






Introduction

Premise & objectives

• Performance models are computationally expensive (mostly finite-element
based).

⇒ Replace the original expensive model with a cheaper meta-model.

• Reliability approximation techniques (such as FORM) cannot guarantee the
safety level of their designs.

⇒ Develop a strategy that is able to guarantee the design’s safety.

• Stakeholders target highly reliable designs.

⇒ The overall strategy should be scalable to low failure probabilities.

A particular interest has been given to quantifying, reducing and
eliminating the error induced by the use of a surrogate.
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Gaussian process meta-modelling

Illustration on a one-dimensional regression exercise

From regression to probabilistic classification

Meta-modelling

Meta-modelling techniques

• aim at constructing a predictor M̃

• that mimics the behaviour of an existing model M

x ∈ X ⊆ Rn M y ∈ Y ⊆ R

• from a collection of observations gathered in a dataset:

D =
{(
x(i), yi

)
, i = 1, . . . ,m

}
, yi =M

(
x(i)

)
, i = 1, . . . ,m

• and statistical considerations.

Interest for reliability-based design

Such predictors are much faster to evaluate than the original model M,
and come with a sort of confidence measure.
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Gaussian process meta-modelling
The Gaussian process prior model (Santner et al., 2003)

The function M is a sample path of a Gaussian process (GP) Y :

Y(x) = f (x)T β+ Z(x), x ∈ X

where:

• f (x)T β is a linear regression model;

• Z(x) is a zero-mean, stationary GP with covariance:

Cov
[
Y(x), Y(x′)

]
= σ2 R

(
x − x′, θ

)
,

(
x, x′

)
∈ X× X

Hence, given a vector of observations Y =
(
Yi = Y

(
x(i)

)
, i = 1, . . . ,m

)
and an

unobserved value Y(x), we have:



Y(x)

Y


 ∼N1+m






f (x)T β

Fβ


, σ

2




1 r(x)T

r(x) R







whose parameters F, r(x), R are inherited from the GP’s statistics (f and R).
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Illustration on a one-dimensional regression exercise
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Gaussian process meta-modelling
Posterior ≡ The best linear unbiased predictor (BLUP) (Santner et al., 2003)

• Here, we are interested in the posterior distribution of the unobserved value

given y =
(
yi =M

(
x(i)

)
, i = 1, . . . ,m

)
:

Ŷ (x) =
[
Y(x)

∣∣Y = y ]

• Given σ2 and θ, the universal Kriging predictor is also Gaussian:

Ŷ (x) =
[
Y(x)

∣∣∣Y = y, σ2,θ
]
∼N1

(
µŶ (x), σ

2

Ŷ
(x)

)

where the mean prediction µŶ (x) and the prediction variance σ2

Ŷ
(x) have

analytical expressions.

• In practice, σ2 and θ are not known so that they must be estimated from the
observations y using e.g. maximum likelihood estimation.

(Welch et al., 1992; Marrel et al., 2008)
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From regression to probabilistic classification

Regression

Classification (g ≤ 0 vs. g > 0)

8 8
8

8

(x
)
=
0 µ Ŷ
(x
) =

0

x2

g(
x
)

x1

x1

x
2

Ex: Let g denote a quadratic limit-state function.
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8 8
x1

8

8

x
2

M
(x
)
=
0

µ Ŷ
(x
) =

0

π
(x
)
=
2.
5%

π
(x
)
=
97
.5
%

π
(x)

=
97.5%

0.0

0.2

0.4

0.6

0.8

1.0

95
%
(x
)

• Let F̂−1
95%, F̂ 0

95%, F̂+1
95% denote the three

following approximate failure subsets:

F̂
i

95% =
{
x ∈ X : µŶ (x) ≤ i1.96σŶ (x)

}
,

i = −1, 0, +1.

• In turns, this enables the definition of the
margin of uncertainty:

M95% = F̂
+1
95% \ F̂

−1
95%

• Let π denote the probabilistic classification
function:

π(x) = P
[
Ŷ (x) ≤ 0

]
= Φ

(
0− µŶ (x)

σŶ (x)

)

P(≠ P) denotes the probability measure w.r.t. the Kriging epistemic uncertainty.
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Designs of experiments

• A DOE is the input part of a dataset:

X =
{
x(i), i = 1, . . . ,m

}

• Its size m must be minimized for the sake of efficiency.

• Experiments must be selected carefully for the sake of accuracy
(space-filling DOEs, Franco, 2008).

Adaptive designs of experiments

• are built in an iterative manner;

• on purpose to refine the predictor locally (e.g. in the vicinity of a contour);

Sequential adaptive DOEs for GP predictors rely on the maximization of a
so-called refinement criterion.
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Sequential adaptive DOEs

Refinement criteria for contour approximation

• Simple criteria mostly apply the margin
shrinking concept for support vector
machines

(Hurtado, 2004b; Deheeger, 2008)

• Here, we propose the “margin probability”:

P
[
Ŷ (x) ∈M95%

]
= Φ

(
1.96σ

Ŷ
(x)− µ

Ŷ
(x)

σ
Ŷ
(x)

)

−Φ

(
−1.96σ

Ŷ
(x)− µ

Ŷ
(x)

σ
Ŷ
(x)

)

(Dubourg et al., 2010a)

Limitation of sequential strategies

• The multiple modes of these criteria make
their maximization difficult;

• There does not exist a single best point;

• Availability of distributed computing
platforms for M.

(Ginsbourger et al., 2010)

8 8
x1

8

8

x
2

M
(x
)
=
0

µ Ŷ
(x
) =

0

π
(x
)
=
2.
5%

π
(x
)
=
97
.5
%

π
(x)

=
97.5%

0.0

0.2

0.4

0.6

0.8

1.0

95
%
(x
)

The margin of uncertainty M95%

8 8
x1

8

8

x
2

M
(x
)
=
0

µ Ŷ
(x
)
=
0

0.0

0.2

0.4

0.6

0.8

P[ Ŷ
(x
)
∈

95
%

]

The margin probability P
[
Ŷ (x) ∈M95%

]
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Ŷ
(x)

)

−Φ

(
−1.96σ

Ŷ
(x)− µ

Ŷ
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Sampling-based adaptive DOEs

Given an initial dataset D
and a pseudo-PDF w:

1 Fit a Kriging predictor Ŷ (x)

2 Define a weighted refinement criterion

C(x) = P
[
Ŷ (x) ∈M95%

]
w(x)

3 Sample N candidates from C

(MCMC slice sampler, Neal, 2003)

4 Reduce the N candidates to K points
(K-means clustering, Lloyd, 1982)

5 Enrich the dataset D with{(
x(m+k),M

(
x(m+k)

))
, k = 1, . . . , K

}

6 Loop back to step 1

8 8
x1

8

8

x
2

x0

g(
x
)
=
0

π
(x
)
=
2.
5%

π
(x) =

50%µ Ŷ
(x
) =

0

π
(x
)
=
97
.5
%

π
(x)

=
97.5%

0.0

0.2

0.4

0.6

0.8

1.0

π
(x
)
=
P[ Ŷ

(x
)

0]
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8 8
x1

8

8

x
2

M
(x
)
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0

µ Ŷ
(x
) =

0

0.0

0.2

0.4

0.6

0.8

P[ Ŷ
(x
)
∈

95
%

]

N is given (say 10,000)
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P[ Ŷ
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∈
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%

]

K is given (say the number of CPUs)
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Illustration
A four-branch series system (Waarts, 2000)

8 8
x1

8

8

x
2

0

P[
Ŷ
(x

)
0]

Target contour, design of experiments & prediction

8 8
x1

8

8

x
2

0.0e+00

3.0e-04

6.0e-04

9.0e-04

1.2e-03

1.5e-03

1.8e-03

2.1e-03

2.4e-03

2.7e-03

P[
Ŷ
(x
)
∈

95
%
]
ϕ

2
(x
)

Sampled & clustered refinement criterion

Iteration #1

Convergence criteria depend on the application...

C(x) = P
[
Ŷ (x) ∈M95%

]
ϕ2(x) K = 10
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A four-branch series system (Waarts, 2000)
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Target contour, design of experiments & prediction
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Sampled & clustered refinement criterion

Iteration #2

Convergence criteria depend on the application...

C(x) = P
[
Ŷ (x) ∈M95%

]
ϕ2(x) K = 10
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Ŷ
(x
)
∈

95
%
]
ϕ

2
(x
)

Sampled & clustered refinement criterion

Iteration #3

Convergence criteria depend on the application...

C(x) = P
[
Ŷ (x) ∈M95%

]
ϕ2(x) K = 10
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Convergence criteria depend on the application...
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ϕ2(x) K = 10
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Ŷ
(x
)
∈

95
%
]
ϕ

2
(x
)

Sampled & clustered refinement criterion

Iteration #5

Convergence criteria depend on the application...

C(x) = P
[
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ϕ2(x) K = 10
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Iteration #6

Convergence criteria depend on the application...

C(x) = P
[
Ŷ (x) ∈M95%

]
ϕ2(x) K = 10
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Iteration #7

Convergence criteria depend on the application...

C(x) = P
[
Ŷ (x) ∈M95%

]
ϕ2(x) K = 10
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Ŷ
(x
)
∈

95
%
]
ϕ

2
(x
)

Sampled & clustered refinement criterion
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Convergence criteria depend on the application...

C(x) = P
[
Ŷ (x) ∈M95%

]
ϕ2(x) K = 10
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Iteration #9

Convergence criteria depend on the application...

C(x) = P
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Ŷ (x) ∈M95%

]
ϕ2(x) K = 10
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Ŷ
(x

)
0]

Target contour, design of experiments & prediction

8 8
x1

8

8

x
2

0.0e+00

1.5e-04

3.0e-04

4.5e-04

6.0e-04

7.5e-04

9.0e-04

1.1e-03

1.2e-03

1.4e-03

P[
Ŷ
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Reliability-based design optimization
Introduction (Tsompanakis et al., 2008)

Problem formulation

d∗ = arg min
d∈D

c(d) :




fi(d) ≤ 0, i = 1, . . . , nc

pf l(d) ≤ p
0
f l, l = 1, . . . , np

where d is exclusively involved in the definition of the random vector X (e.g.
mean values).

Bottlenecks

• The repeated reliability estimations are computationally expensive;

• Most NLP constrained optimization algorithms require the gradients of the
failure probabilities.

Solutions

• Nested approaches (Enevoldsen & Sørensen, 1994)

• Sequential approaches (Du & Chen, 2004)

• Surrogate-based approaches (Eldred et al., 2002)
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Surrogate-based RBDO
Reliability sensitivity analysis

Motivations

• NLP optimization algorithms require the gradient of the failure probabilities;

• How to compute these derivatives with Monte Carlo techniques?

The score function approach (Rubinstein, 1976, 1986)

Given a random vector X with parameter d, provided its support X does not
depend on d:

∂pf (d)

∂d
= EX

[
✶F(X)

∂ log fX(X | d)

∂d

]

Interesting properties

• A simple post-processing of a reliability analysis!

• The score function comes analytically when the copula formalism is used.
(Lee et al., 2011a,b)

• The approach extends to reduction variance techniques such as:
• subset sampling (Song et al., 2009)

• (meta-model-based) importance sampling (Dubourg, 2011)
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Conclusion

Conclusions & Open questions

Conclusions

• Universal Kriging enable an objective quantification of the substitution error;

• Sampling-based adaptive DOEs enabled a reduction of this error,
while making the use of distributed computing platforms possible.

• The augmented reliability space ensures the coupling
“optimization–reliability–surrogates” is efficient;

• Subset sampling still reveals unavoidable to deal with the possibly low failure
probabilities encountered during the optimization;

• The score function approach revealed efficient for reliability sensitivity
analysis;

Open questions

• Real engineering problems feature a large number of parameters (> 10):
how to extend the use of kriging surrogates to such cases?

• Search for the optimum optimorum: use of global optimization techniques
and/or better initialization of gradient-based optimizers?

• Some manufactured products benefits from 100% quality control: how to
deal with truncated distributions (zero probability, reliability sensitivity)?
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Conclusion

Thank you for your attention!
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