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Uncertainty quantification using functional approaches

Example of model problem
v(v= e 9 00
Vu-n=0 on Iy '
u=20 on [p
Possible uncertainties on: ‘ ‘

o the forcing term:

o the behavior:

o Uncertainties represented by “simple” random variables £ : © — = defined on a
probability space (©, B, P).

o Functional representation of any o(§)-measurable random variable 7(0)
n(0) = n(£(9))

o Approximation theory for the approximation of functionals

n(€) =Y nata(§), €=
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Uncertainty quantification using functional approaches

Stochastic/parametric models
u:£e=—u() eV suchthat A(u(€);&)=1(&)

o Propagation: Pe — O(u)
o Optimization or identification: O(u) — & or {O(u),Pe,} — &
o Probabilistic inverse problem: O(u) — P or {O(u),Pe;} — Py,
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Uncertainty quantification using functional approaches

Stochastic/parametric models

u:§€=—u(€) €V suchthat A(u():;&) =71(§)

o Propagation: Pe — O(u)
o Optimization or identification: O(u) — & or {O(u),Pe,} — &
o Probabilistic inverse problem: O(u) — P or {O(u),Pe,} — Py,

Ideal approach

Compute an accurate and explicit representation of u(&) that allows fast evaluations of
output quantities of interest, observables, or objective function.
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Construction of approximation spaces

uelhl(ZV)=V®s§
Tensorization of predefined bases

N
U(g) ~ Z Z ui,a@iwa(g) € v[\/ (4 Sp

i1 a€lp

with given approximation spaces
Vn = span{pi}it:
Sp = span{a(£) = Y, (€1) ... 95, (€a)i @ € Tp}

o Pre-defined index set Jp

{a € Nd;

oo gr} D {aeNd;

a\lgr}j{aeNd;|a\q§r},0<q<1

o Choice of Jp based on a priori analysis
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Issue

o Approximation of a high dimensional function u(¢), £ € = C R?

o Use of classical deterministic solvers (black box)
— Numerous solutions of deterministic problems: O(#Jp)
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Issue

o Approximation of a high dimensional function u(¢), £ € = C R?

o Use of classical deterministic solvers (black box)
— Numerous solutions of deterministic problems: O(#Jp)

Possibly fine deterministic models

dim(Vy) ~ 10°,10° 10"...

Make inacceptable numerous evaluations of the model problems
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Issue

o Approximation of a high dimensional function u(¢), £ € = C R?

o Use of classical deterministic solvers (black box)
— Numerous solutions of deterministic problems: O(#Jp)

Possibly fine deterministic models

dim(Vy) ~ 10°,10° 10"...

Make inacceptable numerous evaluations of the model problems

Possibly high parametric dimensionality

Many input parameters or stochastic processes with high spectral content

dim(8p) ~ 10,10",10'%°, 10", ...
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Low effective dimensionality
In most problems,

o although we have initial high dimensional objet u

o its dimensionality is effectively low

Question

Can we compute suitable low dimensional approximation spaces a priori ?
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Outline
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@ Non intrusive sparse approximation
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Non intrusive sparse approximations

Aim

Compute an approximation of u € Sp

u(§) ~ Z Uata(§)

a€clp

using a few samples {u(y*)}<_,

where {y*}2_ is a collection of sample points and the u(y*) are approximate solutions of
deterministic problems

A(u(y ) y*) = F(y")
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Non intrusive sparse approximations

Regression in 8p = span{v;}

P
i=1

Approximation v(£) = 37 vith;(€) defined by

min |lu — VH%;,
vESp

or equivalently by

Q
with [lu—vi[o =) |u(y*) — v(y")P

k=1

min [lu— ®v|3| with v = (v)i, ® = (i(y*))ki
veRP

Regularized regression

min [|u — v[|g + AR(v) | Choice of R ?
vEop

o No regularization (A = 0): requires Q > P for well-posedness and avoid overfitting
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Non intrusive sparse approximations

Ideal sparse regression

For a given precision ¢, ideal sparse regression problem:

min ||v|]jo subject to [lu— ®v|3 <e
veRP

B

with ||v|jo = #{/; v; # 0}

Approximate sparse regression (Basis Pursuit Denoising)

min ||v||; subject to [ju— ®v|3 <e
vERP

P
with [[v]ls = |vi|
i=1

which for some A(€) is equivalent to

min [ju — ®v|5 + Aflv||x
vERP
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lllustration: diffusion problem with multiple inclusions

{ —V - (kVu)=Ip(x) on Q=(0,1)x (0,1)

u=0 on 00N
with
1 if Q
K(x, €) = eto
1 +0.1E,' if x € Q,‘, i=1...8
with & € U(=1,1). = = (=1,1)%

Approximation of a Quantity of Interest /(u) in 8p C L2(Z)

I(u)(€) = /D u(x,&)dx, D =(0.4,0.6) x (0.4,0.6)

’8,: =Ps(Z), dim(Sp) = 1286‘
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lllustration: diffusion problem with multiple inclusions

1(€) = >, laa(&): coefficients {/,} obtained by regression

Least-square {1-regularization

10 - nz= 19
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Non intrusive sparse approximations

Issues
o Algorithms limited to approximation spaces with low dimension P

o Selection of good bases ?
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@ Non intrusive tensor methods
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Strategies for high dimensional approximation

Nonlinear approximation using tensor approximation methods

o Exploit the tensor structure of function space
1 d
SP:8P1®...®Spd

o Choose suitable tensor subsets M, e.g.

M={Z¢}®...®¢?’;¢fesa},
i=1

with [ dim(M) = O(d) |
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Non intrusive sparse tensor approximations

with P. Rai, A. Nouy, J. Sen Gupta

Adaptive sparse tensor approximation
o Greedy construction of a basis {w;}7; selected in a tensor subset M

o Compute un = Y i, a;w; using regularized regression

Algorithm
Let up =0. For m > 1,

o Compute a correction w, € M defined by
Wm € arg min ||u — um—1 — w||5
weM
Computed using alternating minimization on the parameters of M.

o Set Un = span{w;}; (reduced approximation space)

o Compute um = Y i, w; € Un using sparse regularization

m
min [lu— > cwillg + Allells

ceR™ -
=l
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llustration: diffusion problem with multiple inclusions

Error with ¢; and /¢, regularized update
Q =56

Error estimated using cross validation

Error with ¢1-regularized update for
different sample sizes.
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llustration: diffusion

Mean

a5ea™ Y
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lllustration: advection-diffusion equation with random field

Stationary advection diffusion reaction stochastic  Problem and Qol
equation :

-V (u(x,§)Vu) +c-Vu+ ku = g, D!l
+ homogeneous BCs 1
e o [ |
o random diffusion field Q,
100
w(x,€) = no + Y Vaini(x)é;
€)= [ u(x.€)ox
Q

© approximation space

Vv ® PP(El) R...® PP(EIOO)

Sp
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lllustration: advection-diffusion equation with random field

Error computed by cross-validation

Error with ¢1-regularized update for

Error of ¢1 and ¢>-regularized updates
different sample sizes

for sample size @ = 100

)
B E &
|u|'|

o

log(CV..
legiCV,

4
Basis

s Non intrusive Tensor methods Conclusic



Conclusion

Tensor based and regression sparse approximation methods
Qo

o

Some challenges
o Strategy for random fields
@ Robust non intrusive constructions of tensor approximations for irregular functions

o Adaptive search of optimal tensor formats
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