

GdR Mascot-Num working meeting May 11th, 2012 – Paris

Surrogate-based robust optimization for a combustion problem

Vincent BAUDOUI

vincent.baudoui@gmail.com

Patricia KLOTZ (ONERA), Jean-Baptiste HIRIART-URRUTY (IMT-UPS), Sophie JAN (IMT-UPS) and Renaud LECOURT (ONERA)

Optimize a system's performance

Reduce pollutant emissions of a turbomachine combustion chamber

Optimize a system's performance

Reduce pollutant emissions of a turbomachine combustion chamber

Optimize a system's performance

Reduce pollutant emissions of a turbomachine combustion chamber

Main features of the problems to be solved:

- Expensive numerical simulations
- Multiobjective optimization problems
- Presence of uncertainties (probability distributions on e or d)
- → **development** of a surrogate-based adaptive strategy for multiobjective robust optimization (PareBRO method)

- **O** Robust optimization
- PareBRO method
- **O** Application to a combustion problem
- Onclusion

O Robust optimization

- PareBRO method
- **O** Application to a combustion problem
- Onclusion

Find solutions insensitive to uncertainties

- (Beyer and Sendhoff, 2007)
- \rightarrow robustness quantification from the objectives probability distributions

Robust problem: minimize $\{\rho_1(f_1(\mathbf{d}, \chi_e)), \rho_2(f_2(\mathbf{d}, \chi_e))\}$

 \rightarrow good average performance

Variance measurement

$$\mathsf{Var}(f(\mathbf{d},\chi_e)) = \mathsf{E}[f^2(\mathbf{d},\chi_e)] - \mathsf{E}^2[f(\mathbf{d},\chi_e)]$$

 \rightarrow low performance variations

k-quantile measurement

$$\mathsf{Q}_k(f(\mathsf{d},\chi_e)) = \inf\{q \in \mathbb{R} : P(f(\mathsf{d},\chi_e) \le q) \ge k\}$$

 \rightarrow performance guarantee

k-quantile measurement

$$\mathsf{Q}_k(f(\mathsf{d},\chi_e)) = \inf\{q \in \mathbb{R} : P(f(\mathsf{d},\chi_e) \le q) \ge k\}$$

 \rightarrow performance guarantee

Choose a measurement based on the qualities expected

Surrogate-based robust optimization for a combustion problem

Robustness measurement computation

 \rightarrow need of surrogate models

Robustness measurement computation

 \rightarrow need of surrogate models

Surrogate models

Polynomial approximations, neural networks, kriging, ...

Model hyperparameters θ optimized from the learning samples: minimize $||f(\mathbf{s}) - \hat{f}_{\theta}(\mathbf{s})||$

Fast evaluation, but approximation error (unknown)

Surrogate-based robust optimization for a combustion problem

Kriging model (Krige, 1953)

Estimates confidence intervals on its own predictions (here at 95%)

Ordinary kriging model with a gaussian correlation function:

$$\hat{f}(\mathbf{x}) = a_0 + \sum_i a_i \prod_j e^{- heta_j (x_j - s_j^i)^2}$$

Exact analytical expression for the expected value and variance measurements with their confidence interval (Apley et al., 2006)

$$\mathsf{E}[\hat{f}(\mathbf{x})] = a_0 + \sum_i a_i \prod_j \int_{-\infty}^{\infty} e^{-\theta_j (x_j - s_j^i)^2} p_{\chi_j}(x_j) dx_j$$

Surrogate-based robust optimization for a combustion problem

Control model error with few learning samples

Adaptive design of experiments strategies

ightarrow looking for the most informative samples to be added

Example: EGO "Efficient Global Optimization" (Jones et al., 1998)

Develop an enrichment method:

- a) allowing to improve several models simultaneously (multiobjective context)
- b) dedicated to robust optimization
 - \rightarrow add samples (**d**, χ_{e}) improving the prediction of optimal areas (in **d** space)
- c) allowing to numerically simulate *n* samples in parallel

\rightarrow PareBRO method

"Pareto Band Robust Optimization"

O Robust optimization

- PareBRO method
- **O** Application to a combustion problem

Onclusion

Sample "virtual" addition

Forecast the impact of a new learning sample ${\bf p}$ without having numerically simulated it

Kriging confidence intervals are estimated from:

$$\mathsf{Var}(\mathbf{x}) = \sigma_{\mathcal{K}}^2 - \mathbf{c}(\mathbf{x})^{\mathsf{T}} \mathbf{C}^{-1} \mathbf{c}(\mathbf{x})$$

 \rightarrow add the sample ${\bf p}$ in the kriging model covariance matrix ${\bf C} = [{\rm Cov}({\bf s}^i, {\bf s}^j)]_{i,j}$:

$$\mathbf{C}_2 = egin{bmatrix} \mathbf{C} & \mathbf{c}(\mathbf{p}) \ \mathbf{c}^{\mathsf{T}}(\mathbf{p}) & \sigma_K^2 \end{bmatrix}$$

Surrogate-based robust optimization for a combustion problem

a) Simultaneous improvement of several surrogate models For each model \hat{f}_i , we aim at improving the solution \mathbf{d}_i having the widest confidence interval Cl_ρ

- Find the most poorly predicted solutions d_i
- Relative improvement of the \mathbf{d}_i confidence interval length when virtually adding the sample $\mathbf{p} = (\mathbf{d}, \chi_e)$ to model \hat{f}_i : $\mathsf{RI}_{\hat{f}_i}(\mathbf{p}) = \frac{|\mathsf{CI}_\rho(\hat{f}_i(\mathbf{d}_i))| - |\mathsf{CI}_\rho(\hat{f}_i^{+\mathbf{p}}(\mathbf{d}_i))|}{|\mathsf{CI}_\rho(\hat{f}_i(\mathbf{d}_i))|}$
- Find the sample **p** = (**d**, χ_e) improving the confidence intervals of all **d**_i:

$$\underset{\mathbf{p}}{\operatorname{argmax}} \sum_{i} \operatorname{Rl}_{\hat{f}_{i}}(\mathbf{p})$$

b) Optimal areas improvement

Multiobjective optimization: compromises between the objectives

Pareto front: set of optimal solutions

"X dominates Y"
$$\Leftrightarrow$$
 X \prec Y \Leftrightarrow $\begin{cases} \forall i, \rho_i(\mathbf{X}) \leq \rho_i(\mathbf{Y}) \\ \exists j/\rho_j(\mathbf{X}) < \rho_j(\mathbf{Y}) \end{cases}$

Not taking into account the models' confidence intervals \rightarrow some optimal solutions might be lost

Surrogate-based robust optimization for a combustion problem

The models 95% confidence intervals define a confidence region **CR** around the objective values

Pareto dominance taking confidence regions into account:

 $\textbf{X} \prec_{\mathsf{CR}} \textbf{Y} \Leftrightarrow \textbf{CR}_{\textbf{SUP}}(\textbf{X}) \prec \textbf{CR}_{\textbf{INF}}(\textbf{Y})$

Pareto band: set of possibly optimal solutions \rightarrow modified dominance integrated into NSGA-II

c) Provide *n* **improving samples to be simulated in parallel** Clustering of the Pareto band solutions (with *k*-means) in the design variable **d** space

 \rightarrow identification of *n* possibly optimal areas Z_i

Search for an improving sample \mathbf{p}_i in each area Z_i (maximize the relative improvement RI of the points in Z_i having the widest confidence intervals)

PareBRO method

"Pareto Band Robust Optimization"

- **O** Robust optimization
- PareBRO method
- **O** Application to a combustion problem
- Onclusion

Robust optimization of an injection system

Combustion chamber with a multipoint injector

2D axisymmetric 2 days of computation 10 simulations in parallel

Reduce NO_x and CO **emissions**:

- minimize maximal temperature $T_{max} f_1$
- minimize output temperature standard deviation T_{stdev} f₂

Optimize three design variables:

- air intake swirl angle d1
- pilot d₂ and main d₃ injectors positions

Injectors can clog partially

 \rightarrow change in the fuel distribution between injectors, affecting the chamber performances

Uncertain environmental parameter $\chi_e \sim \mathcal{N}(0, \sigma_{\chi_e}^2)$

 $\dot{m}_{\text{pilot}} = 0.15 \ \dot{m}_{\text{total}} + \chi_e$ $\dot{m}_{\text{main}} = 0.85 \ \dot{m}_{\text{total}} - \chi_e$

Multiobjective robust optimization problem: minimize $\{\rho_1(f_1(\mathbf{d}, \chi_e)), \rho_2(f_2(\mathbf{d}, \chi_e))\},\$ with $\rho_i(f_i(\mathbf{d}, \chi_e)) = \mathsf{E}[f_i(\mathbf{d}, \chi_e)]$

Analytical computation of the expected values on 2 kriging models \hat{f}_1 et \hat{f}_2 with 4 inputs (d_1 , d_2 , d_3 and χ_e)

Solving the combustion problem with PareBRO

Robustness values predicted in 100 points of search space:

Before improvement (60 learning samples)

After improvement (200 learning samples)

 \rightarrow surrogate model precision has improved in the optimal areas

Robust optimization of an injection system

Final Pareto band obtained

 \rightarrow analysis of 5 representative solutions (with additional simulations for different values of χ_e)

Robust optimization of an injection system

Fuel distribution change effect

Gas temperature inside the combustion chamber

- **O** Robust optimization
- PareBRO method
- **O** Application to a combustion problem

Onclusion

Better understanding of uncertainty management in optimization

PareBRO: surrogate-based robust optimization method

- $\rightarrow\,$ deals with expensive simulations
- $\rightarrow\,$ takes model error into account in a multiobjective context
- ightarrow allows to simulate several samples in parallel

Robust solutions obtained from a limited number of simulations

Resolution of an industrial combustion problem

But significant cost for confidence intervals CI_{ρ} computation, even with surrogate models (up to 6 hours to find 10 improving samples in our case)

Try to improve PareBRO computing time:

- \rightarrow Improve robustness measurement computation
- \rightarrow Experiment other surrogate models
- $\rightarrow\,$ Consider other optimization algorithms
- \rightarrow Simplify the improving sample search

Expand to reliability-based optimization (constraint robustness)

GdR Mascot-Num working meeting May 11th, 2012 – Paris

Thank you for your attention!

Surrogate-based robust optimization for a combustion problem

Vincent BAUDOUI

vincent.baudoui@gmail.com

Patricia KLOTZ (ONERA), Jean-Baptiste HIRIART-URRUTY (IMT-UPS), Sophie JAN (IMT-UPS) and Renaud LECOURT (ONERA)