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Premise & objectives

Introduction

based).

o Performance models are computationally expensive (mostly finite-element
= Replace the original expensive model with a cheaper meta-model.

o Reliability approximation techniques (such as FORM) cannot guarantee the
safety level of their designs.

= Develop a strategy that is able to guarantee the design’s safety.

o Stakeholders target highly reliable designs.

= The overall strategy should be scalable to low failure probabilities.
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Premise & objectives

Introduction

based).

o Performance models are computationally expensive (mostly finite-element
= Replace the original expensive model with a cheaper meta-model.

o Reliability approximation techniques (such as FORM) cannot guarantee the
safety level of their designs.

= Develop a strategy that is able to guarantee the design’s safety.

o Stakeholders target highly reliable designs.

= The overall strategy should be scalable to low failure probabilities.

A particular interest has been given to quantifying, reducing and
eliminating the error induced by the use of a surrogate.
o 5 =
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Introduction

ﬂ Gaussian process meta-modelling
e Adaptive designs of experiments
e Reliability analysis

o Reliability-based design optimization
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Gaussian process meta-modelling

Meta-modelling
G
Meta-modelling

s meta-modelling
From reg

Meta-modelling techniques

e aim at constructing a predictorﬂ

e that mimics the behaviour of an existing model M
xeXcR"

yeYcR
o from a collection of observations gathered in a dataset:

e and statistical considerations.

D={(x(i),yi),i=1,...,m}, yi:M(x(i)),i=1,...,m

Vincent Dubourg (Phimeca/LaMI)
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Gaussian process meta-modelling

Meta-modelling

Meta-modelling

s meta-modelling
a one-dime

Meta-modelling techniques

nal regression exercise
From regression to probabilistic classification

e aim at constructing a predictorﬂ

e that mimics the behaviour of an existing model M
xeXcR"

yeYcR
o from a collection of observations gathered in a dataset:
Dz{(x(i);yi)!i:]-’---vm}v Vi

e and statistical considerations.

M(x(i)),i= 1,...,m
Interest for reliability-based design

Such predictors are much faster to evaluate than the original model M,
and come with a sort of confidence measure.
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Gaussian process meta-modelling

Illustration on
From r

The Gaussian process prior model

Gaussian process meta-modelling

Meta-modelling
Gaussian process meta-modelling

one-dimensional reg
on to probabilistic cl

on exercise
cation

The function M is a sample path of a Gaussian process (GP) Y:
where:

(Santner et al., 2003)
Y(x) = f(x)" B+ Z(x),

x X
o f(x)T Bis a linear regression model;

e Z(x) is a zero-mean, stationary GP with covariance:

Cov[Y(x), Y(x')] = 0?R(x—-x', 0),

(x,x") e XxX

Vincent Dubourg (Phimeca/LaMI)
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Gaussian process meta-modelling

The Gaussian process prior model

Gaussian process meta-modelling
Illustration on a one-dimen

Meta-modelling
Gaussian process meta-modelling

nal re

From regression to probabilistic cla

The function M is a sample path of a Gaussian process (GP) Y:
Y(x) = f(x)" B+ Z(x),
where:

x X
o f(x)T Bis a linear regression model;

e Z(x) is a zero-mean, stationary GP with covariance:
Cov[Y(x), Y(x')] = 0?R(x—-x', 0),
unobserved value Y (x), we have:

(x,x") e XxX
Hence, given a vector of observations Y = (Yi =Y (x(i)) yi=1, ... ,m) and an
Y(x) Fx)TB

y ~ Ni+m

5 1 rx)T"
e
FB r(x)

R
whose parameters F, (x), R are inherited from the GP’s statistics (f and R).

Vincent Dubourg (Phimeca/LaMI)
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Gaussian process meta-modelling

Meta-modelling
Gaussian process meta-modelling
Illustration on a one-dimensional regression exercise

From regression to probabilistic classification

Gaussian process meta-modelling
Posterior = The best linear unbiased predictor (BLUP)

(Santner et al., 2003)

e Here, we are interested in the posterior distribution of the unobserved value
given y = (yi = :M(x(i)) yi=1,... ,m):

Yx)=[Y(x)|Y =y]

o Given o2 and 0, the universal Kriging predictor is also Gaussian:
[?(x) — [y |Y = y,0%,0] ~ N1 (up(x), U%(x))]

where the mean prediction py (x) and the prediction variance U}Z,(x) have
analytical expressions.

e In practice, o2 and @ are not known so that they must be estimated from the
observations y using e.g. maximum likelihood estimation.

(Welch et al., 1992, Marrel et al., 2008)

o 5 =
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ability From regre ez

lllustration on a one-dimensional regression exercise

o o Mzl =iz

— 7 | H i
A e et nteresting properties
o 95% confldence Interval e [nterpolating,

o asymptotically consistent (provided
the correlation K is “compatible”
with the data ¥ and the model /M);

(Vazguez, 2005)

e Gaussian (consequence of the
E 4 s " i n prior}.

-3

—a|

6

Yix) ~ N (.ug,{x), Ué(x))
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Gaussian process meta-modelling

meta-modelling

a one-dimensional reg

From regression to probabilistic class|f'|(:a‘t)|’<]):\HU\E
regression to probabilistic classification

Ex: Let g denote a quadratic limit-state function

10 10

Regression

Vincent Dubourg (Phimeca/LaMI)

Classification (g < 0 vs. g > 0)
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o Let Fdy, By, Bl denote the three
a5

following approximate failure suibsets:

{x EX:pp(x) = i1.960'}~.{x)} ,
i= 1,0, 11
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Gaussian process meta-modelling

Meta-modellir

meta-modelling

ne-dimens

From regression to probabilistic classification

nal regression exercise
From regression to probabilistic classification

o Let Fgdy, Fly, F&dy, denote the three
o following approximate failure subsets
Fosy = fx e X:pp(x) <i1.96 09 (20}
0.8
i=-1, 0, +1.
0.6 __

e In turns, this enables the definition of the
3
0.4

margin of uncertainty.

0.2

Moss = Fiay \ Fody

0.0

=} F
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Gaussian process meta-modelling

Meta-modellin
G

From regression to probabilistic classification

meta-modelling
Illustration on a one-dimensional regre

From regression to probabilistic classification

ion exercise

o Let Fgdy, Fly, F&dy, denote the three

following approximate failure subsets:

Bosy = [x eX:pp(x) = i1.96 03 (0],
i=-1, 0, +1.

e In turns, this enables the definition of the
margin of uncertainty:

Mosy = Fgdy \ Fody

e Let 11 denote the probabilistic classification
function:

Ty

™(x)

0—pp(x) )
0y (x)
Vincent Dubourg (Phimeca/LaMI)

P[¥(x) <0] =c1><
P(+ P) denotes the probability measure w.r.t. the Kriging epistemic uncertainty.
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Adaptive designs of experiments

Designs of experiments

Designs of experiments
Sequentia
Sampling-ba adaptive DOEs
Illustration
Designs of experiments

e A DOE is the input part of a dataset

X={xVi=1,..m|

o Its size m must be minimized for the sake of efficiency.
(space-filling DOEs, Franco, 2008).

o Experiments must be selected carefully for the sake of accuracy
Adaptive designs of experiments

e are built in an iterative manner;

e on purpose to refine the predictor locally (e.g. in the vicinity of a contour);

so-called refinement criterion.

Sequential adaptive DOEs for GP predictors rely on the maximization of a

Vincent Dubourg (Phimeca/LaMI)
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Designs of experiments

Adaptive designs of experiments Sequentlal adaptive DOEs
a g-based adaptive DOEs

Sequential adaptive DOEs

10

Refinement criteria for contour approximation

e Simple criteria mostly apply the margin
shrinking concept for support vector

machines N )
(Hurtado, 2004b; Deheeger, 2008) ; uj
e Here, we propose the “margin probability”:
) 1.96 0 (%) — pp (x)
PlY(x)em - 9 (Yi
[ 95%] oy (x) o . s oo
e (—1.96 0¢(x) — py (x) ) The margin of uncertainty Mgsy
oy (x)
(Dubourg et al., 2010a) o8
s
e
v
Y
o2

0.0

The margin probablllty T Y(x) S Mgs%]

=] (=3 = E =
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Designs of experiments

Adaptive designs of experiments Sequential adaptive DOEs
Sampling-based adaptive DOEs
Illustration

Sequential adaptive DOEs

Refinement criteria for contour approximation

10

e Simple criteria mostly apply the margin
shrinking concept for support vector

machines ) "®
(Hurtado, 2004b; Deheeger, 2008) ; uj
e Here, we propose the “margin probability”:
R 1.96 0 (x) — pro (%)
_ 2RO T Hy XY
P[V(x) eMosy] = @ ( e ) I L.
o (—1.96 09 (%) — pp (x) ) The margin of uncertainty Mgsy
oy (x)
(Dubourg et al., 2010a) oe
Limitation of sequential strategies o8
e The multiple modes of these criteria make ) i
their maximization difficult; i
e There does not exist a single best point; o2
e Availability of distributed computing

0.0

platforms for M.

(Ginsbourgeret al,, 2010) The margin probablllty T Y(x) S Mgs%]

=] (=3 = E E DHAQ
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Adaptive designs of experiments

Sampling-based adaptive DOEs

Sampling-based adaptive DOEs

Given an initial dataset D
and a pseudo-PDF w:

© Fit a Kriging predictor ¥ (x)

1.0

0.0

12N G4
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Designs of experiments
Sequential adaptive DOEs
Sampling-based adaptive DOEs
Illustration

Adaptive designs of experiments

Sampling-based adaptive DOEs

Given an initial dataset D
and a pseudo-PDF w:

© Fit a Kriging predictor ¥ (x)

0.8
® Define a weighted refinement criterion
Clx) = P[¥(x) € Mosy | w(x) 3
w
0.4 /;1\
o
a
0.2
0.0
o = = = = wac
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Designs of experiments

Adaptive designs of experiments Sequer adaptive DOEs

Sampling-based adaptive DOEs

Illustration

Sampling-based adaptive DOEs

Given an initial dataset D
and a pseudo-PDF w:

© Fit a Kriging predictor ¥ (x)

® Define a weighted refinement criterion o8
Clx) = PV (x) € Mosy | w(x) 0 g
3
©® Sample N candidates from C =
(MCMC slice sampler, Neal, 2003) bty
a
0.2
0.0
Ty
N is given (say 10,000)
o = = = = ©Dax
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Designs of experiments

Adaptive designs of experiments Sequer adaptive DOEs

Sampling-based adaptive DOEs

Illustration

Sampling-based adaptive DOEs

Given an initial dataset D
and a pseudo-PDF w:

© Fit a Kriging predictor ¥ (x)

® Define a weighted refinement criterion o8
Clx) = P[¥(x) € Mosy | w(x) 05" E
s
©® Sample N candidates from C %
(MCMC slice sampler, Neal, 2003) bty
. . &

O Reduce the N candidates to K points
(K -means clustering, Lloyd, 1982) 0.2
0.0

Ty

K is given (say the number of CPUs)

12N G4
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Adaptive designs of experiments

Sampling-based adaptive DOEs

Given an initial dataset D
and a pseudo-PDF w:

© Fit a Kriging predictor ¥ (x)
® Define a weighted refinement criterion

Clx) = P[¥(x) € Mosy | w(x)

©® Sample N candidates from C
(MCMC slice sampler, Neal, 2003)

O Reduce the N candidates to K points
(K-means clustering, Lloyd, 1982)

® Enrich the dataset D with
{(x(m’fk), M (x("“k))) k=1,... ,K}

Vincent Dubourg (Phimeca/LaMI)
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Sequer adaptive DOEs
Sampling-based adaptive DOEs
Illustration
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Adaptive designs of experiments

Sampling-based adaptive DOEs

Given an initial dataset D
and a pseudo-PDF w:

© Fit a Kriging predictor ¥ (x)
® Define a weighted refinement criterion

Clx) = P[¥(x) € Mosy | w(x)

©® Sample N candidates from C
(MCMC slice sampler, Neal, 2003)

O Reduce the N candidates to K points
(K-means clustering, Lloyd, 1982)

® Enrich the dataset D with
{(x(m’fk), M (x("“k))) k=1,... ,K}

® Loop back to step @

Vincent Dubourg (Phimeca/LaMI)

Designs of experiments
Sequential adaptive DOEs
Sampling-based adaptive DOEs
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[m] = = =
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Gaussian process meta-modelling signs of experiments

Adaptive designs of experiments Sequential adaptive DOEs
Reliability analysis Sampling-based adaptive DOEs
Reliability-based design optimization Ilustration
lllustration
A four-branch series system (Waarts, 2000)
Clx) =P [V (x) € Mosy | @a(x) K =10

2.7e-03

2.4e-03
2.1e-03
H
. 18e03 &
< ]
~ Y\‘ 15¢:03 &
8 M zfzv S
= 1.26-03 %
& =
9.0e04 (X
[y

6.0e-04

3.0e-04

i 0 -85 0.0e+00

T, a1
Target contour, design of experiments & prediction Sampled & clustered refinement criterion

Iteration #1

o 5 =
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Designs of experiments

Adaptive designs of experiments Sequential adaptive DOEs
Sampling-based adaptive DOEs
Illustration

Illustration

A four-branch series system (Waarts, 2000)

08 2.0e-03
1.8¢03
06 15e03 K
g
= >
vl 13003 —
B z & 5
1.0e03
04y =
Iy =
B
7.5e-04
2
02 s0e0s &
2.5e-08
Bl 0.0 -gls 0.0e+00
a1

kol

Target contour, design of experiments & prediction Sampled & clustered refinement criterion

Iteration #2

o 5 =
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Designs of experiments

Adaptive designs of experiments quential adaptive D
Sampling-bas
Ilustration
lllustration
A four-branch series system (Waarts, 2000)
Cx) = P[¥(x) € Mosy | @2 (x) K =10
1.0 3.2e-03
2.8e-03
0.8
" 2.4e-03 ,’?
06 % : 20008 &
Vi =
' ® 5 16003 <
8 <E = %
04 R 12003 W
=
8.0e08 &
0.2
4.0e-04
-85 & 0.0 -85 0.0e+00
x, a1
Target contour, design of experiments & prediction Sampled & clustered refinement criterion
Iteration #3
=] & E = = 9DaAe

Vincent Dubourg (Phimeca/LaMI) GdR MascotNUM - Research topics day, May 11, 2012 14 /26



Adaptive designs of experiments

lllustration
A four-branch series system

Designs of experiments

quential
Sampling-bas
Illustration

(Waarts, 2000)

Cx) = P[¥(x) € Mosy | @2 (x) K =10
1.0
14603
08 1.2e-03
)
. 10003 &
06S —
Vi 2
K = K 80004 5
= T
04 Q7 6.0e-04 ’;
(=}
4.0e-04 &
02
2.0e-04
-8l s oo -8lg 0.0+00
Ty Ty

Target contour, design of experiments & prediction

Sampled & clustered refinement criterion

Iteration #4
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Designs of experiments

Adaptive designs of experiments quential ptive DO
Sampling-bas
Ilustration
lllustration
A four-branch series system (Waarts, 2000)
Cx) = P[¥(x) € Mosy | @2 (x) K =10
1.0
1.4e-03
0.8
1.2e-03 —
H
— 10e03 &
06 © —
Vi E
a e N 8.0e-04 S
8 Z ¢ g
04 & 6.0e:08 50
=
4.0e-04 &
0.2
2.0e-04
-85 & 0.0 -85 0.0e+00
x, a1
Target contour, design of experiments & prediction Sampled & clustered refinement criterion
Iteration #5
=] & E = = 9DaAe
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Designs of experiments

Adaptive designs of experiments quential
Sampling-bas
Ilustration
lllustration
A four-branch series system (Waarts, 2000)
Cx) = P[¥(x) € Mosy | @2 (x) K =10
1.0
1.4e-03
08 - 1.2e-03
g 11e03 %
06 S 9.0e-04 §
Vi E
ol ’N\ N 7.5e-04 =
; <E : 6.0e-04 %
0.4 & X §
“o ol 4.5e-04 (>,
L ¥ &
02 o “"‘t’l 3.0e-04
1.5e-04
-85 & 0.0 -85 0.0e+00
x, a1
Target contour, design of experiments & prediction Sampled & clustered refinement criterion
Iteration #6
=] & E = = 9DaAe
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Designs of experiments

Adaptive designs of experiments quential
Sampling-bas
Ilustration
lllustration
A four-branch series system (Waarts, 2000)
Cx) = P[¥(x) € Mosy | @2 (x) K =10
1.0

1.4e-03

08 1.2e-03
11e-03 ¢
06 S . 9.0e-04 §
Y e =
g = K 7.5e-04 E&’
= £ eos U
0.4 & 6.0e-04 =
4.5e-04 <E
[y

0.2 3.0e-04

1.5e-04

-85 & 0.0 -85 0.0e+00

x, a1
Target contour, design of experiments & prediction Sampled & clustered refinement criterion
Iteration #7
=] & E = = 9DaAe
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Designs of experiments

Adaptive designs of experiments quential
Sampling-bas
Ilustration
lllustration
A four-branch series system (Waarts, 2000)
Cx) = P[¥(x) € Mosy | @2 (x) K =10
10 11603
9.0e-04
0.8
7.5e-04 E
— i £
06 © S e
Vi 6.0e-04 22
“<§ e e ase0s WU
&
3.0e-04 A
0.2
1.5e-04
-85 s 0.0 -85 - 0.0e+00
x, a1
Target contour, design of experiments & prediction Sampled & clustered refinement criterion
Iteration #8
=] & E = = 9DaAe
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Designs of experiments

Adaptive designs of experiments quential
Sampling-bas
Ilustration
lllustration
A four-branch series system (Waarts, 2000)
Cx) = P[¥(x) € Mosy | @2 (x) K =10
1.0 1.4e-03
1.2e-03
0.8

11e03
H
. 9.0e-04 S-N
06 © —
i/\\ 75004 B
N = o 2
N = N st T
0.4 & ,;
45e04 (5

0.2 3.0e-04

1.5e-04

-85 & 0.0 -85 0.0e+00

x, a1
Target contour, design of experiments & prediction Sampled & clustered refinement criterion
Iteration #9
=] & E = = 9DaAe
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Adaptive designs of experiments

lllustration
A four-branch series system

Designs of experiments

Sequential
Sampling-ba
Illustration

C(x) = P[¥(x) € Mosx] 2 (x)

1.0

Ty

-85 & 0.0
ol

Target contour, design of experiments & prediction

ptive DOEs
d adaptive DOEs

(Waarts, 2000)

Ty

=)

a1

1.4e:03
1.2e-03
11e-03
9.0e-04
7.5e-04
6.0e-04
45e04 (5

3.0e-04

x) EMgs] 05 (X

1.5e-04

0.0e+00

Sampled & clustered refinement criterion

Iteration #9

[Convergence criteria depend on the application...]
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Reliability analysis
Introduction {Ditlevsen & Madsen, 1996; Lemaire, 2009)

Problem formulation
« Given a faifure domain:

F={xexX:gx) <0} . | ol i)

= and a random vector X with known distribution:

Fx(x) = C (Fx, (), i =1, ..., m) o
(Lebrun & Dutfay, 2009a,5,¢) -1
« the purpose is to quantify the reliability of a —a

design in the form of a failure probability:

py=PIXCFl= | jx(x)dx o

F{= #*) denotes the probability measure w.r.t. the random vector X.

Vincant Dubourg (PhimecafLaMi)



Gaussian process meta-modelling
Adaptive designs of experiments
Reliability analysis

Reliability-hased design optimization

Reliability analysis
Monte Carlo sampling as a motivation for the structural reliability methods

Monte Carlo sampling
« The failure probability rewrites:

py=| Lr(x) fx{x)dx =E[Lr(X}] : o
4 g

{xeR L gix) i

« Hence, the central limit theorem ensures that:

N 1 5
- 1 7 . prll—pr) ?
pre=np 1= (x0) (w- = -")

i-1

o provided N is sufficiently large!
= In order to involve g in an optimization loop:

[pf =107 = N = 10k_2] B

o Structural reliability methods aim at reducing N

Vincant Dubourg (PhimecafLaMi)



Principle

» A surrogate-based estimator:

Br— J; Fxix)dx

= where: N 8
Foixex:§x) =0t =1 .

and § is a meta-model of g. -

s § is built from m = N runs of q.

| FoizeR? . gixead

S N

S

Vincant Dubourg (PhimecafLaMi)




Gaussian process meta-modelling
Adaptive designs of experiments
Reliability analysis

Reliability-hased design optimization

Surrogate-based reliability analysis

Principle For the sake of efficiency

low probabilities can be handled by
subset sampling (av & Beck, 2001)

» A surrogate-based estimator:

Br— J; Fxix)dx

. F=ix=R’ . gz =i}
+ where: [ X dfx) il

Foixex:qx)=0l=t .
and § is a meta-model of g. -
e §is built from m < & runs of 4. R S

S N

S

Vincant Dubourg (PhimecafLaMi)



Gaussian process meta-modelling
Adaptive designs of experiments
Reliability analysis

Reliability-hased design optimization

Surrogate-based reliability analysis

Principle

For the sake of efficiency
» A surrogate-based estimator:

low probabilities can be handled by
subset sampling (av & Beck, 2001)

Br— J; Fxix)dx

= where:

Foixex:¥x) =0l =t
and § is a meta-model of g.
s § is built from m = N runs of q.
Error (bias) quantification?
« Provided & is a Kriging predictor.

o T N s
Fosu = Fosw = Fosw = Prosw = Prosw = Prosx

» Hence the following empirical ervor:

P s

B

Aprosy =logg | ——
P rasy

Vincant Dubourg (PhimecafLaMi)



Rellabllll\-

Reliability-hased design optimization

Surrogate-based reliability analysis

Principle

For the sake of efficiency
» A surrogate-based estimator:

low probabilities can be handled by
subset sampling (av & Beck, 2001)

Br— J; Fxix)dx

s where: N
FoixeX:qx)=0} =t
and § is a meta-model of g.
s § is built from m = N runs of q.
Error (bias) quantification?
« Provided & is a Kriging predictor.

r+1 -1 o M P
[Ffws' = ":Js,!s SFgsw = Prose = Prose = Prosx

» Hence the following empirical ervor:

Prosy
Aprosy = logg (p!
a5,
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Introduction
Reliability-based design optimization

Problem formulation

Application to the design of an imperfect submarine hull

a* = i
argmin  c(d)

(Tsompanakis et al., 2008)
fi(d) <0,
mean values).

i=1,
Bottlenecks

» Ne

pfl(d)spgli l=1;---:np

where d is exclusively involved in the definition of the random vector X (e.g

e The repeated reliability estimations are computationally expensive;
failure probabilities.
Solutions

o Nested approaches

e Sequential approaches

(Enevoldsen & Sorensen, 1994)
(Du & Chen, 2004)
e Surrogate-based approaches (Eldred et al.,, 2002)
o = = = < %

8/26

e Most NLP constrained optimization algorithms require the gradients of the




Gaussian process meta-modelling
Adaptive designs of

narine hull

Reliability-hased design opfimizai:ion

Surrogate-based REDO
The augmented reliability space {Taftanidis & Beck, 2008, 2009a,b)

Motivation

Building the Kriging surrogates frosm scratch for each nested reliability
analysis would be particularly inefficient.

Definition
» The admissible range [ simply
augments the spread of fx:

hix) = J'D.fX (x| dimididd

where 7 is the uniform distribution
over [0

e The idea is to work on a sufficiently
large confidence region of h.
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Reliability-based design optimization

Introduction
Surrogate-based RBDO
Application to the design of an imperfect submarine hull

Surrogate-based RBDO

Reliability sensitivity analysis

Motivations
o NLP optimization algorithms require the gradient of the failure probabilities;
o How to compute these derivatives with Monte Carlo techniques?

The score function approach (Rubinstein, 1976, 1986)
Given a random vector X with parameter d, provided its support X does not
depend on d:

opy(d)

— Ex [M(X) dlog fx (X | d)]

od od

Interesting properties
o A simple post-processing of a reliability analysis!
e The score function comes analytically when the copula formalism is used.
(Leeetal., 2011a,b)
e The approach extends to reduction variance techniques such as:

o subset sampling (Song et al., 2009)
o (meta-model-based) importance sampling (Dubourg, 2011)

[m] = = =
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Reliability-hased design optimization

Surrogate-based REDO

Overview of the proposed algorithm

Given an initial design d'©" = D ¢(hounded):

@ Determine the augmented veliability
space;

Vincant Dubourg (PhimecafLaMi)
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Problem formulation
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Design objectives

Single bay reference structure
I . .
- @ « The design should minimize the
LU following weight ratio:
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e .
iy . Psteel Vsteel ()
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e » while ensuring structural integrity
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Mechanical and probabilistic modelling

n 1 the e ol an imperfect submarine hull

Mechanical modelling (voirfatise, 2009) Probabilistic model
¢ Nonlinear finite element model
(geometry' material and |0ad]I Variable Distribution Mean C.oV.
E (MPa; Lognormal 2003, 000 kES

s Shape imperfections distributed

according to two critical buckling oy (M) Lognormal #90 5%
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Probabilistic constraint
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Conclusion

Conclusions & Open questions

Conclusions

Universal Kriging enable an objective quantification of the substitution error;

Sampling-based adaptive DOEs enabled a reduction of this error,

while making the use of distributed computing platforms possible.

o The augmented reliability space ensures the coupling
“optimization-reliability-surrogates” is efficient;

o Subset sampling still reveals unavoidable to deal with the possibly low failure

probabilities encountered during the optimization;

e The score function approach revealed efficient for reliability sensitivity
analysis;

[m] = = =
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e Sampling-based adaptive DOEs enabled a reduction of this error,
while making the use of distributed computing platforms possible.

o The augmented reliability space ensures the coupling
“optimization-reliability-surrogates” is efficient;

o Subset sampling still reveals unavoidable to deal with the possibly low failure
probabilities encountered during the optimization;

e The score function approach revealed efficient for reliability sensitivity
analysis;
Open questions

o Real engineering problems feature a large number of parameters (> 10):
how to extend the use of kriging surrogates to such cases?

e Search for the optimum optimorum: use of global optimization techniques
and/or better initialization of gradient-based optimizers?
e Some manufactured products benefits from 100% quality control: how to
deal with truncated distributions (zero probability, reliability sensitivity)?
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nk you for your attention!

Au, S.-K. and J. Beck (2001). Rubinstein, R. and D. Kroese (2008).
Estimation of small failure probabilities in Simulation and the Monte Carlo method.
high dimensions by subset simulation. Wiley Series in Probability and Statistics.
Prob. Eng. Mech. 16(4), 263-277. Wiley.

Dubourg, V. (2011). Santner, T., B. Williams, and W. Notz (2003).
Adaptive surrogate models for reliability The design and analysis of computer
analysis and reliability-based design experiments.
optimization. Springer series in Statistics. Springer.

Ph. D. thesis, Université Blaise Pascal -
Clermont Il. Song, S., Z. Lu, and H. Qiao (2009).

Lemaire, M. (2009). Subset simulation for structural reliability

' . sensitivity analysis.
Structural Reliability. Reliab. Eng. Sys. Safety 94(2), 658-665.
Wiley.

Tsompanakis, Y., N. Lagaros, and
Polak, E. (1997). M. Papadrakis (Eds.) (2008).

Optimization algorithms and consistent Structural design optimization considering
approximations. uncertainties.
Springer. Taylor & Francis.

=] = = E =

Vincent Dubourg (Phimeca/LaMI) GdR MascotNUM - Research topics day, May 11, 2012 26 /26



	TITLEPAGE
	INTRODUCTION
	Introduction

	CONTENTS
	Gaussian process meta-modelling
	Meta-modelling
	Gaussian process meta-modelling
	Illustration on a one-dimensional regression exercise
	From regression to probabilistic classification

	Adaptive designs of experiments
	Designs of experiments
	Sequential adaptive DOEs
	Sampling-based adaptive DOEs
	Illustration

	Reliability analysis
	Structural reliability methods
	Surrogate-based reliability analysis

	Reliability-based design optimization
	Introduction
	Surrogate-based RBDO
	Application to the design of an imperfect submarine hull


	CONCLUSION
	Conclusion


