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Direct and inverse models

Source
Unknown medium

Array
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Direct and inverse models

Source
Unknown medium

Array

Model

s(x, t) u(xr, t),

r = 1, . . . , Nr

L(u;m) = s
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The inverse problem

Inverse problem:

By comparing the simulations and the observations, find the un-

known model parameters - this produces a highly nonlinear inverse

problem... (no direct solution possible).
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The inverse problem

Inverse problem:

By comparing the simulations and the observations, find the un-

known model parameters - this produces a highly nonlinear inverse

problem... (no direct solution possible).

Two approaches:

1 Classical variational formulation.

2 Statistical formulations.

In fact there is a 3rd: BFN...
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Introduction

Variational inversion/assimilation is based on optimal control

theory.

The analyzed state is not defined as the one that maximizes a

certain pdf (see below...), but as the one that minimizes a cost

function.

The minimization requires numerical optimization techniques.

These techniques all rely on the gradient of the cost function.

This gradient will be obtained here with the aid of adjoint

methods.

Definition

The adjoint method is a mathematical technique that enables us to

compute the gradient of an objective functional with respect to the

model parameters in a very efficient manner.
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Formulation

Let u be the state of a dynamical system whose behaviour depends on

model parameters m and is described by a differential operator equation

L(u,m) = f,

where f represents external forces.
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Formulation

Let u be the state of a dynamical system whose behaviour depends on

model parameters m and is described by a differential operator equation

L(u,m) = f,

where f represents external forces.

Define a cost function J(m) as an energy functional or, more commonly, as

a misfit functional that quantifies the L2-distance between the

observation and the model predicition u(x, t;m). For example,

J(m) =

∫ T

0

∫

Ω

(

u(x, t;m)− uobs(x, t)
)2

δ(x − xr)dx dt,

where x ∈ Ω ⊂ R
n, n = 2, 3, 0 ≤ t ≤ T and xr are the receiver positions.
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Formulation

Let u be the state of a dynamical system whose behaviour depends on

model parameters m and is described by a differential operator equation

L(u,m) = f,

where f represents external forces.

Define a cost function J(m) as an energy functional or, more commonly, as

a misfit functional that quantifies the L2-distance between the

observation and the model predicition u(x, t;m). For example,

J(m) =

∫ T

0

∫

Ω

(

u(x, t;m)− uobs(x, t)
)2

δ(x − xr)dx dt,

where x ∈ Ω ⊂ R
n, n = 2, 3, 0 ≤ t ≤ T and xr are the receiver positions.

Objective:

Choose the model parameters m as a function of the observed

output, such that the cost function J(m) is minimized.
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Adjoint derivation

Define the variation of u with respect to m in the direction δm
(Gâteaux derivative) as

δu
.
= ∇mu δm,

then the corresponding directional derivative of J can be written as

∇mJ δm = ∇uJ δu = 〈∇uJ1 δu〉 , (1)

where 〈·〉 denotes the space-time integral.
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Adjoint derivation

Define the variation of u with respect to m in the direction δm
(Gâteaux derivative) as

δu
.
= ∇mu δm,

then the corresponding directional derivative of J can be written as

∇mJ δm = ∇uJ δu = 〈∇uJ1 δu〉 , (1)

where 〈·〉 denotes the space-time integral.

Difficulty:

The variation δu is impossible/unfeasible to compute numerically

(for all directions δm).
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Adjoint derivation

Define the variation of u with respect to m in the direction δm
(Gâteaux derivative) as

δu
.
= ∇mu δm,

then the corresponding directional derivative of J can be written as

∇mJ δm = ∇uJ δu = 〈∇uJ1 δu〉 , (1)

where 〈·〉 denotes the space-time integral.

Difficulty:

The variation δu is impossible/unfeasible to compute numerically

(for all directions δm).

Solution:

Eliminate δu from (1) by introducing an adjoint state (Lagrange

multiplier).
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Adjoint derivation II

Differentiate the state equation with respect to the model m and

apply the necessary condition for optimality,

∇mL δm +∇uL δu = 0.

Multiply by an arbitrary test function u† (Lagrange multiplier) and

integrate,
〈

u† · ∇mL δm
〉

+
〈

u† · ∇uL δu
〉

= 0.

Add to (1) and integrate by parts, regrouping terms in δu,

∇mJ δm = 〈∇uJ1 δu〉+
〈

u† · ∇mL δm
〉

+
〈

u† · ∇uL δu
〉

=
〈

δu ·
(

∇uJ
†
1 +∇uL†u†

)〉

+
〈

u† · ∇mL δm
〉

,

where we have defined the adjoint operators ∇uJ
†
1 and ∇uL†.
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Adjoint derivation III

Finally, to eliminate δu, the adjoint state u† should satisfy

∇uL†u† = −∇uJ
†
1

which is known as the adjoint equation.

Once the adjoint solution u† is found, the derivative of the objective

functional reduces to

☛

✡

✟

✠
∇mJ δm =

〈

u† · ∇mL δm
〉

which enables us to compute the desired gradient, ∇mJ without the

explicit knowledge of δu.
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Adjoint remarks

1 We obtain explicit formulas for the gradient with respect to

each model parameter.

2 The computational cost is one solution of the adjoint equation

which is usually identical to the direct equation, but with a

reversal of time.

3 The optimization of the misfit functional leads to multiple local

minima and to very “flat” cost functions which are hard

problems to overcome with gradient-based methods.

4 Regularization terms can alleviate the non-uniqueness

problem. Rescaling can help with the “flatness”. SA algorithms

can be mobilized.

5 When measurement and modelling errors can be modelled by

Gaussian distributions and a background (prior) solution

exists, the objective function may be generalized by including

suitable covariance matrices.
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Adjoint methods for inverse problems: summary

Solid theoretical basis: calculus of variations.

Can treat general partial differential equations and associated

boundary and initial conditions.

Widely-used in meteorology (3D-Var and 4D-Var).

Applications to geoacoustic inversion...
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Why should we use acoustics?

Facts:

1 Electromagnetic waves do not penetrate into the sea water.
2 Satellites only see and measure surface phenomena.
3 Hydrographic measurements are too expensive and too sparse.
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Why should we use acoustics?

Facts:

1 Electromagnetic waves do not penetrate into the sea water.
2 Satellites only see and measure surface phenomena.
3 Hydrographic measurements are too expensive and too sparse.

Acoustic waves

are the only means of remotely sensing the depths of the ocean,

and can provide oceanographers, meteorologists and other ocean re-

searchers with large quantities of significant field data, cheaply and

easily.
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Acoustics

Linear (acoustic) wave Equation: ptt −∇ · (c2∇p) = 0

Elastodynamic wave equation:

ρutt − (λ+ 2µ)∇∇ · u + µ∇×∇× u = 0

Helmholtz equation: k2ψ+∇ · (c2∇ψ) = 0

Paraxial equation in waveguides:φr =
i

2k0
φzz + ik0

2 (n2 − 1)φ
(equation of Schrödinger type)

Others : normal modes (Fourier series) , rays (Eikonal

equation).

Note:

Must add physically relevant, initial and boundary conditions...
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Numerical approaches

finite difference methods

finite element and spectral element methods

ray-tracing methods

Fourier-mode methods
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What is geoacoustic inversion?
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Physical problem I
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Physical problem II: waveguide model
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Program

We now prepare all the ingredients for the solution of the inverse

problem:

direct propagation model;

cost function for mismatch;

adjoint model obtained by integration by parts (same as direct

equation, but with reversal of time);

gradient of cost function (in terms of adjoint field) with respect

to the model (geoacoustic) parameters;

gradient-based (quasi-Newton) algorithm for the minimization.
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Direct (forward) model

SPE: Small angle parabolic approximation (ψ−diff. 1st order approx. of

Helmholtz eq.) : p(r, z) = ψ(r, z)H
(1)
0 (k0r)

2ik0
∂ψ

∂r
+
∂2ψ

∂z2
+ k

2
0(n

2 − 1)ψ = 0 , 0 < r < R, 0 < z < H.

ψ(0, z) = S(z), ψ(0, r) = 0, G1(ψ(r,H), γ) = 0.

WAPE: Large angle parabolic approximation (ψ−diff. Padé 1st order) :

2ik0

[

1 +
1

4
(n2 − 1)

]
∂ψ

∂r
+
∂2ψ

∂z2
+ k

2
0(n

2 − 1)ψ +
i

2k0

∂3ψ

∂r∂z2
= 0 , 0 < r < R, 0 <

ψ(0, z) = S(z), ψ(0, r) = 0, G2(ψ(r,H), γ) = 0.

Impedance condition on sea bottom z = H that contains the unknown

geoacoustic parameters: densité ρ, célérité c et attenuation α.
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Modeling: impedance conditions

LBC: Local Condition (non-physical) : ∂ψ

∂z
+ im(r)ψ = 0 where m(r) is the

control variable.

NLBC: Non-Local Condition: that includes all physical parameters explicitly,

{
∂

∂z
− iB

}

ψ [(J + 1)∆r, zb] = iB

J+1∑

j=1

g0,jψ [(J + 1 − j)∆r, zb]

B = ρb

ρw
k0

√

N2
b
− 1 + ν2, k0 = ω

c0
,

Nb = nb[1 + iα], nb = c0

cb
, ν2 = 4i

k0∆r
.

Control Vector m(r) = [Nb(r), ρb(r)]
T.
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Application of adjoint method

Cost Functional: J[m] = 1
2

∫ H

0
|ψ − ψ∗|2r=R dz + regularization terms

Adjoint System derived by necessary condition for optimality.

Compute exact gradients for different models:

SPE+LBC: ∇mJ = 1
2k0

ψ̄p
∣
∣
z=H

,

SPE+NLBC: ∇mJ = 1
2k0

[
ψ̄p

ip

]

z=H

,

WAPE+NLBC: ∇mJ =

[

(īψ − F̄)(p + i
2k0

pr)

−β̄(p + i
2k0

pr)

]

z=H

.
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Recap

We now have all the ingredients for the solution of the inverse

problem:

direct propagation model;

cost function for mismatch;

adjoint model; here we have used the approach

“adjoint-then-discretize” - the other possibility is

“discretize-then-adjoint” which is commonly used in

meteorology...

gradient of cost function with respect to the model (geoacoustic)

parameters;

gradient-based (quasi-Newton) algorithm for the minimization.
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More realistic problems

The complexity of real pde models (especially the boundary

conditions), imposes the choice between 2 adjoint strategies:

1 Automatic differentiation.

2 Semi-automatic, graph theoretical approach.

Our choice

We choose the 2nd and use the YAO package which requires the

construction of a modular graph of the direct model. The linear

tangent and the adjoint are then automatically generated by YAO,

which also solves the functional minimization problem by using

quasi-Newton methods.

[J.-P. Hermand, M. Meyer, M. Asch, and M. Berrada. Adjoint-based acoustic

inversion for the physical characterization of a shallow water environment. J.

Acoust. Soc. Am., 119 (6): 3860–3871, June 2006. ]
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Numerical results: geoacoustic inversion
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Numerical results: ocean acoustic tomography

Correction for an uncertain SSP during GI using three partial water column spanning VRAs with 32, 16 and 8 hydrophones
at 1.5 km range. For the inversion seven frequencies were used; the initial SSP profile (dashed, black) is calculated from the
CTD cast that deviates the most from the true ensemble average (large dots, gray). The inverted profiles are obtained with
a 32 (solid,) a 16 (dash-dot), and an 8-element (dotted), VRA. Left: Inversion errors for the three estimated and the initial
profile (solid, turkey) (top scale.)
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Extensions

Broadband, multiple frequency formulation.

Regularization of the cost function and treatment of

measurement uncertainty.

Multiple sediment layers.

Sparse arrays and missing measurements.

PCA/EOF representation of sound speed profile (SSP).

Particle velocities (gradient of pressure).
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Introduction

Recall the inverse problem: assume a vector of model

parameters m = {mi, i = 1, . . . ,M} representing the unknown

geoacoustic properties and estimate the parameter values that

minimize the misfit between measured and modeled acoustic

fields.

Optimization alone provides no information on the parameter

uncertainties and data information content.

Bayesian theory can provide a more complete approach to the

inverse problem:

model parameters are considered as random variables

constrained by noisy data and prior information;

Bayesian inversion is then formulated in terms of the posterior

probability density (ppd), parameter uncertainties (variances,

marginals), and parameter correlations.

Kalman filters can be developed from Bayesian theory (when

errors are Gaussian...)
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Bayesian formulation I

Data information formulated in terms of the likelihood

function.

This function represents the conditional data uncertainty

distribution interpreted as a function of the model parameters.

Data uncertainties (measurement error, theory error) are not

well-known and physically reasonable estimates are needed.

Simple distributions (e.g. multi-variate Gaussian) are assumed

with µ and σ estimated from the data.

Model selection can be applied across a range of

parametrizations by using an information criterion.
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Bayes’ rule

Let d = [di]i=1,...,N be a vector of data representing physical

observations, I denote the model that specifies the choice of

parametrization of the physical system, m = [mi]i=1,...,M be the

vector of free parameters representing a realization of I. Then, in a

Bayesian approach, these obey Bayes’ rule

P(m|d, I) =
P(d|m, I)P(m|I)

P(d|I)
,

where (suppressing I )

P(m) is the prior probability density function representing the

available parameter information independent of the data,

P(d|m) is the conditional pdf of the data given the parameters -

this represents the error distribution (as a function of d) or

likelihood function (as a function of m),

P(d) is a normalization.
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Likelihood function

The likelihood function can generally be written as

L(m) ∝ exp [−E(m)] ,

where E(m) represents an appropriate data misfit function. Now

define the generalized misfit function, combining data and prior, as

φ(m) = E(m)− ln P(m).

Then Bayes’ rule becomes

P(m|d) =
exp [−φ(m)]

∫

exp [−φ(m′)dm′]
.
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Likelihood function

The likelihood function can generally be written as

L(m) ∝ exp [−E(m)] ,

where E(m) represents an appropriate data misfit function. Now

define the generalized misfit function, combining data and prior, as

φ(m) = E(m)− ln P(m).

Then Bayes’ rule becomes

P(m|d) =
exp [−φ(m)]

∫

exp [−φ(m′)dm′]
.

PPD

This posterior probability density represents the most general

solution to an inverse problem.
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PPD

To intrepret the PPD in multi-dimensional problems, we need to

estimate the following quantities:

MAP m̂ = arg maxm P(m|d)

Mean m̄ =
∫

mP(m|d)dm

Covariance Cm =
∫

(m − m̄)(m − m̄)TP(m|d)dm

Marginals P(mi|d) =
∫

δ(mi − m′
i)P(m

′|d)dm′

Correlations Rij = Cmij
/
√

Cmii
Cmjj

.
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Model selection

c1

cn-1

cn

...
...

h1

hn-1

VLA

D

v1v2

v3

v4

Seabed

Ocean
* Source

(r,z)

Over parametrization can lead to spurious model structure and

over-estimation of model uncertainties.

Under parametrization can leave structure unresolved and

underestimate uncertainties.
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BIC

Bayesian inversion can determine an appropriate model parametrization

based on an objective criterion. For this, we need to compute the

conditional probability P(d|I) that expresses the likelihood of the

parametrization given the data, or the Bayesian evidence for I. We have

P(d|I) =

∫

P(d|m, I)P(m|I)dm

which is very difficult to compute.

By using an asymptotic point estimate of ln P(d|I), the BIC, we can easily

compute this Bayesian evidence,

−2 ln P(d|I) ≈ BIC = −2 ln L(m̂) + M ln N,

= 2E(m̂) + M ln N,

where N is the number of unknown parameters in the model.
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BIC

Bayesian inversion can determine an appropriate model parametrization

based on an objective criterion. For this, we need to compute the

conditional probability P(d|I) that expresses the likelihood of the

parametrization given the data, or the Bayesian evidence for I. We have

P(d|I) =

∫

P(d|m, I)P(m|I)dm

which is very difficult to compute.

By using an asymptotic point estimate of ln P(d|I), the BIC, we can easily

compute this Bayesian evidence,

−2 ln P(d|I) ≈ BIC = −2 ln L(m̂) + M ln N,

= 2E(m̂) + M ln N,

where N is the number of unknown parameters in the model.

Minimization

The parametrization with the smallest BIC is selected as the most

appropriate model.
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Problem setup

c1

cn-1

cn

...
...

h1

hn-1

VLA

D

v1v2

v3

v4

Seabed

Ocean
* Source

(r,z)

Mediterranean sea, depth 132

m, chirp signal 300-800 Hz,

VLA of 48 hydrophones, range

3.85 km.

SSP parametrized by 4

unknowns, v1, . . . , v4.

Seabed parametrized by n

layers, each represented by

sound speed c, density ρ,
attenuation α and thickness h.

Uniform priors assigned to all

parameters within physical

bounds.

[S. Dosso, J. Dettmer. Bayesian matched-field geoacoustic inversion. Inverse

Problems 27, 2011. ]
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Results: model selection
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Conclusion

Use a three-layer model.
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Results: marginals for 3-layer model

Problem

Requires a very large number of forward simulations ∼ 106...
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Results: correlation matrix & joint marginals
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New Inverse problem #1: the ocean observatory

Aim: monitor environmental parameters using active and

passive acoustic signals

Equation: elastic wave/Helmholtz equation, with variable layers

(water, vegetation, sediments), continuity conditions on layer

interfaces, absorbing conditions on lateral boundaries and sea bottom

below sediment layers , Dirichlet condition (zero pressure) on water

surface, known (active) source or unknown (passive) source.

Inverse problem: from observations of acoustic pressures, track

environmental parameters (density, salinity, temperature, etc.)

Question: how?
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Preliminary results for the direct problem

Realistic layer and flint geometry

Time-domain seismo-acoustic simulations using SPECFEM2D

Computation of spectra and comparison with lab

measurements.
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Conclusions

1 Need for fast, accurate forward and inverse numerical models.

2 Adjoint approach can be efficient, but code maintenance is

complex.

3 Bayesian approach gives much more complete information.

4 Hybrid methods are the future: EnsKF, Ens/Var, ...

5 Passive acoustic monitoring for environmental protection is the

new grand challenge.
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Perspectives

Participate in “environmental monitoring” projects: Amazon,

archeology, aquatic life, ...

Develop and implement hybrid, deterministic-statistical

approaches.

Full stochastic modeling (cf. Garnier-Papanicolaou) with

random medium properties and suitable scale separation.
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Questions?



Ex. 1: Convection-diffusion (ODE)

{

−
(
a(x)u′(x)

)′
− u

′(x) = q(x) 0 < x < 1

u(0) = 0, u(1) = 0.
(2)

J[a] = 1
2

∫ 1

0
|u(x)− u∗(x)|2 dx

Lagrangian (variational formulation) :

J∗[a,p] = 1
2

∫ 1

0
|u(x)− u∗(x)|2 dx +

∫ 1

0
p
(
− (au′)

′
− u′ − q

)
dx

Variation of J∗ :

δJ∗ =
∫ 1

0
(u − u∗) δu dx +

∫ 1

0
δp

= 0
︷ ︸︸ ︷
(

−
(
au

′)′ − u
′ − q

)

dx

+
∫ 1

0
p
[
(−δa u′ − a δu)

′
− q

]
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Ex. 1: (contd.)

KILL terms by conditions on p: adjoint equation, boundary conditions.

δJ∗ =
∫ 1

0
[(u − u∗) + p′ − (ap′)′] δu dx +

∫ 1

0
δa u′p′dx

+ [−p(δu + u′δa + aδu′) + p′aδu]
1

0

=
∫ 1

0
δa u′p′dx

where, {

−
(
ap

′)′ + p
′ = −(u − u

∗) 0 < x < 1

p(0) = 0, p(1) = 0.
(3)

⇒ gradient:

∇a(x)J
∗ = u

′
p
′
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Example 2: Diffusion equation (PDE)

IBVP :
{

∂u
∂t

−∇ · (ν∇u) = 0 x ∈ (0,L), t > 0,

u(x, 0) = u0(x), u(0, t) = 0, u(L, t) = η(t).

Controls:

internal – ν(x) (parameter identification / tomography)

initial – ξ(x) = u0(x) (source detection)

boundary – η(t) = u(L, t) ( «classical» control / parameter identification)

Cost Function:

J[ν, ξ, η] =
1

LT

∫ T

0

∫ L

0

|u − uref|
2

dx dt
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Ex. 2 (contd.)

Lagrangian:

J∗ = 1
LT

∫ T

0

∫ L

0
|u − u∗|

2
dx dt + 1

LT

∫ T

0

∫ L

0
p [ut − (νux)x]dx dt

Variation: δJ∗ = 1
LT

∫ T

0

∫ L

0
2(u − u∗)δu dx dt + 1

LT

∫ T

0

∫ L

0
δp

= 0
︷ ︸︸ ︷

[ut − (νux)x]dx dt

+ 1
LT

∫ T

0

∫ L

0
p [δut − (δν ux + νδux)x]dx dt

Integration by parts:

δJ∗ = 1
LT

∫ T

0

∫ L

0
δνuxpxdx dt − 1

LT

∫ L

0
p δu|t=0 dx + 1

LT

∫ T

0
p δη|x=L dt
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Ex. 2 (contd.)

Adjoint Equation:

{
∂p

∂t
+∇ · (ν∇u) = 2(u − u∗) x ∈ (0,L), t > 0,

p(x,T) = 0, p(0, t) = 0, p(L, t) = 0.

⇒ gradient :

∇ u|t=0
J
∗ = − p|t=0

∇ν(x)J
∗ =

1

T

∫ T

0

uxpxdt

∇ η|x=L
J
∗ = p|x=L .
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Adjoint zoo...

Adjoint equations for other partial differential operators:

Operator Adjoint

du
dx

− γ d2u
dx2 −dv

dx
− γ d2v

dx2

∇ · (k∇u) ∇ · (k∇v)
∂u
∂t

− c∂2u
∂x2 −∂v

∂t
− c∂2v

∂x2

∂u
∂t

+ c∂u
∂x

−∂v
∂t

− c∂v
∂x
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YAO - modular graph, semi-automatic adjoints

FIG. 1. Example of a modular graph. For each module mn the input and

output variables are denoted by xk and y j respectively. �k and � j represent

the corresponding Lagrange multipliers that are used for the adjoint genera-

tion scheme in Sec. II B2.

Lagrange multipliers computed

from ∂L
∂yj

= −αj +
∑

βk = 0 and

∂L
∂xk

= −βk +
∑

αj
∂fj

∂xk
= 0 by

back-propagation, initiated at

last module where βk =
∂fj

∂xk
. Then

local gradient of the cost function

with respect to any model

parameter, wi, is ∂J
∂wi

=
∑

αj
∂fj

∂wi
.
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YAO - WAPE+NLBC

FIG. 2. Modular graph representation

of the WAPE NLBC model. The no-

menclature is consistent with the nota-

tion in Sec. III, particularly Eqs. �18�,

�20�, �21�, and �27�. Modules with the

superscript “LU” or “CN” implement

the LU decomposition �Ref. 39� and

the Crank-Nicolson scheme, respec-

tively. Module “�” refers to the sum-

mation of the boundary-field values in

Eq. �27�.

Blocks (a)–(d) represent 4 different dimensional spaces; block (a) mainly serves for the initialization of the environmental
parameters [αw, ρw, c(z), n(z)] in the water column and the setup of the tridiagonal finite difference matrices (diaGt,
DiaG), block (b) represents the actual range marching solution for the field in the water column via LU decomposition (res,
ixu). Blocks (c) and (d) represent the corresponding counterparts for the initialization (c) and calculation (d) of the field in
the bottom in accordance with the NLBC
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