal{L}_n) + \alpha \frac{|\tilde{T}|}{n}$$

 $R_n(f, \hat{f}_{|T}, \mathcal{L}_n)$ the error term (MSE for regression or misclassification rate) $|\tilde{T}|$ the number of leaves of T

A typical result for regression problems (Gey, Nedelec 2005)

There exist C_1 , C_2 , C_3 positive constants such that:

$$\mathbb{E}\left[\|\tilde{f}-f\|^2|\mathcal{L}_1\right] \leqslant C_1 \inf_{T \leq T_{max}} \left[\inf_{u \in S_T} \|u-f\|^2 + \frac{\sigma^2}{n_1} \frac{|\tilde{T}|}{n_1}\right] + \frac{C_2}{n_1} + C_3 \frac{\ln n_1}{n_2}$$

where $\mathcal{S}_{\mathcal{T}}$ is the set of piecewise constant functions defined on the partition $\tilde{\mathcal{T}}$

In the sequel, CART trees obtained using

- R package rpart
- the default parameters (Gini heterogeneity function to grow the maximal tree and pruning with 10-fold CV)

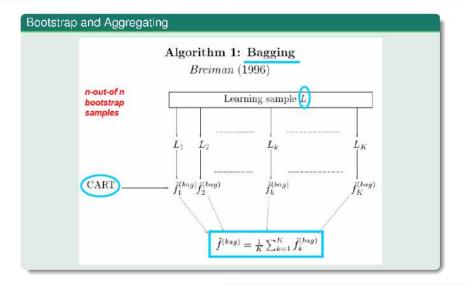
CART Motivation Influence function

A boosting-based outlier detection

- Cheze, Poggi (2006)
- Outliers = observations not "consistent" with most of data Rousseeuw, Leroy 1987
- PCA and related robust methods Jolliffe (2002)
- Methods supported by robustness ideas and based on linear modeling:
 - Minimum Covariance Determinant (MCD) Rousseeuw, Van Driessen (1999)
 - Least Trimmed Squares (LTS) Rousseeuw, Leroy (1987)
 - Least Median Squares (LMS) Rousseeuw (1984)
- General nonparametric regression design method CART trees to ensure flexible estimation and weakly structured model
- Automatic data-driven outlier detection procedure Boosting by adaptive resampling to explore different features of the data

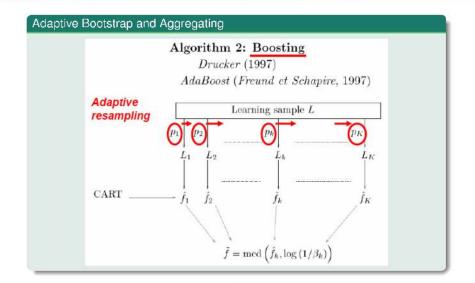
CART Motivation Influence function

Bagging



CART Motivation Influence function

Boosting

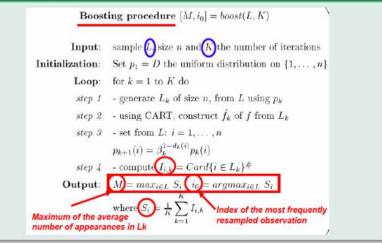


In honour of Anestis Amoniacis --- March 2011 --- J-M. Poggi Influence functions for CART

CART Motivation Influence function

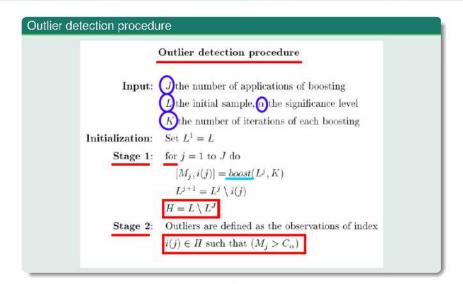
Boosting procedure $[M, i_0] = boost(L, K)$

Boosting procedure



CART Motivation Influence function

Outlier detection procedure by iterated boosting



CART Motivation Influence function

CART and stability

- CART instability
- ▶ Briand et al. (2009) sensitivity using a similarity measure between trees
- Bousquet, Elisseeff (2002) stability through jackknife
- Classically, robustness deals with model stability, considered globally
- Focus on individual observations diagnosis issues rather than model properties or variable selection problems
- Huber (1981) influence curve theory to define
 - different classes of robust estimators
 - measure of sensitivity for usual estimators
- We use decision trees to perform diagnosis on observations
- We use influence function, a classical diagnostic method to measure the perturbation induced by a single observation: stability issue through jackknife

CART Motivation Influence function

Influence function

► $X_1, ..., X_n$ r.v. of common distribution function (df) F on \mathbb{R}^d ($d \ge 1$) Statistic T(F) naturally estimated by $T(F_n)$ where F_n is the empirical df

$$F_n = \frac{1}{n} \sum_{i=1}^n \delta_{X_i}$$

• The influence of an infinitesimal perturbation along δ_x (Hampel (1988))

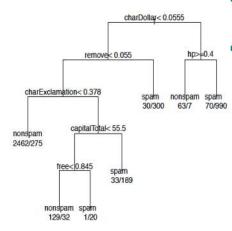
$$IC_{T,F}(x) = \lim_{\epsilon \to 0} \frac{T((1-\epsilon)F + \epsilon \delta_x) - T(F)}{\epsilon}$$

is used to evaluate the importance of an observation $x \in \mathbb{R}^d$

► Connection between influence function and jackknife (Miller (1974)): let $F_{n-1}^{(i)} = \frac{1}{n-1} \sum_{j \neq i} \delta_{x_j}$, then $F_n = \frac{n-1}{n} F_{n-1}^{(i)} + \frac{1}{n} \delta_{x_i}$. If $\epsilon = -\frac{1}{n-1}$, we have: $IC_{T,F_n}(x_i) = \frac{T((1-\epsilon)F_n + \epsilon \, \delta x_i) - T(F_n)}{\epsilon}$ $\approx (n-1)(T(F_n) - T(F_{n-1}^{(i)}))$ $\approx T_{n}^* - T(F_n)$

CART Motivation Influence function

spam dataset: jackknife trees



- Influence of observation *i* is based on *T*^(-*i*) the jackknife tree based on all observations except *i*
- collection of 4601 jackknife trees
 - retained variables:
 - charDollar, charExclamation, hp and remove are always present
 - capitalLong is present in 88 trees, capitalTotal in 4513 and free in 4441 trees
 - the 4441 trees containing free also contain capitalTotal
 - number of leaves:
 - differences explained by the presence (or not) of the variable free: removing one observation is enough to remove the split leading to misclassification

Presentation Influence on predictions Influence on partitions CART specific notion of influence

Plan

Introduction

- CART
- Motivation
- Influence function
- Influence functions for CART
 - Presentation
 - Influence on predictions
 - Influence on partitions
 - CART specific notion of influence

Exploring the Paris Tax Revenues dataset

- Presentation
- Classification problem
- Influential cities

Presentation

Influence on partitions CART specific notion of influence

Influence functions for CART

Quantifying the differences between

- reference tree T obtained from the complete sample \mathcal{L}_n
- ► jackknife trees $(T^{(-i)})_{1 \leq i \leq n}$ obtained from $(\mathcal{L}_n \setminus \{(X_i, Y_i)\})_{1 \leq i \leq n}$

Three kinds of IF for CART

- we derive three kinds of IF based on jackknife trees
 - influence on predictions focusing on predictive performance
 - influence on partitions highlighting the tree structure

following a classical distinction, see Miglio and Soffritti (2004)

- +
- CART specific influence derived from the pruned sequences of trees

Presentation Influence on predictions Influence on partitions CART specific notion of influence

Influence on predictions

 I_1 and I_2 are based only on the predictions

Definition I_1 and I_2

*I*₁, closely related to the resubstitution estimate of the prediction error, evaluates the impact of a single change on all the predictions

$$I_{1}(x_{i}) = \sum_{k=1}^{n} 1 I_{T(x_{k}) \neq T^{(-i)}(x_{k})}$$

I2, closely related to the leave-one-out estimate of the prediction error

 $I_2(x_i) = 1_{T(x_i) \neq T^{(-i)}(x_i)}$

Presentation Influence on predictions Influence on partitions CART specific notion of influence

Influence on predictions

 I_3 is based on the distribution of the labels in each leaf

Definition I₃

I₃ measures the distance between the distribution of the label in the nodes where x_i falls

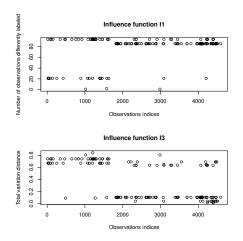
$$I_{3}(x_{i}) = d\left(\mathbf{p}_{x_{i},T},\mathbf{p}_{x_{i},T^{(-i)}}\right)$$

where *d* is the total variation distance

$$d(p,q) = \max_{A \subset \{1; \dots; J\}} |p(A) - q(A)| = 2^{-1} \sum_{j=1}^{J} |p(j) - q(j)|$$

Presentation Influence on predictions Influence on partitions CART specific notion of influence

Influence on predictions: spam dataset



- 163 jackknife trees lead to a nonzero number of observations for which the predicted label changes
- *I*₁ and *I*₃ for the 163 observations for which *I*₁ is nonzero
- ▶ 77 observations for which $l_2 = 1$ (i.e. $T(x_i) \neq T^{(-i)}(x_i)$) lead to a distance between $p_{x_i, T}$ and $p_{x_i, T^{(-i)}}$ larger than 0.6

 the others lead to a distance smaller than 0.1

Presentation Influence on predictions Influence on partitions CART specific notion of influence

Influence on partitions

Definition

► *I*₄ measures the variations on the number of clusters in each partition

$$I_4(x_i) = |T^{(-i)}| - |T|$$

► *I*₅ is based on the dissimilarity difference between the two partitions

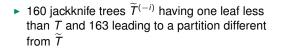
$$I_5(x_i) = 1 - J\left(\widetilde{T}, \widetilde{T}^{(-i)}\right)$$

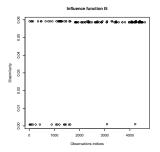
where $J(\tilde{T}, \tilde{T}^{(-i)})$ is the Jaccard dissimilarity between the partitions of \mathcal{L} defined by $\tilde{T}^{(-i)}$ and \tilde{T} (the sets of the leaves of the trees)

▶ Jaccard coefficient $J(C_1, C_2) = \frac{a}{a+b+c}$ a = number of pairwise points of \mathcal{L} in the same cluster in both partitions C_1 and C_2 b (resp. c)= number of pairwise points in the same cluster in C_1 , but not in C_2 (resp. in C_2 , but not in C_1)

Presentation Influence on predictions Influence on partitions CART specific notion of influence

Influence on partitions: spam dataset





- *I*₅ of 160 observations for which the jackknife tree has one leaf less than *T*
 - 139 lead to a partition T
 ⁽⁻ⁱ⁾ of dissimilarity larger than 0.05
 - 21 trees with one less leaf than T, but leading to a similar partition
- ► all jackknife trees partitions are of dissimilarity smaller than 0.06 from T̃ (very local perturbations around x_i)
- ► 163 trees leading to nearby partitions T
 ⁽⁻ⁱ⁾ different from T
 ⁽⁻ⁱ⁾

= the 163 trees leading to a nonzero number of mails classified differently

Presentation Influence on predictions Influence on partitions CART specific notion of influence

CART specific influence

Focus on the cp complexity cost constant

- ► consider the $N_{cp} \leq K_T + \sum_{1 \leq i \leq n} K_{T^{(-i)}}$ distinct values $\{cp_1; \ldots; cp_{N_{cp}}\}$ where K_T is the length of the sequence leading to tree T
- ► usually $N_{cp} << K_T + \sum_{1 \leq i \leq n} K_{T^{(-i)}}$, since the jackknife sequences are the same for many observations

Definition I₆

► *I*₆ is the number of complexities for which these predicted labels differ

$$I_{6}(x_{i}) = \sum_{j=1}^{N_{cp}} 1 I_{T_{cp_{j}}(x_{i}) \neq T_{cp_{j}}^{(-i)}(x_{i})}$$

 $11_{T_{cp_j}(x_i) \neq T_{cp_j}^{(-i)}(x_i)}$ indicates if the reference and jackknife subtrees corresponding to the same complexity cp_j provide different predicted labels for x_i

Presentation Influence on predictions Influence on partitions CART specific notion of influence

CART tree: pruning sequence

Penalized criterion

$$\textit{crit}_{lpha}(\textit{T}) = \textit{R}_{\textit{n}}(f, \hat{f}_{|T}, \mathcal{L}_{\textit{n}}) + lpha rac{| ilde{T}|}{n}$$

 $R_n(f, \hat{f}_{|T}, \mathcal{L}_n)$ the error term and $|\tilde{T}|$ the number of leaves

Pruning procedure: how to find T_{α} minimizing $crit_{\alpha}(T)$ for any given α

▶ a finite decreasing (nested) sequence of subtrees pruned from T_{max}

 $T_{K} = \{t_1\} \prec T_{K-1} \prec \ldots \prec T_1$

corresponding to critical complexities

 $\mathbf{0} = \alpha_1 < \alpha_2 < \dots < \alpha_{K-1} < \alpha_K$

such that if $\alpha_k < \beta \in < \alpha_{k+1}$ then $T_{\beta} = T_{\alpha_k} = T_k$

Remark: this sequence is a subsequence of the best trees of m leaves

Presentation Influence on predictions Influence on partitions CART specific notion of influence

CART specific influence: *spam* dataset

Pruned subtrees sequences contain around 6 elements and lead to $N_{cp} = 27$ distinct values of the *cp* parameter (from 0.01 to 0.48)

<i>I</i> ₆	0	1	2	3	4	7	12	13	14	17	18	21
Nb. Obs.	2768	208	1359	79	62	1	1	66	30	2	23	2

Table: Frequency distribution of I_6 over the 4601 emails

- 123 observations leading to different predictions for at least half of the pruned subtrees
- the 2 most influential mails for I₆ lead to 78% of the complexity values for which predicting labels change
- these 2 mails are also the most influential for l₂ and l₄. They are a spam and a nonspam mails defining the second split of the reference tree: the threshold on *remove* is the middle of their corresponding values

Presentation Classification problem nfluential cities

Plan

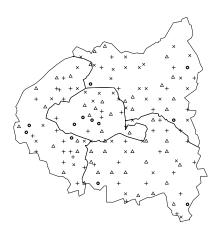
Introduction

- CART
- Motivation
- Influence function
- Influence functions for CART
 - Presentation
 - Influence on predictions
 - Influence on partitions
 - CART specific notion of influence

Exploring the Paris Tax Revenues dataset

- Presentation
- Classification problem
- Influential cities

PATARE dataset

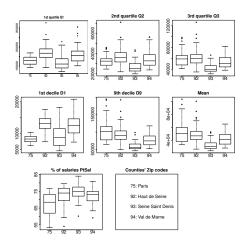


Presentation Classification problem Influential cities

- Tax revenues of households in 2007 from the 143 cities surrounding Paris
- Cities are grouped into four counties ("département" in french)
 - Paris: 20 "arrondissements" (districts)
 - Seine-Saint-Denis (north of Paris): 40 cities
 - Hauts-de-Seine (west of Paris): 36 cities
 - Val-de-Marne (south of Paris): 48 cities
- Data freely available on http://www.data-publica. com/data

Presentation Classification problem Influential cities

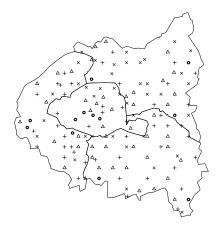
PATARE dataset: the variables



- Variables = characteristics of the distribution of the tax revenues per city
- For each city:
 - first and 9th deciles (D1, D9)
 - quartiles (Q1, Q2 and Q3)
 - mean, and % of the tax revenues coming from the salaries and treatments (PtSal)

Presentation Classification problem Influential cities

PATARE dataset: the classification problem

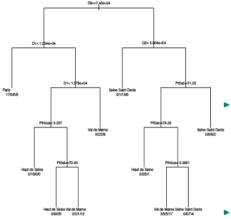


- supervised classification problem (quaternary explained variable): to predict the county of the city with the characteristics of the tax revenues distribution
- it cannot be easily retrieved from the explanatory variables considered without the county information

poor recovery of counties through clusters: map of the cities drawn according to a *k*-means (*k*=4) clustering superimposed with the borders of the counties

Presentation Classification problem Influential cities

PATARE dataset: CART reference tree



Terminal nodes:

- each leaf: the predicted county and the distribution of the county 75/92/93/95
- on the left subtree, homogeneous
- half the nodes of the right subtree are highly heterogeneous

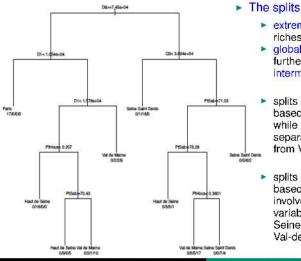
Labels distinguish

- Paris and Hauts-de-Seine on the left from Seine-Saint-Denis on the right
- while Val-de-Marne appears in both sides

The splits

Influence functions for CABT Excloring the Paris Tax Revenues dataset Classification crockern

PATARE dataset: CART reference tree



- extreme quantiles separate richest from poorest counties
- global predictors are useful to further discriminate between intermediate cities
 - splits on the left part mainly based on deciles D1. D9 while PtSal is only used to separate Hauts-de-Seine from Val-de-Marne
- splits on the right part are based on all the variables but involve PtSal and mean variables to separate Seine-Saint-Denis from Val-de-Marne

In honour of Anestis Antoniacis --- March 2011 --- J-M. Poggi

Presentation Classification problem Influential cities

PATARE dataset: reference tree performance

Surprisingly, the predictions are generally correct: resubstitution misclassification rate = 24.3%

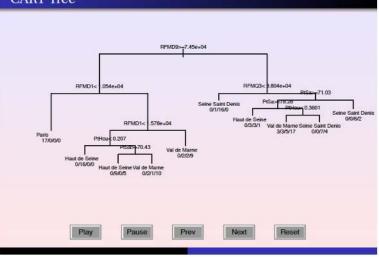
Actual Predicted	75	92	93	94
Paris (75)	20	0	0	0
Haut de Seine (92)	0	30	1	5
Seine Saint Denis (93)	1	4	28	7
Val de Marne (94)	3	9	5	30

- Since the cities within each county are very heterogeneous, we look for the cities which perturb the reference tree
- ▶ the 143 jackknife trees

Presentation Classification croclem Influential chies

PATARE dataset: the 143 jackknife trees

CART Tree

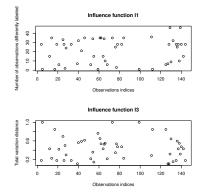


In honour of Anestis Antoniacis — March 2011 — J-M. Poggi

Presentation Classification problem Influential cities

PATARE dataset: influential observations

▶ I_1 and I_3 computed on the 75 cities (over 143) for which I_1 is nonzero

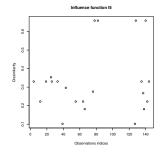


Presentation Classification problem Influential cities

PATARE dataset: influential observations

- 45 cities (over 143) are classified differently by T and $T^{(-i)}$
- ▶ 44 jackknife trees have a different number of leaves than *T*, i.e. $I_4 \neq 0$

> l_5 on the 45 observations of the PATARE dataset for which l_4 is nonzero:



Presentation Classification problem Influential cities

PATARE dataset: *I*₆-influential observations

Pruned subtrees sequences lead to $N_{cp} = 29$ distinct values of the *cp* complexity parameter

<i>I</i> ₆	0-2	3	4	6	7	9	10	12	13	14	16	17	21	24	26
Nb	61	17	9	2	14	5	1	3	3	10	7	6	2	1	2

Table: Frequency distribution of I_6 over the 143 cities

- 2 cities change prediction labels of trees for 26 complexities: Asnieres-sur-Seine and Villemomble
- one city changes labels of trees for 24 complexities, and 2 cities for 21 complexities: *Paris 13eme*, and *Bry-sur-Marne* (from "Val-de-Marne"), *Rueil-Malmaison* (from "Hauts-de-Seine")
- these 5 cities change labels for more than 72% of the complexities
- ▶ 61 cities change labels of trees for less than 7% of the complexities

Influential cities

PATARE dataset: influential cities - interpretation



- non trivial detection: only 3 cities among the 26 influential cities magnified by $l_{\rm A}$ or $l_{\rm A}$ are misclassified by the reference tree
- index le highlights cities for which two parts of the city can be distinguished: a popular one with a low social level and a rich one of high social level
 - index 1/4 highlights cities far from Paris and of middle or low social level Cities of index of -3 or -2 are located in nodes of the right part of the tree whereas the rich cities are concentrated on the left part

In honour of Anestis Antoniacis --- March 2011 --- J-M. Poggi

Presentation Classification problem Influential cities

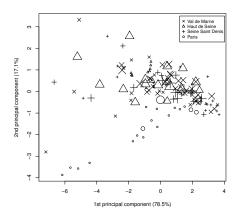
PATARE dataset: non influential cities - interpretation

- Exploring the converse: the 51
 cities of lowest values of *l*₆ (0 or 1)
 the less influential, the more
 stable, correspond to the 16 rich
 district of Paris downtown (*Paris* 1 er to 12 eme and Paris 14 eme to
 16 eme) and mainly cities near
 Paris or directly connected by the
 RER line
- Influence indices cannot be easily explained neither by central descriptors like the mean or the median nor by dispersion descriptors as Q3-Q1 and D9-D1
- Bimodality seems the key property to explain high values of the influence indices

Influence functions for CART

Presentation Classification problem Influential cities

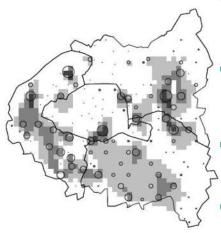
PATARE dataset: back to unsupervised analysis



- influential observations for PCA are not related to influential cities detected using *l*₆ index
- in the plane of two first principal components capturing more than 95% of the total variance, each city = a symbol of size proportional to its *I*₆ index
- the influential points for PCA (those far from the origin) are generally of small influence for influence index I₆

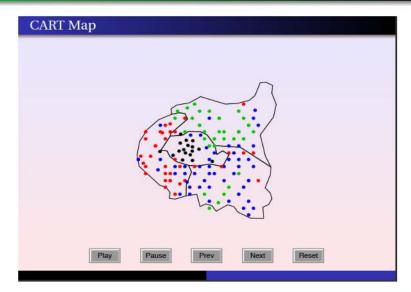
Presentation Classification crockm Influential cities

PATARE dataset: influential cities - spatial interpretation



- Map useful to capture the spatial interpretation and complement the previous comments based on prior knowledge about the Paris area sociology
- Each of the 143 cities = a circle proportional to its index l₆
 + a spatial interpolation performed using 4 gray levels
- Paris is stable, and that each surrounding county contains a stable area: the richest or the poorest cities
- Remarkable fact: the white as well as the gray areas are clustered

Back to the data: spatial visualization of jackknife trees



In honour of Anestis Antoniacis — March 2011 — J-M. Poggi

Influence functions for CART

References

- Breiman, Friedman, Olshen, Stone (1984) Chapman & Hall
- Briand, Ducharme, Parache, Mercat-Rommens (2009) CSDA
- Bousquet, Elisseeff (2002) JMLR
- Cheze, Poggi (2006) JSRI
- Gey, Poggi (2005) CSDA
- Gey, Nedelec (2005) IEEE PAMI
- Hampel (1988) JASA
- Huber (1981) Wiley
- ► Jolliffe (2002) Springer
- Miller (1974) Biometrika
- Miglio, Soffritti (2004) CSDA
- Rousseeuw (1984) JASA
- ► Rousseeuw, Leroy (1987) Wiley
- ► Rousseeuw, Van Driessen (1999) Technometrics
- Verboven, Hubert (2005) Chemometrics and Int. Lab. Syst.
- Zhang, Singer (2010) Springer
- Bar-Hen, Gey, Poggi (2010) hal.archives-ouvertes.fr/docs/00/56/20/39/PDF/cart.influence.pdf

Thanks and greetings to Anestis, undoubtedly a highly "influential" statistician ...

