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Uncertainty quantification using functional approaches

Example of model problem

−∇.(κ∇u) = f on Ω

κ∇u · n = 0 on ΓN

u = 0 on ΓD

Possible uncertainties on:

the forcing term: f

the behavior: κ

Uncertainties represented by “simple” random variables ξ : Θ → Ξ defined on a
probability space (Θ,B,P).

Functional representation of any σ(ξ)-measurable random variable η(θ)

η(θ) ≡ η(ξ(θ))

Approximation theory for the approximation of functionals

η(ξ) ≈
X

ηαψα(ξ), ξ ∈ Ξ
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Uncertainty quantification using functional approaches

Stochastic/parametric models

u : ξ ∈ Ξ 7→ u(ξ) ∈ V such that A(u(ξ); ξ) = f (ξ)

Propagation: Pξ −→ O(u)

Optimization or identification: O(u) −→ ξ or {O(u),Pξ1} −→ ξ2

Probabilistic inverse problem: O(u) −→ Pξ or {O(u),Pξ1} −→ Pξ2
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Uncertainty quantification using functional approaches

Stochastic/parametric models

u : ξ ∈ Ξ 7→ u(ξ) ∈ V such that A(u(ξ); ξ) = f (ξ)

Propagation: Pξ −→ O(u)

Optimization or identification: O(u) −→ ξ or {O(u),Pξ1} −→ ξ2

Probabilistic inverse problem: O(u) −→ Pξ or {O(u),Pξ1} −→ Pξ2

Ideal approach

Compute an accurate and explicit representation of u(ξ) that allows fast evaluations of
output quantities of interest, observables, or objective function.
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Construction of approximation spaces

u ∈ L
p
µ(Ξ; V) = V ⊗ S

Tensorization of predefined bases

u(ξ) ≈
N

X

i=1

X

α∈IP

ui,αϕiψα(ξ) ∈ VN ⊗ SP

with given approximation spaces

VN = span{ϕi}N
i=1

SP = span{ψα(ξ) = ψ
1
α1

(ξ1) . . . ψ
d
αd

(ξd);α ∈ IP}

Pre-defined index set IP

n

α ∈ N
d ; |α|∞ ≤ r

o

⊃
n

α ∈ N
d ; |α|1 ≤ r

o

⊃
n

α ∈ N
d ; |α|q ≤ r

o

, 0 < q < 1

Choice of IP based on a priori analysis
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Motivations

Issue

Approximation of a high dimensional function u(ξ), ξ ∈ Ξ ⊂ R
d

Use of classical deterministic solvers (black box)
→֒ Numerous solutions of deterministic problems: O(#IP)
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Motivations

Issue

Approximation of a high dimensional function u(ξ), ξ ∈ Ξ ⊂ R
d

Use of classical deterministic solvers (black box)
→֒ Numerous solutions of deterministic problems: O(#IP)

Possibly fine deterministic models

dim(VN) ≈ 106
, 109

, 1012
...

Make inacceptable numerous evaluations of the model problems

Possibly high parametric dimensionality

Many input parameters or stochastic processes with high spectral content

dim(SP) ≈ 10, 1010
, 10100

, 101000
, ...

→ Need adapted representations for high dimensional functions
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Motivations

Low effective dimensionality

In most problems,

although we have initial high dimensional objet u

its dimensionality is effectively low

Question

Can we compute suitable low dimensional approximation spaces a priori ?
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Non intrusive sparse approximations

Aim

Compute an approximation of u ∈ SP

u(ξ) ≈
X

α∈IP

uαψα(ξ)

using a few samples {u(y k)}Q
k=1

where {y k}Q
k=1 is a collection of sample points and the u(y k) are approximate solutions of

deterministic problems
A(u(y k); y k) = f (y k)
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Non intrusive sparse approximations

Regression in SP = span{ψi}P
i=1

Approximation v(ξ) =
PP

i=1 viψi (ξ) defined by

min
v∈SP

‖u − v‖2
Q with ‖u − v‖2

Q =

Q
X

k=1

|u(y k) − v(y k)|2

or equivalently by

min
v∈RP

‖u − Φv‖2
2 with v = (vi )i , Φ = (ψi (y

k))k,i

Regularized regression

min
v∈SP

‖u − v‖2
Q + λR(v) Choice of R ?

No regularization (λ = 0): requires Q ≫ P for well-posedness and avoid overfitting
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Non intrusive sparse approximations

Ideal sparse regression

For a given precision ǫ, ideal sparse regression problem:

min
v∈RP

‖v‖0 subject to ‖u − Φv‖2
2 ≤ ǫ with ‖v‖0 = #{i ; vi 6= 0}

Blatman2011, Doostan2011, Mathelin2012, Najm2012

Approximate sparse regression (Basis Pursuit Denoising)

min
v∈RP

‖v‖1 subject to ‖u − Φv‖2
2 ≤ ǫ with ‖v‖1 =

P
X

i=1

|vi |

which for some λ(ǫ) is equivalent to

min
v∈RP

‖u − Φv‖2
2 + λ‖v‖1
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Illustration: diffusion problem with multiple inclusions

(

−∇ · (κ∇u) = ID(x) on Ω = (0, 1) × (0, 1)

u = 0 on ∂Ω

with

κ(x , ξ) =

(

1 if x ∈ Ω0

1 + 0.1ξi if x ∈ Ωi , i = 1...8

with ξi ∈ U(−1, 1). Ξ = (−1, 1)8.

Approximation of a Quantity of Interest I (u) in SP ⊂ L2
µ(Ξ)

I (u)(ξ) =

Z

D

u(x , ξ)dx , D = (0.4, 0.6) × (0.4, 0.6)

SP = P4(Ξ), dim(SP) = 1286
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Illustration: diffusion problem with multiple inclusions

I (ξ) ≈
P

α
Iαψα(ξ): coefficients {Iα} obtained by regression

Least-square ℓ1-regularization

Q = 2000

Q = 50
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Non intrusive sparse approximations

Issues

Algorithms limited to approximation spaces with low dimension P

Selection of good bases ?
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Strategies for high dimensional approximation

Nonlinear approximation using tensor approximation methods

Exploit the tensor structure of function space

SP = S
1
P1

⊗ . . .⊗ S
d
Pd

Choose suitable tensor subsets M, e.g.

M =

(

m
X

i=1

φ
1
i ⊗ . . .⊗ φ

d
i ;φ

k
i ∈ S

k
Pk

)

,

with dim(M) = O(d) .

[Nouy2010, Doostan2010, Khoromskij2010, Ballani2010]...
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Non intrusive sparse tensor approximations
with P. Rai, A. Nouy, J. Sen Gupta

Adaptive sparse tensor approximation

Greedy construction of a basis {wi}m
i=1 selected in a tensor subset M

Compute um =
Pm

i=1 αiwi using regularized regression

Algorithm

Let u0 = 0. For m ≥ 1,

Compute a correction wm ∈ M defined by

wm ∈ arg min
w∈M

‖u − um−1 − w‖2
Q

Computed using alternating minimization on the parameters of M.

Set Um = span{wi}m
i=1 (reduced approximation space)

Compute um =
Pm

i=1 ciwi ∈ Um using sparse regularization

min
c∈Rm

‖u −
m

X

i=1

ciwi‖2
Q + λ‖c‖s
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Illustration: diffusion problem with multiple inclusions

Error with ℓ1 and ℓ2 regularized update

Q = 56

Q = 1000

Error estimated using cross validation

Error with ℓ1-regularized update for
different sample sizes.

Functional approaches Non intrusive Tensor methods Conclusion 17



Illustration: diffusion problem with multiple inclusions

Mean
Standard deviation
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Illustration: advection-diffusion equation with random field

Stationary advection diffusion reaction stochastic
equation

−∇ · (µ(x , ξ)∇u) + c · ∇u + κu = IΩ1

+ homogeneous BCs

random diffusion field

µ(x , ξ) = µ0 +
100
X

i=1

√
σiµi (x)ξi

approximation space

VN ⊗ Pp(Ξ1) ⊗ . . .⊗ Pp(Ξ100)
| {z }

SP

Problem and QoI

I (ξ) =

Z

Ω2

u(x , ξ)dx
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Illustration: advection-diffusion equation with random field

Error computed by cross-validation

Error of ℓ1 and ℓ2-regularized updates
for sample size Q = 100

Error with ℓ1-regularized update for
different sample sizes
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Conclusion

Tensor based and regression sparse approximation methods

A non intrusive method

A mean to circumvent the curse of dimensionality

Some challenges

Strategy for random fields

Robust non intrusive constructions of tensor approximations for irregular functions

Adaptive search of optimal tensor formats

Thank you for your attention
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