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The interface between nature and society

raises management issues
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Mathematical control theory is a powerful framework

to deal with natural resources management issues

Problems. There are many natural resources management problems
which may be grasped within mathematical control theory

climate change mitigation, management of energies, etc.
fisheries management, epidemics control, etc.

Methods. Theory provides concepts, tools and methods

viability kernel, viable controls
dynamic programming
monotonicity

Answers. Practical answers can be obtained

ecosystem viable yields
precautionary rules
tradeoffs display between economic and ecological
sustainability thresholds and risk
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Natural resources management issues and viability Examples of decision models

We distinguish two polar classes of models:

knowledge models versus decision models

Knowledge models:
1/1 000 000 → 1/1 000 → 1/1 maps

Office of Oceanic and Atmospheric
Research (OAR) climate model
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Natural resources management issues and viability Examples of decision models

We distinguish two polar classes of models:

knowledge models versus decision models

Knowledge models:
1/1 000 000 → 1/1 000 → 1/1 maps

Office of Oceanic and Atmospheric
Research (OAR) climate model

Action/decision models:
economic models are fables

William Nordhaus
economic-climate model
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Natural resources management issues and viability Examples of decision models

A carbon cycle model “à la Nordhaus”

is an example of decision model

Time index t in years

Economic production Q(t)

Q(t + 1) =

economic growth
︷ ︸︸ ︷

(1 + g) Q(t)

co2 concentration M(t)

M(t + 1) = M(t)

natural sinks
︷ ︸︸ ︷

−δ(M(t) − M−∞) + α
︸︷︷︸

physics

emissions
︷ ︸︸ ︷

Emiss
(
Q(t)

) (
1 − a(t)

)

︸ ︷︷ ︸

abatement
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Natural resources management issues and viability Examples of decision models

A concentration target is pursued to avoid danger

United Nations Framework
Convention on Climate Change

“to achieve, (. . . ), stabilization of
greenhouse gas concentrations in the
atmosphere at a level that would
prevent dangerous anthropogenic
interference with the climate system”

Limitation of concentrations of co2

below a tolerable threshold M♯

(say 350 ppm, 450 ppm)

at a specified date T > 0
(say year 2050 or 2100)

M(T )
︸ ︷︷ ︸

concentration at horizon

≤ M♯
︸︷︷︸

threshold
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Natural resources management issues and viability Examples of decision models

Constraints capture different requirements
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The concentration has to
remain below a tolerable
level at the horizon T :

M(T ) ≤ M♯

More demanding: from
the initial time t0 up to
the horizon T

M(t) ≤ M♯ ,

t = t0, . . . ,T
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Natural resources management issues and viability Examples of decision models

Constraints may be environmental, physical, economic

The concentration has to remain below a tolerable level
from initial time t0 up to the horizon T

M(t) ≤ M♯ , t = t0, . . . ,T

Abatements 0 ≤ a(t) ≤ 1, t = t0, . . . ,T − 1

Price ceiling on co2 → bounded abatement costs

Cost
(
a(t),Q(t)

)

︸ ︷︷ ︸

costs

≤ c♯ (100 euros / tonne co2) , t = t0, . . . ,T − 1
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Natural resources management issues and viability Examples of decision models

Populations may be described by abundances at ages

Jack Mackrel abundances (Chilean data)
in thousand of individuals

13651022 thousand of age < 1 (recruits)
7495888 thousand of age ∈ [1, 2[
6804151
4191318
4582943
2500338
1139182
523261
269328
166390
95606 thousand of age ≥ 11
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Natural resources management issues and viability Examples of decision models

Here are the ingredients of a harvested population

age-class dynamical model

Time t ∈ N measured in years

Abundances at age
N = (Na)a=1,...,A ∈ X = R

A
+

a ∈ {1, . . . ,A} age class index

A = 3 for anchovy
A = 8 for hake
A = 40 for bacalao

Control variable λ ∈ U = R+ is
fishing effort
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Natural resources management issues and viability Examples of decision models

Harvested population age-class dynamics

N1(t + 1) = S/R
(

spawning biomass
︷ ︸︸ ︷

SSB
(
N(t)

) )

recruitment

N2(t + 1) = e−(M1+λ(t)F1)N1(t)

Na(t + 1) = e

−

mortality
︷ ︸︸ ︷

(Ma−1
︸ ︷︷ ︸

natural

+ λ(t)Fa−1
︸ ︷︷ ︸

fishing

)

Na−1(t), a = 2, . . . ,A − 1

NA−1(t + 1) = e−(MA−2+λ(t)FA−2)NA−2(t)

NA(t + 1) = e−(MA−1+λ(t)FA−1)NA−1(t) + πe−(MA+λ(t)FA)
︸ ︷︷ ︸

plus group

NA(t)
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Natural resources management issues and viability Examples of decision models

The ices precautionary approach uses indicators and

reference points to handle ecological objectives

International Council for the Exploration of the Sea precautionary approach

keeping (or restoring) spawning stock biomass SSB indicator
above a threshold reference point Blim

restricting fishing effort so that mean fishing mortality F indicator is
below a threshold reference point Flim

Definition Notation Anchovy Hake

F limit RP Flim / 0.35

SSB limit RP (t) Blim 21 000 100 000
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Natural resources management issues and viability Examples of decision models

The ices uses two indicators and two reference points

Spawning stock biomass

SSB(N) =

A∑

a=1

γa
︸︷︷︸

proportion

mass
︷︸︸︷
µa Na

︸︷︷︸

abundance

with reference point SSB(N) ≥ Blim

Mean fishing mortality over age range from ar to Ar

F (λ) :=
λ

Ar − ar + 1

a=Ar∑

a=ar

Fa

with reference point F (λ) ≤ Flim
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Natural resources management issues and viability Discrete–time viability

Outline of the presentation

1 Natural resources management issues and viability
Examples of decision models
Discrete–time viability
Are the ICES fishing quotas recommendations “sustainable”?
Ecosystem viable yields (anchovy–hake application)

2 Risk management and stochastic viability
Uncertain systems and policies
Viable scenarios and viability probability
Dam management under environmental/tourism constraint
Bycatches in a nephrops-hake fishery

3 Contribution to quantitative sustainable management
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Natural resources management issues and viability Discrete–time viability

A control system relates input and output variables

Output variables

soup quality
water vapor
temperature
(internal state)

Input variables

Control wood logs
Uncertainty wood humidity

metal conductivity
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Natural resources management issues and viability Discrete–time viability

Discrete-time nonlinear state-control systems

are special input-output systems

A specific output is distinguished, and is labeled state,
when the system may be written

{
x(t + 1) = Dyn(t, x(t), u(t)), t ∈ T = {t0, t0 + 1, . . . ,T − 1}
x(t0) given

the time t ∈ T = {t0, t0 + 1, . . . ,T − 1,T} ⊂ N is discrete
(the time period [t, t + 1[ may be a year, a month, etc.)
with initial time t0 and horizon T (T < +∞ or T = +∞)

the state variable x(t) belongs to the finite dimensional state space
X = R

nX (biomasses, abundances, capital, etc.)

the control variable u(t) is an element of the control set U = R
nU

(catches, harvesting effort, investment, etc.)

the dynamics Dyn maps T × X × U into X

(age-class model, population dynamics, economic model, etc.)
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Natural resources management issues and viability Discrete–time viability

Our main tool will be control theory in discrete time

Control theory
in discrete time

blanco

Ecology Economics Modeling
Life-cycle Decision Simulations
Patches under

uncertainty

Problem

Find controls/decisions
driving a dynamical system
To achieve various goals

Three main ingredients

Controlled dynamics ®

Constraints �
Criterion to optimize
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Natural resources management issues and viability Discrete–time viability

How can we mathematically express

the objectives pursued?

The objectives can concern
the input or the output variables

More precisely, for a state-control
system, the objectives will be expressed
as constraints, and we shall distinguish

control constraints (rather easy)
state constraints (rather difficult)

Viability theory deals with state
constraints
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Natural resources management issues and viability Discrete–time viability

Constraints may be explicit on the control

Examples of control constraints

Irreversibility constraints, physical bounds
�

0 ≤ a(t) ≤ 1 , 0 ≤ h(t) ≤ B(t)

Tolerable costs c
(
a(t),Q(t)

)
≤ c♯

Precautionary thresholds F (λ(t)) ≤ Flim

Control constraints / admissible decisions

u(t)
︸︷︷︸

control

∈ B
(
t, x(t)

)

︸ ︷︷ ︸

admissible set

, t = t0, . . . ,T − 1

Easy because control variables u(t) are precisely those variables whose
values the decision-maker can fix at any time within given bounds
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Natural resources management issues and viability Discrete–time viability

Constraints may concern the state

State constraints / admissible states

x(t)
︸︷︷︸

state

∈ A(t)
︸︷︷︸

admissible set

, t = t0, . . . ,T

Examples

co2 concentration M(t) ≤ M♯

spawning stock biomass
SSB

(
N(t)

)
≥ Blim

tipping points

State constraints are mathematically difficult because of “inertia”

x(t) = function
︸ ︷︷ ︸

iterated dynamics

(
u(t − 1), . . . , u(t0)

)

︸ ︷︷ ︸

past controls
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Natural resources management issues and viability Discrete–time viability

Some economists recommend issues to be

expressed in their own units, without aggregation

The “Stiglitz-Sen-Fitoussi”
Commission (2009)
déconseille de privilégier un
indicateur synthétique
unique car, quel que soit
l’indicateur envisagé,
l’agrégation de données
disparates ne va pas de soi
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Natural resources management issues and viability Discrete–time viability

When dealing with economic and environmental objectives,

this disaggregated approach is coined co-viability

Co-viability when

m environmental constraints: conservation, viability
I economic constraints: production, efficiency

C. Béné, L. Doyen, and D. Gabay.
A viability analysis for a bio-economic model.
Ecological Economics, 36:385–396, 2001
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Natural resources management issues and viability Discrete–time viability

Can we solve the compatibility puzzle between dynamics

and objectives by means of appropriate controls?

Given a dynamics,
mathematically expressing
the causal impact of controls
on the state

Imposing objectives bearing
on output variables (states,
controls)

Is it possible to find a
control path which achieves
the objectives for all times?
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Natural resources management issues and viability Discrete–time viability

How to anticipate the crisis?

An initial state is not viable if
whatever the sequence of
decisions a crisis occurs

There exists a time when one of
the state or control constraints
is violated by the trajectories
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Natural resources management issues and viability Discrete–time viability

The compatibility puzzle can be solved

when the viability kernel is not empty

Viable initial states form the viability kernel (Jean-Pierre Aubin)

Viab(t0) :=







initial
states
x ∈ X

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

there exist decisions u(·) =
(
u(t0), u(t0 + 1), . . . , u(T − 1)

)

and states x(·) =
(
x(t0), x(t0 + 1), . . . , x(T )

)

starting from x(t0) = x at time t0
satisfying for any time t ∈ {t0, . . . ,T − 1}
x(t + 1) = Dyn

(
t, x(t), u(t)

)
dynamics

u(t) ∈ B(t, x(t)) control constraints
x(t) ∈ A(t) state constraints
and x(T ) ∈ A(T ) target constraints
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Natural resources management issues and viability Discrete–time viability

The viability kernel is included in the state constraint set

The largest set is the
state constraint set A

It includes the smaller blue
viability kernel Viab(t0)

The green set measures the
incompatibility between
dynamics and constraints:
good start, but inevitable crisis!

Michel De Lara, Cermics, France () GDR MASCOT NUM, 11 May 2012 May 10, 2012 28 / 105



Natural resources management issues and viability Discrete–time viability

What is a solution to the viability problem?

The viability kernel definition appeals to open-loop control, �

that is, a time-dependent sequence (planning, scheduling)

u : t ∈ T
︸ ︷︷ ︸

time

7→ u(t) ∈ U
︸ ︷︷ ︸

control

Another notion of solution is a decision rule, �×E
that is, a mapping Pol : T × X → U which assigns a control

Pol : (t, x) ∈ T × X
︸ ︷︷ ︸

(time, state)

7→ u = Pol(t, x) ∈ U
︸ ︷︷ ︸

control

to any time t and state x

Viable decision rule

A viable decision rule Pol is a policy that drives the system within the
constraints
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Natural resources management issues and viability Discrete–time viability

There exists a dynamic programming equation relating

viability kernels and displaying viable decision rules

Dynamic programming equation

Viab(T ) = A(T )

Viab(t) = { admissible states x ∈ A(t) |

there exists an admissible control u ∈ B(t, x)

such that the future state Dyn(t, x , u)

belongs to the next viability kernel Viab(t + 1) }
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Natural resources management issues and viability Discrete–time viability

Monotonicity assumptions on dynamics and constraints

can help identify viable decision rules

Monotonicity assumptions

Dynamics Dyn is monotonous:

the more abundant today, the more tomorrow
the more harvested today, the less abundance tomorrow
(monospecific models and technical interactions)

Constraints/objectives are monotonous functions

Results

Lower and upper approximations of the viability kernel

Precautionary viable decision rules
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Natural resources management issues and viability Are the ICES fishing quotas recommendations “sustainable”?
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Natural resources management issues and viability Are the ICES fishing quotas recommendations “sustainable”?

Is the ices precautionary approach sustainable?

The precautionary approach (PA) may be sketched as follows
the condition SSB(N) ≥ Blim is checked
if valid, the following usual advice is given

λUA

abundance
︷︸︸︷

(N)
︸ ︷︷ ︸

effort

= max{λ ∈ R+ |

next year spawning biomass
︷ ︸︸ ︷

SSB(Dyn(N, λ)) ≥ Blim

and F (λ)
︸ ︷︷ ︸

fishing mortality

≤ Flim}

Is it possible to apply the ICES precautionary rule every year?

If so, can we remain within precautionary bounds as follows?

SSB(N(t)) ≥ Blim and F (λ(t)) ≤ Flim , ∀t = t0, t0 + 1, . . .
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Natural resources management issues and viability Are the ICES fishing quotas recommendations “sustainable”?

The ices precautionary rule is sustainable or not,

depending on the model

Bay of Biscay anchovy

S/R
Relationship Constant Constant Constant Constant Linear Ricker

(2002) (2004)
Condition Rmean ≥ R Rgm ≥ R Rmin ≥ R Rmin ≥ R γ1µ1r ≥ 1

Left hand side 14 016 ×106 7 109 ×106 3 964 ×106 696 ×106 0.84 0

Right hand side 1 312 ×106 1 312 ×106 1 312 ×106 1 312 ×106 1 21 000

Sustainable yes yes yes no no no

For species with late maturation, like hake,
ices precautionary approach is never sustainable!
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Natural resources management issues and viability Ecosystem viable yields (anchovy–hake application)
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Natural resources management issues and viability Ecosystem viable yields (anchovy–hake application)

Despite calls to an “ecosystem approach”,

practice remains monospecific

The World Summit on Sustainable Development (Johannesburg,
2002) encouraged the application of the “ecosystem approach” by
2010

but. . . following the World Summit on Sustainable Development
(Johannesburg, 2002), the signatory States undertook to restore and
exploit their stocks at maximum sustainable yield (MSY)

The MSY is a concept which relies upon a monospecific dynamic
model Ḃ = f (B) − qEB where B is biomass, and E fishing effort
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Natural resources management issues and viability Ecosystem viable yields (anchovy–hake application)

Perú is second for marine and inland capture fisheries

The northern Humboldt current system off
Perú represents less than 0.1% of the world
ocean surface but presently sustains about
10% of the world fish catch
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Natural resources management issues and viability Ecosystem viable yields (anchovy–hake application)

We consider two species targeted by two fleets

in a biomass ecosystem dynamic

For simplicity, we consider a two–dimensional state model

future biomass
︷ ︸︸ ︷

y(t + 1) = y(t)

growth factor
︷ ︸︸ ︷

Ry

(
y(t), z(t), uy (t)

︸ ︷︷ ︸

effort

)

z(t + 1) = z(t)Rz

(
y(t), z(t),

control
︷ ︸︸ ︷

uz(t)
)

State vector (y(t), z(t)) represents biomasses

Control vector (uy (t), uz(t)) is fishing effort of each species

The catches are uy (t)y(t) and uz(t)z(t) (measured in biomass)
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Natural resources management issues and viability Ecosystem viable yields (anchovy–hake application)

Our objectives are twofold: conservation and production

The viability kernel is the set of initial species biomasses
(
y(t0), z(t0)

)

from which appropriate effort controls
(
uy(t), uz (t)

)
, t = t0, t0 + 1, . . .

produce a trajectory of biomasses
(
y(t), z(t)

)
, t = t0, t0 + 1, . . .

such that the following goals are satisfied

preservation (minimal biomass thresholds)

stocks: y(t) ≥ S ♭
y , z(t) ≥ S ♭

z

economic/social requirements (minimal catch thresholds)

catches: uy (t)y(t) ≥ C ♭
y , uz(t)z(t) ≥ C ♭

z
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Natural resources management issues and viability Ecosystem viable yields (anchovy–hake application)

An explicit expression for the viability kernel exists

under weak assumptions

Proposition

If the growth factors Ry and Rz are decreasing in the fishing effort

and if the thresholds S ♭
y ,S ♭

z ,C
♭
y ,C ♭

z are such that the following growth
factors are greater than one

Ry(S
♭
y ,S ♭

z ,
C ♭

y

S ♭
y

) ≥ 1 and Rz(S
♭
y ,S ♭

z ,
C ♭

z

S ♭
z

) ≥ 1 ,

the viability kernel is given by

{

(y , z) | y ≥ S ♭
y , z ≥ S ♭

z , yRy (y , z ,
C ♭

y

y
) ≥ S ♭

y , zRz(y , z ,
C ♭

z

z
) ≥ S ♭

z

}
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Natural resources management issues and viability Ecosystem viable yields (anchovy–hake application)

Hake–anchovy Peruvian fisheries data and model
Hake–anchovy Peruvian fisheries data between 1971 and 1985, in thousands of tonnes (103 tons)

anchoveta stocks=
[11019 4432 3982 5220 3954 5667 2272 2770 1506 1044 3407 ... 1678 40 900 3944]
merluza stocks=
[347 437 455 414 538 735 636 738 408 312 148 100 99 124 ... 194]
anchoveta captures=
[9184 3493 1313 3053 2673 3211 626 464 1000 223 288 ... 1240 118 2 648]
merluza captures=
[26 13 133 109 85 93 107 303 93 159 69 26 6 12 26]

(a) Anchovy (b) Hake

Figure: Comparison of observed and simulated biomasses of anchovy and hake
using a Lotka–Volterra model with density-dependence in the prey. Model
parameters are R = 2.24, L = 0.98, κ = 64 672 × 103 t (K = 35 800 × 103 t),
α = 1.230 × 10−6 t−1, β = 4.326× 10−8 t−1.
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Natural resources management issues and viability Ecosystem viable yields (anchovy–hake application)

For given thresholds, we can draw the viability kernel

Minimal biomass thresholds

S♭
y = 7 000 kt (anchovy)

S♭
z = 200 kt (hake)

Minimal catches thresholds

C ♭
y = 2 000 kt (anchovy)

C ♭
z = 5 kt (hake)
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Natural resources management issues and viability Ecosystem viable yields (anchovy–hake application)

For given thresholds, we can draw the viability kernel

Minimal biomass thresholds

S♭
y = 7 000 kt (anchovy)

S♭
z = 200 kt (hake)

Minimal catches thresholds

C ♭
y = 2 000 kt (anchovy)

C ♭
z = 5 kt (hake)

For a given initial state, we can also look for thresholds such that this
state belongs to the associated viability kernel
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Natural resources management issues and viability Ecosystem viable yields (anchovy–hake application)

We can use the viability kernel the other way round,

to design ecosystem viable yields

1 Considering that first are given
minimal biomass conservation thresholds S ♭

y ≥ 0 , S ♭
z ≥ 0

2 with initial biomasses y(t0) ≥ S ♭
y and z(t0) ≥ S ♭

z ,
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Natural resources management issues and viability Ecosystem viable yields (anchovy–hake application)

We can use the viability kernel the other way round,

to design ecosystem viable yields

1 Considering that first are given
minimal biomass conservation thresholds S ♭

y ≥ 0 , S ♭
z ≥ 0

2 with initial biomasses y(t0) ≥ S ♭
y and z(t0) ≥ S ♭

z ,
the following catch levels can be sustainably maintained

C ♭,⋆
y = min {Cy ≥ 0 | Ry (S ♭

y ,S
♭
z ,

Cy

S ♭
y

) ≥ 1 and

y(t0)Ry (y(t0), z(t0),
Cy

y(t0)
) ≥ S ♭

y

}
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Natural resources management issues and viability Ecosystem viable yields (anchovy–hake application)

We can use the viability kernel the other way round,

to design ecosystem viable yields

1 Considering that first are given
minimal biomass conservation thresholds S ♭

y ≥ 0 , S ♭
z ≥ 0

2 with initial biomasses y(t0) ≥ S ♭
y and z(t0) ≥ S ♭

z ,
the following catch levels can be sustainably maintained

C ♭,⋆
y = min {Cy ≥ 0 | Ry (S ♭

y ,S
♭
z ,

Cy

S ♭
y

) ≥ 1 and

y(t0)Ry (y(t0), z(t0),
Cy

y(t0)
) ≥ S ♭

y

}

C ♭,⋆
z = min {Cz ≥ 0 | Rz(S

♭
y ,S ♭

z ,
Cz

S ♭
z

) ≥ 1 and

z(t0)Rz(y(t0), z(t0),
Cz

z(t0)
) ≥ S ♭

z

}
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Natural resources management issues and viability Ecosystem viable yields (anchovy–hake application)

We can compare ecosystem viable yields

to Perú official quotas

Viable yields (kt) Perú official quotas (kt)
Model 1 Model 2 2006 2007

Anchovy 5 152 5 399
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Natural resources management issues and viability Ecosystem viable yields (anchovy–hake application)

We can compare ecosystem viable yields

to Perú official quotas

Viable yields (kt) Perú official quotas (kt)
Model 1 Model 2 2006 2007

Anchovy 5 152 5 399 4 250 5 300
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Natural resources management issues and viability Ecosystem viable yields (anchovy–hake application)

We can compare ecosystem viable yields

to Perú official quotas

Viable yields (kt) Perú official quotas (kt)
Model 1 Model 2 2006 2007

Anchovy 5 152 5 399 4 250 5 300

Hake 49 56, 8 55 35
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Natural resources management issues and viability Ecosystem viable yields (anchovy–hake application)

We can compare ecosystem viable yields

to Perú official quotas

Viable yields (kt) Perú official quotas (kt)
Model 1 Model 2 2006 2007

Anchovy 5 152 5 399 4 250 5 300

Hake 49 56, 8 55 35

Quotas are maximal bounds on catches

Ecosystem viable yields (EVY) are minimal guaranteed yields

EVY are obtained by “puzzling” viable effort rules: one can harvest
more than the predator EVY to let the prey increase

Instituto del Mar del Perú showed interest for this transparent method
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Natural resources management issues and viability Ecosystem viable yields (anchovy–hake application)

Summary

Examples of natural resources management problems
where objectives are formulated as constraints

Mathematical control theory framework

Application of viability theory

How do we move from deterministic dynamics and constraints
to the uncertainty situation?
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Risk management and stochastic viability

Outline of the presentation

1 Natural resources management issues and viability
Examples of decision models
Discrete–time viability
Are the ICES fishing quotas recommendations “sustainable”?
Ecosystem viable yields (anchovy–hake application)

2 Risk management and stochastic viability
Uncertain systems and policies
Viable scenarios and viability probability
Dam management under environmental/tourism constraint
Bycatches in a nephrops-hake fishery

3 Contribution to quantitative sustainable management
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Risk management and stochastic viability Uncertain systems and policies

Outline of the presentation

1 Natural resources management issues and viability
Examples of decision models
Discrete–time viability
Are the ICES fishing quotas recommendations “sustainable”?
Ecosystem viable yields (anchovy–hake application)

2 Risk management and stochastic viability
Uncertain systems and policies
Viable scenarios and viability probability
Dam management under environmental/tourism constraint
Bycatches in a nephrops-hake fishery

3 Contribution to quantitative sustainable management
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Risk management and stochastic viability Uncertain systems and policies

Uncertainty is prevalent in natural resources management

Environmental uncertainties
(El Niño)

Habitats changes, mortality,
natality

Scientific uncertainties
(structure of trophic networks,
ecosystem services)
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Risk management and stochastic viability Uncertain systems and policies

Mitigation for climate change

Economic production Q(t)

Q(t + 1) =
(

1 +

economic growth
︷ ︸︸ ︷

g
(
we(t)

) )

Q(t)

co2 concentration M(t)

M(t+1) = M(t)−δ(M(t)−M−∞)+α(wp(t))
︸ ︷︷ ︸

physics

technologies
︷ ︸︸ ︷

Emiss
(
Q(t), wz (t)

)) (
1−a(t)

)

Vector of uncertainties w(t) = (we(t),wp(t),wz(t)) on

economic growth
technologies
climate dynamics
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Risk management and stochastic viability Uncertain systems and policies

Age-class fishery model

N1(t + 1) = S/R
(

SSB
(
N(t)

)
, w(t)

︸︷︷︸

birth mortality, etc.

)

recruitment

N2(t + 1) = e−(M1+λ(t)F1)N1(t)

... =
...

Na(t + 1) = e−(

mortality
︷ ︸︸ ︷

Ma−1 +λ(t)Fa−1)Na−1(t), a = 2, . . . ,A − 1

NA(t + 1) = e−(MA−1+λ(t)FA−1)NA−1(t) + πe−(MA+λ(t)FA)NA(t)
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Risk management and stochastic viability Uncertain systems and policies

Uncertainty variables are new input variables
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Risk management and stochastic viability Uncertain systems and policies

Uncertainty variables are new input variables in

a discrete-time nonlinear state-control system

A specific output is distinguished, and is labeled state,
when the system may be written

x(t + 1) = Dyn
(
t, x(t), u(t),w(t)

)
, t ∈ T = {t0, t0 + 1, . . . ,T − 1}

time t ∈ T = {t0, t0 + 1, . . . ,T − 1,T} ⊂ N (the time period
[t, t + 1[ may be a year, a month, etc.)

state x(t) ∈ X := R
n, (biomasses, abundances, etc.)

control u(t) ∈ U := R
p, (catches or harvesting effort)

uncertainty w(t) ∈ W := R
q, (recruitment or mortality uncertainties,

climate fluctuations or trends, etc.)

dynamics Dyn maps T × X × U × W into X

(biomass model, age-class model, economic model)
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Risk management and stochastic viability Uncertain systems and policies

Distinguishing between uncertain and control variables

frames how we “see” a system

At a certain stage of development men seem to have imagined
that the means of averting the threatened calamity were in their
own hands, and that they could hasten or retard the flight of the
seasons by magic art. Accordingly they performed ceremonies
and recited spells to make the rain to fall, the sun to shine,
animals to multiply, and the fruits of the earth to grow.

The Myth of Adonis
The Golden Bough

Sir James George Frazer, 1922
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Risk management and stochastic viability Uncertain systems and policies

Solutions are no longer control paths,

as was the case in the deterministic setting

Stationary (open-loop): stationary sequences

u : t ∈ T
︸ ︷︷ ︸

time

7→ u(t) ≡ ue ∈ U
︸ ︷︷ ︸

control

Example: maximum sustainable yield

Open-loop: time-dependent sequences (planning, scheduling)

u : t ∈ T
︸ ︷︷ ︸

time

7→ u(t) ∈ U
︸ ︷︷ ︸

control

Example: Pontryagin approach to optimal control
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Risk management and stochastic viability Uncertain systems and policies

Solutions are no longer control paths, but are policies

From planning � to contingent planning �×E
Again the intriguing thought: A solution is not merely a set of
functions of time, or a set of numbers, but a rule telling the
decisionmaker what to do; a policy. (Richard Bellman)

Richard Ernest Bellman (August 26,
1920 – March 19, 1984) was an
applied mathematician, celebrated
for his invention of dynamic
programming in 1953, and important
contributions in other fields of
mathematics.

Wikipedia
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Risk management and stochastic viability Uncertain systems and policies

An example of policy embodied in computer code

if state==0, do control=8

elseif state==1, do control=5.4

else do control=-15

On 4 June 1996, the maiden flight of the Ariane 5 launcher
ended in a failure. (. . . ) The attitude of the launcher and its
movements in space are measured by an Inertial Reference
System (SRI). (. . . ) The data from the SRI are transmitted
through the databus to the On-Board Computer (OBC), which
executes the flight program (. . . )
The Operand Error occurred due to an unexpected high value of
an internal alignment function result called BH, Horizontal Bias,
related to the horizontal velocity sensed by the platform
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Risk management and stochastic viability Uncertain systems and policies

The concept of policy as a contingent planning

Richard Bellman autobiography, Eye of the Hurricane

However, the thought was finally forced upon me that the
desired solution in a control process was a policy: ’Do
thus-and-thus if you find yourself in this portion of state
space with this amount of time left.’

Closed-loop: state feedback (decision rule)

Pol : (t, x) ∈ T × X
︸ ︷︷ ︸

(time, state)

7→ u = Pol(t, x) ∈ U
︸ ︷︷ ︸

control

ices precautionary approach

λUA(N) = max{λ ∈ R+ | SSB(Dyn(N, λ)) ≥ Blim and F (λ) ≤ Flim}
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Risk management and stochastic viability Uncertain systems and policies

Going from planning to contingent planning,

we have considerably enlarged the set of solutions

Stationary (open-loop): stationary sequences

u : t ∈ T 7→ u(t) ≡ ue , ue ∈ U

Once the control space U is discretized in nU elements,
the solution space cardinality is nU

Open-loop: time-dependent sequences (planning, scheduling)

u : t ∈ T 7→ u(t) , u(·) ∈ U
T

With nT time periods, the solution space cardinality is nnT

U

Closed-loop: time and state-dependent sequences

Pol : (t, x) ∈ T × X 7→ u = Pol(t, x) ∈ U , Pol ∈ U
T×X

Once the state space X is discretized in nX elements,
the solution space cardinality is nnT×nX

U
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Risk management and stochastic viability Uncertain systems and policies

“The blind cat does not catch mice”

A decision rule depends on
online information

State feedback decision rules are
natural solutions given by
dynamic programming methods

Adaptive decision rules

Appropriate for managing
uncertain systems
More robust
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Risk management and stochastic viability Uncertain systems and policies

How clouded the crystal ball looks beforehand

What is worth noting about the foregoing development is that I
should have seen the application of dynamic programming to
control theory several years before. I should have, but I didn’t. It
is very well to start a lecture by saying, ’Clearly, a control process
can be regarded as a multistage decision process in which. . . ,’
but it is a bit misleading.
Scientific developments can always be made logical and rational
with sufficient hindsight. It is amazing, however, how clouded
the crystal ball looks beforehand. We all wear such intellectual
blinders and make such inexplicable blunders that it is amazing
that any progress is made at all.

Richard Bellman autobiography, Eye of the Hurricane
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Risk management and stochastic viability Viable scenarios and viability probability

Outline of the presentation

1 Natural resources management issues and viability
Examples of decision models
Discrete–time viability
Are the ICES fishing quotas recommendations “sustainable”?
Ecosystem viable yields (anchovy–hake application)

2 Risk management and stochastic viability
Uncertain systems and policies
Viable scenarios and viability probability
Dam management under environmental/tourism constraint
Bycatches in a nephrops-hake fishery

3 Contribution to quantitative sustainable management

HHH

HHC

HCH

HCC

CHH

CHC

CCH

CCC
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Risk management and stochastic viability Viable scenarios and viability probability

Scenarios in the modelers scientific community

In practice, what modelers call a
“scenario” is a mixture of

a sequence of uncertain
variables (also called a
pathway, a chronicle)
a policy Pol

and even a static or dynamical
model

In what follows

scenario = pathway = chronicle
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Risk management and stochastic viability Viable scenarios and viability probability

A scenario is a temporal sequence of uncertainties

Scenarios

A scenario (pathway, chronicle) is a sequence of uncertainties

w(·) :=
(
w(t0), . . . ,w(T − 1)

)
∈ Ω := W

T−t0

HHH

HHC

HCH

HCC

CHH

CHC

CCH

CCC
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Risk management and stochastic viability Viable scenarios and viability probability

A scenario is said to be viable for a given policy if the

trajectories satisfy the constraints

Viable scenario

A scenario w(·) ∈ Ω is said to be a viable under decision rule Pol if the
state and control trajectories x(·) and u(·) generated by

x(t + 1) = Dyn
(
t, x(t), Pol

(
t, x(t)

)
,w(t)

)
, t = t0, . . . ,T − 1

u(t) = Pol
(
t, x(t)

)

satisfy the state and control constraints

u(t) ∈ B(t, x(t)) and x(t) ∈ A(t) , ∀t = t0, . . . ,T

The set of viable scenarios is denoted by ΩPol,t0,x0

The larger set of viable scenarios, the better
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Risk management and stochastic viability Viable scenarios and viability probability

The set Ω of scenarios can be equipped

with a probability P (though this is a delicate issue!)

In practice, one often assumes that the components
(
w(t0), . . . ,w(T − 1)

)
form an independent and identically distributed

sequence of random variables, or form a Markov chain, or a time series
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Risk management and stochastic viability Viable scenarios and viability probability

The viability probability is the probability of satisfying

constraints under a decision rule

The viability probability associated with the initial time t0, the initial state
x0 and the decision rule Pol is

P [ΩPol,t0,x0] =

Probability







scenarios along which
the state x(·) and control u(·) trajectories
generated by dynamics Dyn and decision rule Pol

starting from initial state x0 at initial time t0
satisfy the constraints
from initial time t0 to horizon T
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Risk management and stochastic viability Viable scenarios and viability probability

The maximal viability probability is the upper bound

for the probability of satisfying constraints

The maximal viability probability is

sup
Pol

P [ΩPol,t0,x0]

An optimal viable decision rule Pol⋆

maximizes the probability of viable scenarios

P [ΩPol⋆,t0,x0] ≥ P [ΩPol,t0,x0]

dynamic programming
monotonicity

In a sense, the decision rule Pol⋆ makes
the set of viable scenarios the “largest” possible
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Risk management and stochastic viability Viable scenarios and viability probability

The dynamic programming equation, or Bellman equation,

is a backward equation satisfied by the stochastic viability
value function

Proposition

If the primitive random variables
(
w(t0),w(t0 + 1), . . . ,w(T − 1)

)
are

independent under the probability P, the stochastic viability value function

V (t, x) := sup
Pol

P [ΩPol,t,x ]

satisfies the following backward induction, where t runs from T − 1 down
to t0

V (T , x) = 1A(T )(x)

V (t, x) = 1A(t)(x) max
u∈B(t,x)

Ew(t)

[

V
(

t + 1, Dyn
(
t, x , u,w(t)

))]
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Risk management and stochastic viability Viable scenarios and viability probability

The stochastic viable dynamic programming equation

yields stochastic viable policies

For any time t and state x , the viable controls are

B
viab(t, x) := argmax

u∈B(t,x)

(

1A(t)(x)Ew(t)

[

V
(

t + 1, Dyn
(
t, x , u,w(t)

))])

Proposition

Then, any (measurable) policy Pol⋆ such that Pol⋆(t, x) ∈ B
viab(t, x) is an

optimal viable policy which achieves the maximal viability probability

V (t0, x0) = max
Pol

P [ΩPol,t0,x0]
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Risk management and stochastic viability Dam management under environmental/tourism constraint

Outline of the presentation
1 Natural resources management issues and viability

Examples of decision models
Discrete–time viability
Are the ICES fishing quotas recommendations “sustainable”?
Ecosystem viable yields (anchovy–hake application)

2 Risk management and stochastic viability
Uncertain systems and policies
Viable scenarios and viability probability
Dam management under environmental/tourism constraint
Bycatches in a nephrops-hake fishery

3 Contribution to quantitative sustainable management
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Risk management and stochastic viability Dam management under environmental/tourism constraint

Dam management under “tourism” constraint

Maximizing the revenue from
turbinated water

under a tourism constraint of
having enough water
in July and August
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Risk management and stochastic viability Dam management under environmental/tourism constraint

Stock trajectories
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Risk management and stochastic viability Dam management under environmental/tourism constraint

A single dam nonlinear dynamical model in decision-hazard

We can model the dynamics of the water volume in a dam by

S(t + 1)
︸ ︷︷ ︸

future volume

= min{S ♯, S(t)
︸︷︷︸

volume

− q(t)
︸︷︷︸

turbined

+ a(t)
︸︷︷︸

inflow volume

}

S(t) volume (stock) of water at the beginning of period [t, t + 1[

a(t) inflow water volume (rain, etc.) during [t, t + 1[

decision-hazard: a(t) is not available at the beginning of period
[t, t + 1[

q(t) turbined outflow volume during [t, t + 1[

decided at the beginning of period [t, t + 1[
supposed to depend on S(t) but not on a(t)
chosen such that 0 ≤ q(t) ≤ S(t)
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Risk management and stochastic viability Dam management under environmental/tourism constraint

The traditional economic problem is

maximizing the expected payoff

Suppose that a probability P is given
on the set Ω = R

T−t0 of water inflows scenarios
(
a(t0), . . . , a(T − 1)

)

Suppose that turbined water is sold at price p(t),
a price related to the price at which energy can be sold at time t

Suppose that, at the horizon T , the final volume S(T ) has a value
given by UtilFin

(
S(T )

)

The traditional economic problem is to maximize the intertemporal
payoff (without discounting if the horizon is short)

max E






T−1∑

t=t0

turbined water payoff
︷ ︸︸ ︷

p(t)q(t) +

final volume utility
︷ ︸︸ ︷

UtilFin
(
S(T )

)
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Risk management and stochastic viability Dam management under environmental/tourism constraint

Dam management under “tourism” constraint

Traditional cost minimization/payoff maximization

max E






T−1∑

t=t0

turbined water payoff
︷ ︸︸ ︷

p(t)q(t) +

final volume utility
︷ ︸︸ ︷

UtilFin
(
S(T )

)






For “tourism” reasons:

volume S(t) ≥ S ♭ , ∀t ∈ { July, August }

In what sense should we consider this inequality which involves the
random variables S(t) for t ∈ { July, August }?
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Risk management and stochastic viability Dam management under environmental/tourism constraint

Robust / almost sure / probability constraint

Robust constraints: for all the scenarios in a subset Ω′ ⊂ Ω

S(t) ≥ S ♭ , ∀t ∈ { July, August }

Almost sure constraints

Probability







water inflow scenarios along which
the volumes S(t) are above the

threshold S ♭ for periods t in summer






= 1

Probability constraints, with “confidence” level p ∈ [0, 1]

Probability







water inflow scenarios along which
the volumes S(t) are above the

threshold S ♭ for periods t in summer






≥ p
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Risk management and stochastic viability Dam management under environmental/tourism constraint

Environmental/tourism issue leads to dam management

under probability constraint

The traditional economic problem is max E [P(T )]
where the payoff/utility criterion is

P(T ) =

T−1∑

t=t0

turbined water payoff
︷ ︸︸ ︷

p(t)q(t) +

final volume utility
︷ ︸︸ ︷

UtilFin
(
S(T )

)

and a failure tolerance is accepted

Probability







water inflow scenarios along which

the volumes S(t) ≥ S ♭

for periods t in July and August






≥ 99%
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Risk management and stochastic viability Dam management under environmental/tourism constraint

Stock trajectories
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Risk management and stochastic viability Dam management under environmental/tourism constraint

An improvement compared to standard procedures
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Risk management and stochastic viability Dam management under environmental/tourism constraint

However, though the mean is optimal,

the payoff effectively realized can be far from it
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Risk management and stochastic viability Dam management under environmental/tourism constraint

This is why we propose an alternate stochastic viability

formulation to treat symmetrically and
to guarantee both environmental and economic objectives

Given two thresholds to be guaranteed

a volume S♭ (measured in cubic hectometers hm3)
a payoff P♭ (measured in numeraire $)

we look after policies achieving the maximal viability probability
Π(S ♭,P♭) =

max Probability







water inflow scenarios along which

the volumes S(t) ≥ S ♭ , ∀t ∈ { July, August }

and the final payoff P(T ) ≥ P♭







The maximal viability probability Π(S ♭,P♭) is the maximal
probability to guarantee to be above the thresholds S ♭ and P♭
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Risk management and stochastic viability Dam management under environmental/tourism constraint

A stochastic viability formulation
State, control and dynamic

The state is the couple x(t) =
(
S(t),P(t)

)

The control u(t) = q(t) is the turbined water

The dynamics is

S(t + 1)
︸ ︷︷ ︸

future volume

= min{S ♯, S(t)
︸︷︷︸

volume

− q(t)
︸︷︷︸

turbined

+ a(t)
︸︷︷︸

inflow volume

} ,

t = t0, . . . ,T − 1

P(t + 1)
︸ ︷︷ ︸

future payoff

= P(t)
︸︷︷︸

payoff

+ p(t)q(t)
︸ ︷︷ ︸

turbined water payoff

, t = t0, . . . ,T − 2

P(T ) = P(T − 1) + UtilFin
(
S(T )

)

︸ ︷︷ ︸

final volume utility
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Risk management and stochastic viability Dam management under environmental/tourism constraint

Dynamic programming equation

for bb=1:nb_BB

SS_min=Thresholds_BB(bb)* summer ;

for ee=1:nb_EE

PP_min=Thresholds_EE(ee);

//

VALUE=list();

// FEEDBACK=list();

VALUE(horizon)=ones(nb_SS,1)*bool2s( state_PP>=PP_min ) ;

shift=[(horizon-1):(-1):1];

for tt=shift

VVdot=VALUE(tt+1);

VV=zeros(VVdot);

for ss=1:nb_SS

SS=ss-1;

if SS>=SS_min(tt)

for pp=1:nb_PP

PP=pp-1;

locext=[];

for cc=1:ss

// control constraint

UU=cc-1;

locint=0;

ppdot=(min(PPmax-1,PP+UU))+1;

ssdot0=(min(SSmax,SS-UU))+1;

ssdot1=(min(SSmax,SS-UU+1))+1;

locint=locint+proba0(tt)*VVdot(ssdot0,ppdot)+...

proba1(tt)*VVdot(ssdot1,ppdot);;

locext=[locext, locint ];

end

// of the control loop

VV(ss,pp)=max(locext) ;

d
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Risk management and stochastic viability Dam management under environmental/tourism constraint

Maximal viability probability Π(S ♭
, P♭)

as a function of guaranteed thresholds S ♭ and P♭

For example, the
probability to guarantee

a final payoff above
P♭ = 1 Meuros

and a volume above
S ♭ = 40 hm3 in July
and August

is about 90%
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Risk management and stochastic viability Dam management under environmental/tourism constraint

Iso-values for the maximal viability probability

as a function of guaranteed thresholds S ♭ and P♭
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Risk management and stochastic viability Bycatches in a nephrops-hake fishery

Outline of the presentation
1 Natural resources management issues and viability

Examples of decision models
Discrete–time viability
Are the ICES fishing quotas recommendations “sustainable”?
Ecosystem viable yields (anchovy–hake application)

2 Risk management and stochastic viability
Uncertain systems and policies
Viable scenarios and viability probability
Dam management under environmental/tourism constraint
Bycatches in a nephrops-hake fishery

3 Contribution to quantitative sustainable management

Michel De Lara, Cermics, France () GDR MASCOT NUM, 11 May 2012 May 10, 2012 86 / 105



Risk management and stochastic viability Bycatches in a nephrops-hake fishery

Hake and nephrops in technical interaction

Nh
1(t + 1) = wh(t) uncertain hake recruitment

Nn
1(t + 1) = wn(t) uncertain nephrops recruitment

Nh
a(t + 1) = Nh

a−1(t)




1 − Mh

a−1 −

hake bycatch
︷ ︸︸ ︷

u(t)F nh
a−1 −F hh

a−1






Nn
a(t + 1) = Nn

a−1(t)




1 − Mn

a−1 −

nephrops fishing mortality
︷ ︸︸ ︷

u(t)F nn
a−1






Nh
A(t + 1) = Nh

A−1(t)
(
1 − Mh

A−1 − u(t)F nh
A−1 − F hh

A−1

)

+Nh
A(t)

(
1 − Mh

A − u(t)F nh
A − F hh

A

)

Nn
A(t + 1) = Nn

A−1(t)
(
1 − Mn

A−1 − u(t)F nn
A−1

)

+Nn
A(t)

(
1 − Mn

A − u(t)F nn
A

)
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Risk management and stochastic viability Bycatches in a nephrops-hake fishery

The relative effort of the nephrops fleet

has to be controlled to ensure both
nephrops fleet profitability and hake preservation

Economic objective: nephrops fishery is economically viable if the
gross return is greater than a threshold

P
(
Nn(t), u(t)

)

︸ ︷︷ ︸

payoff

≥ P♭

Ecological objective: fishery is ecologically viable if its impact by
bycatch on the hake biology is compatible with
sufficient recruitment of mature hakes

Nh
4 (t)

︸ ︷︷ ︸

fourth age−class

≥ (Nh
4 )♭
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Risk management and stochastic viability Bycatches in a nephrops-hake fishery

An optimal viable policy can be calculated thanks to

monotonicity properties

Due to monotonicity properties

of the dynamics, increasing in the state variable and decreasing in the
control
of the constraints, increasing in the state variable and decreasing in the
control

we can prove that

Pol⋆(t,N) = inf{u ∈ [0, u♯] | P(Nn, u) ≥ P♭}

is an optimal viable policy

Michel De Lara, Cermics, France () GDR MASCOT NUM, 11 May 2012 May 10, 2012 89 / 105



Risk management and stochastic viability Bycatches in a nephrops-hake fishery

Maximal viability probability function of P♭ and (Nh
4 )♭
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Risk management and stochastic viability Bycatches in a nephrops-hake fishery

Iso-values for the maximal viability probability

as a function of guaranteed thresholds P♭ and (Nh
4 )♭
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Contribution to quantitative sustainable management

Outline of the presentation

1 Natural resources management issues and viability
Examples of decision models
Discrete–time viability
Are the ICES fishing quotas recommendations “sustainable”?
Ecosystem viable yields (anchovy–hake application)

2 Risk management and stochastic viability
Uncertain systems and policies
Viable scenarios and viability probability
Dam management under environmental/tourism constraint
Bycatches in a nephrops-hake fishery

3 Contribution to quantitative sustainable management
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Contribution to quantitative sustainable management

Resource managers often make a confusion

between objectives and decision rules

objectives

decision rules

In practice, we observe that resource
managers generally

design decision rules

which directly incorporate
objectives

with confusion between
objectives and decision rules
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Contribution to quantitative sustainable management

Mismatch can be avoided by making a clear distinction

between objectives and decision rules

Control theory makes a clear distinction
between objectives and decision rules

objectives ⇒ adapted decision rules

More specifically, viability theory puts
emphasis on consistency between
dynamics and objectives

objectives + dynamics ⇒ decision rules
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Contribution to quantitative sustainable management

Conceptual framework for
quantitative sustainable
management

Managing ecological and
economic conflicting objectives

Ecosystem viable yields as a
contribution to the “ecosystem
approach”

Displaying tradeoffs between
ecology and economy
sustainability thresholds and risk
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M. De Lara, P. Gajardo, H. Raḿırez C. Viable harvest of monotone bioeconomic models. Systems and Control Letters,
2010 Volume 60, Pages 192-197, 2011.

L. Doyen, M. De Lara.Stochastic viability and dynamic programming. Systems and Control Letters, Volume 59, Number
10, Pages 629-634, 2010.

Michel De Lara, Eladio Ocana Anaya, Ricardo Oliveros–Ramos, Jorge Tam. Ecosystem Viable Yields. Environmental
Modeling & Assessment, 2012.

Michel De Lara, Cermics, France () GDR MASCOT NUM, 11 May 2012 May 10, 2012 96 / 105



Contribution to quantitative sustainable management

“Nul n’est mieux servi que par soi-même”

“Self-promotion, nobody will do it for you” ;-)

M. De Lara, L. Doyen, Sustainable Management of Natural Resources.
Mathematical Models and Methods, Springer, 2008.
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Some related initiatives

From June 25 to July 6, 2012, CEA / EDF / INRIA Summer School
on Stochastic Optimization
http://www-hpc.cea.fr/SummerSchools2012-SO.htm

From January 7 to April 5 in 2013, Institut Henri Poincaré (IHP)
trimester Mathematics of Bio-Economics as a contribution to
Mathematics of Planet Earth - MPE2013
http://www.ihp.fr/en/ceb/mabies

More on my web page
http://http://cermics.enpc.fr/~delara/
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THANK YOU!
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