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Supervised learning and regularization

• Data: xi ∈ X , yi ∈ Y, i = 1, . . . , n

• Minimize with respect to function f : X → Y:

n
∑

i=1

ℓ(yi, f(xi)) +
λ

2
‖f‖2

Error on data + Regularization

Loss & function space ? Norm ?

• Two theoretical/algorithmic issues:

1. Loss

2. Function space / norm



Usual losses

• Regression: y ∈ R, prediction ŷ = f(x), quadratic cost ℓ(y, f) =
1
2(y − ŷ)2 = 1

2(y − f)2

• Classification : y ∈ {−1, 1} prediction ŷ = sign(f(x))

– loss of the form ℓ(y, f) = ℓ(yf)

– “True” cost: ℓ(yf) = 1yf<0

– Usual convex costs:
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Regularizations

• Main goal: avoid overfitting

• Two main lines of work:

1. Euclidean and Hilbertian norms (i.e., ℓ2-norms)

– Possibility of non linear predictors

– Non parametric supervised learning and kernel methods

– Well developped theory and algorithms (see, e.g., Wahba, 1990;

Schölkopf and Smola, 2001; Shawe-Taylor and Cristianini, 2004)



Regularizations

• Main goal: avoid overfitting

• Two main lines of work:

1. Euclidean and Hilbertian norms (i.e., ℓ2-norms)

– Possibility of non linear predictors

– Non parametric supervised learning and kernel methods

– Well developped theory and algorithms (see, e.g., Wahba, 1990;

Schölkopf and Smola, 2001; Shawe-Taylor and Cristianini, 2004)

2. Sparsity-inducing norms

– Usually restricted to linear predictors on vectors f(x) = w⊤x

– Main example: ℓ1-norm ‖w‖1 =
∑p

i=1 |wi|
– Perform model selection as well as regularization

– Theory and algorithms “in the making”



ℓ2 vs. ℓ1 - Gaussian hare vs. Laplacian tortoise

• First-order methods (Fu, 1998; Beck and Teboulle, 2009)
• Homotopy methods (Markowitz, 1956; Efron et al., 2004)



Lasso - Two main recent theoretical results

1. Support recovery condition (Zhao and Yu, 2006; Wainwright,

2009; Zou, 2006; Yuan and Lin, 2007): the Lasso is sign-consistent if

and only if there are low correlations between relevant and irrelevant

variables.



Lasso - Two main recent theoretical results

1. Support recovery condition (Zhao and Yu, 2006; Wainwright,

2009; Zou, 2006; Yuan and Lin, 2007): the Lasso is sign-consistent if

and only if there are low correlations between relevant and irrelevant

variables.

2. Exponentially many irrelevant variables (Zhao and Yu, 2006;

Wainwright, 2009; Bickel et al., 2009; Lounici, 2008; Meinshausen

and Yu, 2008): under appropriate assumptions, consistency is possible

as long as

log p = O(n)



Going beyond the Lasso

• ℓ1-norm for linear feature selection in high dimensions

– Lasso usually not applicable directly

• Non-linearities

• Dealing with structured set of features

• Sparse learning on matrices



Outline

• Sparse linear estimation with the ℓ1-norm

– Convex optimization and algorithms

– Theoretical results

• Groups of features

– Non-linearity: Multiple kernel learning

• Sparse methods on matrices

– Multi-task learning

– Matrix factorization (low-rank, sparse PCA, dictionary learning)

• Structured sparsity

– Overlapping groups and hierarchies



Why ℓ1-norms lead to sparsity?

• Example 1: quadratic problem in 1D, i.e. min
x∈R

1

2
x2 − xy + λ|x|

• Piecewise quadratic function with a kink at zero

– Derivative at 0+: g+ = λ− y and 0−: g− = −λ− y

– x = 0 is the solution iff g+ > 0 and g− 6 0 (i.e., |y| 6 λ)

– x > 0 is the solution iff g+ 6 0 (i.e., y > λ) ⇒ x∗ = y − λ

– x 6 0 is the solution iff g− 6 0 (i.e., y 6 −λ) ⇒ x∗ = y + λ

• Solution x∗ = sign(y)(|y| − λ)+ = soft thresholding
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2
x2 − xy + λ|x|

• Piecewise quadratic function with a kink at zero

• Solution x∗ = sign(y)(|y| − λ)+ = soft thresholding

x

−λ

x*(y)

λ
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Why ℓ1-norms lead to sparsity?

• Example 2: minimize quadratic function Q(w) subject to ‖w‖1 6 T .

– coupled soft thresholding

• Geometric interpretation

– NB : penalizing is “equivalent” to constraining
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ℓ1-norm regularization (linear setting)

• Data: covariates xi ∈ R
p, responses yi ∈ Y, i = 1, . . . , n

• Minimize with respect to loadings/weights w ∈ R
p:

J(w) =
n
∑

i=1

ℓ(yi, w
⊤xi) + λ‖w‖1

Error on data + Regularization

• Including a constant term b? Penalizing or constraining?

• square loss ⇒ basis pursuit in signal processing (Chen et al., 2001),

Lasso in statistics/machine learning (Tibshirani, 1996)



A review of nonsmooth convex

analysis and optimization

• Analysis: optimality conditions

• Optimization: algorithms

– First-order methods

• Books: Boyd and Vandenberghe (2004), Bonnans et al. (2003),

Bertsekas (1995), Borwein and Lewis (2000)



Optimality conditions for smooth optimization

Zero gradient

• Example: ℓ2-regularization: min
w∈Rp

n
∑

i=1

ℓ(yi, w
⊤xi) +

λ

2
‖w‖22

– Gradient ∇J(w) =
∑n

i=1 ℓ
′(yi, w

⊤xi)xi + λw where ℓ′(yi, w
⊤xi)

is the partial derivative of the loss w.r.t the second variable

– If square loss,
∑n

i=1 ℓ(yi, w
⊤xi) =

1
2‖y −Xw‖22

∗ gradient = −X⊤(y −Xw) + λw

∗ normal equations ⇒ w = (X⊤X + λI)−1X⊤y



Optimality conditions for smooth optimization

Zero gradient

• Example: ℓ2-regularization: min
w∈Rp

n
∑

i=1

ℓ(yi, w
⊤xi) +

λ

2
‖w‖22

– Gradient ∇J(w) =
∑n

i=1 ℓ
′(yi, w

⊤xi)xi + λw where ℓ′(yi, w
⊤xi)

is the partial derivative of the loss w.r.t the second variable

– If square loss,
∑n

i=1 ℓ(yi, w
⊤xi) =

1
2‖y −Xw‖22

∗ gradient = −X⊤(y −Xw) + λw

∗ normal equations ⇒ w = (X⊤X + λI)−1X⊤y

• ℓ1-norm is non differentiable!

– cannot compute the gradient of the absolute value

⇒ Directional derivatives (or subgradient)



Directional derivatives - convex functions on R
p

• Directional derivative in the direction ∆ at w:

∇J(w,∆) = lim
ε→0+

J(w + ε∆)− J(w)

ε

• Always exist when J is convex and continuous

• Main idea: in non smooth situations, may need to look at all

directions ∆ and not simply p independent ones

• Proposition: J is differentiable at w, if and only if ∆ 7→ ∇J(w,∆)

is linear. Then, ∇J(w,∆) = ∇J(w)⊤∆



Optimality conditions for convex functions

• Unconstrained minimization (function defined on R
p):

– Proposition: w is optimal if and only if ∀∆ ∈ R
p, ∇J(w,∆) > 0

– Go up locally in all directions

• Reduces to zero-gradient for smooth problems



Directional derivatives for ℓ1-norm regularization

• Function J(w) =
n
∑

i=1

ℓ(yi, w
⊤xi) + λ‖w‖1 = L(w) + λ‖w‖1

• ℓ1-norm: ‖w+ε∆‖1−‖w‖1=
∑

j, wj 6=0

{|wj + ε∆j| − |wj|}+
∑

j, wj=0

|ε∆j|

• Thus,

∇J(w,∆) = ∇L(w)⊤∆+ λ
∑

j, wj 6=0

sign(wj)∆j + λ
∑

j, wj=0

|∆j|

=
∑

j, wj 6=0

[∇L(w)j + λ sign(wj)]∆j +
∑

j, wj=0

[∇L(w)j∆j + λ|∆j|]

• Separability of optimality conditions



Optimality conditions for ℓ1-norm regularization

• General loss: w optimal if and only if for all j ∈ {1, . . . , p},

sign(wj) 6= 0 ⇒ ∇L(w)j + λ sign(wj) = 0

sign(wj) = 0 ⇒ |∇L(w)j| 6 λ

• Square loss: w optimal if and only if for all j ∈ {1, . . . , p},

sign(wj) 6= 0 ⇒ −X⊤
j (y −Xw) + λ sign(wj) = 0

sign(wj) = 0 ⇒ |X⊤
j (y −Xw)| 6 λ

– For J ⊂ {1, . . . , p}, XJ ∈ R
n×|J| = X(:, J) denotes the columns

of X indexed by J , i.e., variables indexed by J



First order methods for convex optimization on R
p

Smooth optimization

• Gradient descent: wt+1 = wt − αt∇J(wt)

– with line search: search for a decent (not necessarily best) αt

– fixed diminishing step size, e.g., αt = a(t+ b)−1

• Convergence of f(wt) to f∗ = minw∈Rp f(w) (Nesterov, 2003)

– depends on condition number of the optimization problem (i.e.,

correlations within variables)

• Coordinate descent: similar properties



First order methods for convex optimization on R
p

Smooth optimization

• Gradient descent: wt+1 = wt − αt∇J(wt)

– with line search: search for a decent (not necessarily best) αt

– fixed diminishing step size, e.g., αt = a(t+ b)−1

• Convergence of f(wt) to f∗ = minw∈Rp f(w) (Nesterov, 2003)

– depends on condition number of the optimization problem (i.e.,

correlations within variables)

• Coordinate descent: similar properties

– Non-smooth objectives: not always convergent



Counter-example

Coordinate descent for nonsmooth objectives
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Regularized problems - Proximal methods

• Gradient descent as a proximal method (differentiable functions)

– wt+1 = arg min
w∈Rp

L(wt) + (w − wt)
⊤∇L(wt)+

µ

2
‖w − wt‖22

– wt+1 = wt − 1
µ∇L(wt)

• Problems of the form: min
w∈Rp

L(w) + λΩ(w)

– wt+1 = arg min
w∈Rp

L(wt)+(w−wt)
⊤∇L(wt)+λΩ(w)+

µ

2
‖w − wt‖22

– Thresholded gradient descent wt+1 = SoftThres(wt − 1
µ∇L(wt))

• Similar convergence rates than smooth optimization

– Acceleration methods (Nesterov, 2007; Beck and Teboulle, 2009)

– depends on the condition number of the loss



Cheap (and not dirty) algorithms for all losses

• Proximal methods
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• Coordinate descent (Fu, 1998; Friedman et al., 2007)

– convergent here under reasonable assumptions! (Bertsekas, 1995)

– separability of optimality conditions

– equivalent to iterative thresholding



Cheap (and not dirty) algorithms for all losses

• Proximal methods

• Coordinate descent (Fu, 1998; Friedman et al., 2007)

– convergent here under reasonable assumptions! (Bertsekas, 1995)

– separability of optimality conditions

– equivalent to iterative thresholding

• “η-trick” (Rakotomamonjy et al., 2008; Jenatton et al., 2009)

– Notice that
∑p

j=1 |wj| = minη>0
1
2

∑p
j=1

{w2
j

ηj
+ ηj

}

– Alternating minimization with respect to η (closed-form ηj = |wj)

and w (weighted squared ℓ2-norm regularized problem)

– Caveat: lack of continuity around (wi, ηi) = (0, 0): add ε/ηj



Cheap (and not dirty) algorithms for all losses

• Proximal methods

• Coordinate descent (Fu, 1998; Friedman et al., 2007)

– convergent here under reasonable assumptions! (Bertsekas, 1995)

– separability of optimality conditions

– equivalent to iterative thresholding

• “η-trick” (Rakotomamonjy et al., 2008; Jenatton et al., 2009)

– Notice that
∑p

j=1 |wj| = minη>0
1
2

∑p
j=1

{w2
j

ηj
+ ηj

}

– Alternating minimization with respect to η (closed-form ηj = |wj)

and w (weighted squared ℓ2-norm regularized problem)

– Caveat: lack of continuity around (wi, ηi) = (0, 0): add ε/ηi

• Dedicated algorithms that use sparsity (active sets/homotopy)



Special case of square loss

• Quadratic programming formulation: minimize

1

2
‖y−Xw‖2+λ

p
∑

j=1

(w+
j +w−

j ) s.t. w = w+−w−, w+
> 0, w−

> 0



Special case of square loss

• Quadratic programming formulation: minimize

1

2
‖y−Xw‖2+λ

p
∑

j=1

(w+
j +w−

j ) s.t. w = w+−w−, w+
> 0, w−

> 0

– generic toolboxes ⇒ very slow

• Main property: if the sign pattern s ∈ {−1, 0, 1}p of the solution is

known, the solution can be obtained in closed form

– Lasso equivalent to minimizing 1
2‖y−XJwJ‖2 + λs⊤JwJ w.r.t. wJ

where J = {j, sj 6= 0}.
– Closed form solution wJ = (X⊤

J XJ)
−1(X⊤

J y − λsJ)

• Algorithm: “Guess” s and check optimality conditions



Optimality conditions for ℓ1-norm regularization

• General loss: w optimal if and only if for all j ∈ {1, . . . , p},

sign(wj) 6= 0 ⇒ ∇L(w)j + λ sign(wj) = 0

sign(wj) = 0 ⇒ |∇L(w)j| 6 λ

• Square loss: w optimal if and only if for all j ∈ {1, . . . , p},

sign(wj) 6= 0 ⇒ −X⊤
j (y −Xw) + λ sign(wj) = 0

sign(wj) = 0 ⇒ |X⊤
j (y −Xw)| 6 λ

– For J ⊂ {1, . . . , p}, XJ ∈ R
n×|J| = X(:, J) denotes the columns

of X indexed by J , i.e., variables indexed by J



Optimality conditions for the sign vector s (Lasso)

• For s ∈ {−1, 0, 1}p sign vector, J = {j, sj 6= 0} the nonzero pattern

• potential closed form solution: wJ = (X⊤
J XJ)

−1(X⊤
J y − λsJ) and

wJc = 0

• s is optimal if and only if

– active variables: sign(wJ) = sJ
– inactive variables: ‖X⊤

Jc(y −XJwJ)‖∞ 6 λ

• Active set algorithms (Lee et al., 2007; Roth and Fischer, 2008)

– Construct J iteratively by adding variables to the active set

– Only requires to invert small linear systems



Homotopy methods for the square loss (Markowitz,

1956; Osborne et al., 2000; Efron et al., 2004)

• Goal: Get all solutions for all possible values of the regularization

parameter λ

• Same idea as before: if the sign vector is known,

w∗
J(λ) = (X⊤

J XJ)
−1(X⊤

J y − λsJ)

valid, as long as,

– sign condition: sign(w∗
J(λ)) = sJ

– subgradient condition: ‖X⊤
Jc(XJw

∗
J(λ)− y)‖∞ 6 λ

– this defines an interval on λ: the path is thus piecewise affine

• Simply need to find break points and directions



Piecewise linear paths
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Algorithms for ℓ1-norms (square loss):

Gaussian hare vs. Laplacian tortoise

• Coord. descent and proximal: O(pn) per iterations for ℓ1 and ℓ2

• “Exact” algorithms: O(kpn) for ℓ1 vs. O(p2n) for ℓ2



Additional methods - Softwares

• Many contributions in signal processing, optimization, mach. learning

– Extensions to stochastic setting (Bottou and Bousquet, 2008)

• Extensions to other sparsity-inducing norms

– Computing proximal operator

– F. Bach, R. Jenatton, J. Mairal, G. Obozinski. Optimization with

sparsity-inducing penalties. Foundations and Trends in Machine

Learning, 4(1):1-106, 2011.

• Softwares

– Many available codes

– SPAMS (SPArse Modeling Software)

http://www.di.ens.fr/willow/SPAMS/



Empirical comparison: small scale (n = 200, p = 200)
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Empirical comparison: medium scale (n = 2000, p = 10000)
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Empirical comparison: conclusions

• Lasso

– Generic methods very slow

– LARS fastest in low dimension or for high correlation

– Proximal methods competitive

∗ especially larger setting with weak corr. + weak reg.

– Coordinate descent

∗ Dominated by the LARS

∗ Would benefit from an offline computation of the matrix

• Smooth Losses

– LARS not available → CD and proximal methods good candidates



Outline

• Sparse linear estimation with the ℓ1-norm

– Convex optimization and algorithms

– Theoretical results

• Groups of features

– Non-linearity: Multiple kernel learning

• Sparse methods on matrices

– Multi-task learning

– Matrix factorization (low-rank, sparse PCA, dictionary learning)

• Structured sparsity

– Overlapping groups and hierarchies



Theoretical results - Square loss

• Main assumption: data generated from a certain sparse w

• Three main problems:

1. Regular consistency: convergence of estimator ŵ to w, i.e.,

‖ŵ −w‖ tends to zero when n tends to ∞
2. Model selection consistency: convergence of the sparsity pattern

of ŵ to the pattern w

3. Efficiency: convergence of predictions with ŵ to the predictions

with w, i.e., 1
n‖Xŵ −Xw‖22 tends to zero

• Main results:

– Condition for model consistency (support recovery)

– High-dimensional inference



Model selection consistency (Lasso)

• Assume w sparse and denote J = {j,wj 6= 0} the nonzero pattern

• Support recovery condition (Zhao and Yu, 2006; Wainwright, 2009;

Zou, 2006; Yuan and Lin, 2007): the Lasso is sign-consistent if and

only if ‖QJcJQ
−1
JJ sign(wJ)‖∞ 6 1

where Q = limn→+∞
1
n

∑n
i=1 xix

⊤
i ∈ R

p×p and J = Supp(w)



Model selection consistency (Lasso)

• Assume w sparse and denote J = {j,wj 6= 0} the nonzero pattern

• Support recovery condition (Zhao and Yu, 2006; Wainwright, 2009;

Zou, 2006; Yuan and Lin, 2007): the Lasso is sign-consistent if and

only if ‖QJcJQ
−1
JJ sign(wJ)‖∞ 6 1

where Q = limn→+∞
1
n

∑n
i=1 xix

⊤
i ∈ R

p×p and J = Supp(w)

• Condition depends on w and J (may be relaxed)

– may be relaxed by maximizing out sign(w) or J

• Valid in low and high-dimensional settings

• Requires lower-bound on magnitude of nonzero wj



Model selection consistency (Lasso)

• Assume w sparse and denote J = {j,wj 6= 0} the nonzero pattern

• Support recovery condition (Zhao and Yu, 2006; Wainwright, 2009;

Zou, 2006; Yuan and Lin, 2007): the Lasso is sign-consistent if and

only if ‖QJcJQ
−1
JJ sign(wJ)‖∞ 6 1

where Q = limn→+∞
1
n

∑n
i=1 xix

⊤
i ∈ R

p×p and J = Supp(w)

• The Lasso is usually not model-consistent

– Selects more variables than necessary (see, e.g., Lv and Fan, 2009)

– Fixing the Lasso: adaptive Lasso (Zou, 2006), relaxed

Lasso (Meinshausen, 2008), thresholding (Lounici, 2008),

Bolasso (Bach, 2008a), stability selection (Meinshausen and

Bühlmann, 2008), Wasserman and Roeder (2009)



Adaptive Lasso and concave penalization

• Adaptive Lasso (Zou, 2006; Huang et al., 2008)

– Weighted ℓ1-norm: min
w∈Rp

L(w) + λ

p
∑

j=1

|wj|
|ŵj|α

– ŵ estimator obtained from ℓ2 or ℓ1 regularization

• Reformulation in terms of concave penalization

min
w∈Rp

L(w) +

p
∑

j=1

g(|wj|)

– Example: g(|wj|) = |wj|1/2 or log |wj|. Closer to the ℓ0 penalty

– Concave-convex procedure: replace g(|wj|) by affine upper bound

– Better sparsity-inducing properties (Fan and Li, 2001; Zou and Li,

2008; Zhang, 2008b)



Bolasso (Bach, 2008a)

• Property: for a specific choice of regularization parameter λ ≈ √
n:

– all variables in J are always selected with high probability

– all other ones selected with probability in (0, 1)

• Use the bootstrap to simulate several replications

– Intersecting supports of variables

– Final estimation of w on the entire dataset

J
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Bootstrap 4
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Model selection consistency of the Lasso/Bolasso

• probabilities of selection of each variable vs. regularization param. µ
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High-dimensional inference

Going beyond exact support recovery

• Theoretical results usually assume that non-zero wj are large enough,

i.e., |wj| > σ
√

log p
n

• May include too many variables but still predict well

• Oracle inequalities

– Predict as well as the estimator obtained with the knowledge of J

– Assume i.i.d. Gaussian noise with variance σ2

– We have:
1

n
E‖Xŵoracle −Xw‖22 =

σ2|J |
n



High-dimensional inference

Variable selection without computational limits

• Approaches based on penalized criteria (close to BIC)

min
w∈Rp

1
2‖y −Xw‖22 + Cσ2‖w‖0

(

1 + log
p

‖w‖0
)

• Oracle inequality if data generated by w with k non-zeros (Massart,

2003; Bunea et al., 2007):

1

n
‖Xŵ −Xw‖22 6 C

kσ2

n

(

1 + log
p

k

)

• Gaussian noise - No assumptions regarding correlations

• Scaling between dimensions:
k log p

n
small



High-dimensional inference (Lasso)

• Main result: we only need k log p = O(n)

– if w is sufficiently sparse

– and input variables are not too correlated



High-dimensional inference (Lasso)

• Main result: we only need k log p = O(n)

– if w is sufficiently sparse

– and input variables are not too correlated

• Precise conditions on covariance matrix Q = 1
nX

⊤X.

– Mutual incoherence (Lounici, 2008)

– Restricted eigenvalue conditions (Bickel et al., 2009)

– Sparse eigenvalues (Meinshausen and Yu, 2008)

– Null space property (Donoho and Tanner, 2005)

• Links with signal processing and compressed sensing (Candès and

Wakin, 2008)



Mutual incoherence (uniform low correlations)

• Theorem (Lounici, 2008):

– yi = w⊤xi + εi, ε i.i.d. normal with mean zero and variance σ2

– Q = X⊤X/n with unit diagonal and cross-terms less than
1

14k
– if ‖w‖0 6 k, and A2 > 8, then, with λ = Aσ

√
n log p

P

(

‖ŵ −w‖∞ 6 5Aσ

(

log p

n

)1/2)

> 1− p1−A2/8

• Model consistency by thresholding if min
j,wj 6=0

|wj| > Cσ

√

log p

n

• Mutual incoherence condition depends strongly on k

• Improved result by averaging over sparsity patterns (Candès and Plan,

2009)



Restricted eigenvalue conditions

• Theorem (Bickel et al., 2009):

– assume κ(k)2 = min
|J|6k

min
∆, ‖∆Jc‖16‖∆J‖1

∆⊤Q∆

‖∆J‖22
> 0

– assume λ = Aσ
√
n log p and A2 > 8

– then, with probability 1− p1−A2/8, we have

estimation error ‖ŵ −w‖1 6
16A

κ2(k)
σk

√

log p

n

prediction error
1

n
‖Xŵ −Xw‖22 6

16A2

κ2(k)

σ2k

n
log p

• Condition imposes a potentially hidden scaling between (n, p, k)

• Condition always satisfied for Q = I



Checking sufficient conditions

• Most of the conditions are not computable in polynomial time

• Random matrices

– Sample X ∈ R
n×p from the Gaussian ensemble

– Conditions satisfied with high probability for certain (n, p, k)

– Example from Wainwright (2009): θ =
n

2k log p
> 1



Sparse methods

Common extensions

• Removing bias of the estimator

– Keep the active set, and perform unregularized restricted

estimation (Candès and Tao, 2007)

– Better theoretical bounds

– Potential problems of robustness

• Elastic net (Zou and Hastie, 2005)

– Replace λ‖w‖1 by λ‖w‖1 + ε‖w‖22
– Make the optimization strongly convex with unique solution

– Better behavior with heavily correlated variables



Relevance of theoretical results

• Most results only for the square loss

– Extend to other losses (Van De Geer, 2008; Bach, 2009)

• Most results only for ℓ1-regularization

– May be extended to other norms (see, e.g., Huang and Zhang,

2009; Bach, 2008b)

• Condition on correlations

– very restrictive, far from results for BIC penalty

• Non sparse generating vector

– little work on robustness to lack of sparsity

• Estimation of regularization parameter

– No satisfactory solution ⇒ open problem



Alternative sparse methods

Greedy methods

• Forward selection

• Forward-backward selection

• Non-convex method

– Harder to analyze

– Simpler to implement

– Problems of stability

• Positive theoretical results (Zhang, 2009, 2008a)

– Similar sufficient conditions than for the Lasso



Alternative sparse methods

Bayesian methods

• Lasso: minimize
∑n

i=1 (yi − w⊤xi)
2 + λ‖w‖1

– Equivalent to MAP estimation with Gaussian likelihood and

factorized Laplace prior p(w) ∝
∏p

j=1 e
−λ|wj| (Seeger, 2008)

– However, posterior puts zero weight on exact zeros

• Heavy-tailed distributions as a proxy to sparsity

– Student distributions (Caron and Doucet, 2008)

– Generalized hyperbolic priors (Archambeau and Bach, 2008)

– Instance of automatic relevance determination (Neal, 1996)

• Mixtures of “Diracs” and another absolutely continuous distributions,

e.g., “spike and slab” (Ishwaran and Rao, 2005)

• Less theory than frequentist methods



Comparing Lasso and other strategies for linear

regression

• Compared methods to reach the least-square solution

– Ridge regression: min
w∈Rp

1

2
‖y −Xw‖22 +

λ

2
‖w‖22

– Lasso: min
w∈Rp

1

2
‖y −Xw‖22 + λ‖w‖1

– Forward greedy:

∗ Initialization with empty set

∗ Sequentially add the variable that best reduces the square loss

• Each method builds a path of solutions from 0 to ordinary least-

squares solution

• Regularization parameters selected on the test set



Simulation results

• i.i.d. Gaussian design matrix, k = 4, n = 64, p ∈ [2, 256], SNR = 1

• Note stability to non-sparsity and variability

2 4 6 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

log
2
(p)

m
e

a
n

 s
q

u
a

re
 e

rr
o

r

 

 

L1

L2

greedy

oracle

2 4 6 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

log
2
(p)

m
e

a
n

 s
q

u
a

re
 e

rr
o

r

 

 

L1

L2

greedy

Sparse Rotated (non sparse)



Summary

ℓ1-norm regularization

• ℓ1-norm regularization leads to nonsmooth optimization problems

– analysis through directional derivatives or subgradients

– optimization may or may not take advantage of sparsity

• ℓ1-norm regularization allows high-dimensional inference

• Interesting problems for ℓ1-regularization

– Stable variable selection

– Weaker sufficient conditions (for weaker results)

– Estimation of regularization parameter (all bounds depend on the

unknown noise variance σ2)



Extensions

• Sparse methods are not limited to the square loss

– logistic loss: algorithms (Beck and Teboulle, 2009) and theory (Van

De Geer, 2008; Bach, 2009)

• Sparse methods are not limited to supervised learning

– Learning the structure of Gaussian graphical models (Meinshausen

and Bühlmann, 2006; Banerjee et al., 2008)

– Sparsity on matrices (last part of the tutorial)

• Sparse methods are not limited to variable selection in a linear

model

– See next parts of the tutorial



Outline

• Sparse linear estimation with the ℓ1-norm

– Convex optimization and algorithms

– Theoretical results

• Groups of features

– Non-linearity: Multiple kernel learning

• Sparse methods on matrices

– Multi-task learning

– Matrix factorization (low-rank, sparse PCA, dictionary learning)

• Structured sparsity

– Overlapping groups and hierarchies



Penalization with grouped variables

(Yuan and Lin, 2006)

• Assume that {1, . . . , p} is partitioned into m groups G1, . . . , Gm

• Penalization by
∑m

i=1 ‖wGi
‖2, often called ℓ1-ℓ2 norm

• Induces group sparsity

– Some groups entirely set to zero

– no zeros within groups

– Unit ball in R
3 : ‖(w1, w2)‖+ ‖w3‖ ≤ 1

• In this tutorial:

– Groups may have infinite size ⇒ MKL

– Groups may overlap ⇒ structured sparsity



Linear vs. non-linear methods

• All methods in this tutorial are linear in the parameters

• By replacing x by features Φ(x), they can be made non linear in

the data

• Implicit vs. explicit features

– ℓ1-norm: explicit features

– ℓ2-norm: representer theorem allows to consider implicit features if

their dot products can be computed easily (kernel methods)



Kernel methods: regularization by ℓ2-norm

• Data: xi ∈ X , yi ∈ Y, i = 1, . . . , n, with features Φ(x) ∈ F = R
p

– Predictor f(x) = w⊤Φ(x) linear in the features

• Optimization problem: min
w∈Rp

n
∑

i=1

ℓ(yi, w
⊤Φ(xi)) +

λ

2
‖w‖22



Kernel methods: regularization by ℓ2-norm

• Data: xi ∈ X , yi ∈ Y, i = 1, . . . , n, with features Φ(x) ∈ F = R
p

– Predictor f(x) = w⊤Φ(x) linear in the features

• Optimization problem: min
w∈Rp

n
∑

i=1

ℓ(yi, w
⊤Φ(xi)) +

λ

2
‖w‖22

• Representer theorem (Kimeldorf and Wahba, 1971): solution must

be of the form w =
∑n

i=1αiΦ(xi)

– Equivalent to solving: min
α∈Rn

n
∑

i=1

ℓ(yi, (Kα)i) +
λ

2
α⊤Kα

– Kernel matrix Kij = k(xi, xj) = Φ(xi)
⊤Φ(xj)



Kernel methods: regularization by ℓ2-norm

• Running time O(n2κ + n3) where κ complexity of one kernel

evaluation (often much less) - independent of p

• Kernel trick: implicit mapping if κ = o(p) by using only k(xi, xj)

instead of Φ(xi)

• Examples:

– Polynomial kernel: k(x, y) = (1 + x⊤y)d ⇒ F = polynomials

– Gaussian kernel: k(x, y) = e−α‖x−y‖22 ⇒F = smooth functions

– Kernels on structured data (see Shawe-Taylor and Cristianini, 2004)



Kernel methods: regularization by ℓ2-norm

• Running time O(n2κ + n3) where κ complexity of one kernel

evaluation (often much less) - independent of p

• Kernel trick: implicit mapping if κ = o(p) by using only k(xi, xj)

instead of Φ(xi)

• Examples:

– Polynomial kernel: k(x, y) = (1 + x⊤y)d ⇒ F = polynomials

– Gaussian kernel: k(x, y) = e−α‖x−y‖22 ⇒F = smooth functions

– Kernels on structured data (see Shawe-Taylor and Cristianini, 2004)

• + : Implicit non linearities and high-dimensionality

• − : Problems of interpretability



Multiple kernel learning (MKL)

(Lanckriet et al., 2004b; Bach et al., 2004a)

• Multiple feature maps / kernels on x ∈ X :

– p “feature maps” Φj : X 7→ Fj, j = 1, . . . , p.

– Minimization with respect to w1 ∈ F1, . . . , wp ∈ Fp

– Predictor: f(x) = w1
⊤Φ1(x) + · · ·+ wp

⊤Φp(x)

x

Φ1(x)
⊤ w1

ր ... ... ց
−→ Φj(x)

⊤ wj −→
ց ... ... ր

Φp(x)
⊤ wp

w⊤
1 Φ1(x) + · · ·+ w⊤

p Φp(x)

– Generalized additive models (Hastie and Tibshirani, 1990)



General kernel learning

• Proposition (Lanckriet et al, 2004, Bach et al., 2005, Micchelli and

Pontil, 2005):

G(K) = min
w∈F

∑n
i=1 ℓ(yi, w

⊤Φ(xi)) +
λ
2‖w‖22

= max
α∈Rn

−
∑n

i=1 ℓ
∗
i (λαi)− λ

2α
⊤Kα

is a convex function of the kernel matrix K

• Theoretical learning bounds (Lanckriet et al., 2004, Srebro and Ben-

David, 2006)



General kernel learning

• Proposition (Lanckriet et al, 2004, Bach et al., 2005, Micchelli and

Pontil, 2005):

G(K) = min
w∈F

∑n
i=1 ℓ(yi, w

⊤Φ(xi)) +
λ
2‖w‖22

= max
α∈Rn

−
∑n

i=1 ℓ
∗
i (λαi)− λ

2α
⊤Kα

is a convex function of the kernel matrix K

• Theoretical learning bounds (Lanckriet et al., 2004, Srebro and Ben-

David, 2006)

• Natural parameterization K =
∑p

j=1 ηjKj , η > 0,
∑p

j=1 ηj = 1

– Interpretation in terms of group sparsity



Multiple kernel learning (MKL)

(Lanckriet et al., 2004b; Bach et al., 2004a)

• Sparse methods are linear!

• Sparsity with non-linearities

– replace f(x) =
∑p

j=1w
⊤
j xj with x ∈ R

p and wj ∈ R

– by f(x) =
∑p

j=1w
⊤
j Φj(x) with x ∈ X , Φj(x) ∈ Fj an wj ∈ Fj

• Replace the ℓ1-norm
∑p

j=1 |wj| by “block” ℓ1-norm
∑p

j=1 ‖wj‖2

• Remarks

– Hilbert space extension of the group Lasso (Yuan and Lin, 2006)

– Alternative sparsity-inducing norms (Ravikumar et al., 2008)



Regularization for multiple features

x

Φ1(x)
⊤ w1

ր ... ... ց
−→ Φj(x)

⊤ wj −→
ց ... ... ր

Φp(x)
⊤ wp

w⊤
1 Φ1(x) + · · ·+ w⊤

p Φp(x)

• Regularization by
∑p

j=1 ‖wj‖22 is equivalent to using K =
∑p

j=1Kj

– Summing kernels is equivalent to concatenating feature spaces



Regularization for multiple features

x

Φ1(x)
⊤ w1

ր ... ... ց
−→ Φj(x)

⊤ wj −→
ց ... ... ր

Φp(x)
⊤ wp

w⊤
1 Φ1(x) + · · ·+ w⊤

p Φp(x)

• Regularization by
∑p

j=1 ‖wj‖22 is equivalent to using K =
∑p

j=1Kj

• Regularization by
∑p

j=1 ‖wj‖2 imposes sparsity at the group level

• Main questions when regularizing by block ℓ1-norm:

1. Algorithms

2. Analysis of sparsity inducing properties (Ravikumar et al., 2008;

Bach, 2008b)

3. Does it correspond to a specific combination of kernels?



Equivalence with kernel learning (Bach et al., 2004a)

• Block ℓ1-norm problem:

n
∑

i=1

ℓ(yi, w
⊤
1 Φ1(xi) + · · ·+ w⊤

p Φp(xi)) +
λ

2
(‖w1‖2 + · · ·+ ‖wp‖2)2

• Proposition: Block ℓ1-norm regularization is equivalent to

minimizing with respect to η the optimal value G(
∑p

j=1 ηjKj)

• (sparse) weights η obtained from optimality conditions

• dual parameters α optimal for K =
∑p

j=1 ηjKj,

• Single optimization problem for learning both η and α



Proof of equivalence

min
w1,...,wp

n
∑

i=1

ℓ
(

yi,

p
∑

j=1

w⊤
j Φj(xi)

)

+ λ
(

p
∑

j=1

‖wj‖2
)2

= min
w1,...,wp

min∑
j ηj=1

n
∑

i=1

ℓ
(

yi,

p
∑

j=1

w⊤
j Φj(xi)

)

+ λ

p
∑

j=1

‖wj‖22/ηj

= min∑
j ηj=1

min
w̃1,...,w̃p

n
∑

i=1

ℓ
(

yi,

p
∑

j=1

η
1/2
j w̃⊤

j Φj(xi)
)

+ λ

p
∑

j=1

‖w̃j‖22 with w̃j = wjη
−1/2
j

= min∑
j ηj=1

min
w̃

n
∑

i=1

ℓ
(

yi, w̃
⊤Ψη(xi)

)

+ λ‖w̃‖22 with Ψη(x) = (η
1/2
1 Φ1(x), . . . , η

1/2
p Φp(x))

• We have: Ψη(x)
⊤Ψη(x

′) =
∑p

j=1 ηjkj(x, x
′) with

∑p
j=1 ηj = 1 (and η > 0)



Algorithms for the group Lasso / MKL

• Group Lasso

– Block coordinate descent (Yuan and Lin, 2006)

– Active set method (Roth and Fischer, 2008; Obozinski et al., 2009)

– Proximal methods (Liu et al., 2009)

• MKL

– Dual ascent, e.g., sequential minimal optimization (Bach et al.,

2004a)

– η-trick + cutting-planes (Sonnenburg et al., 2006)

– η-trick + projected gradient descent (Rakotomamonjy et al., 2008)

– Active set (Bach, 2008c)



Applications of multiple kernel learning

• Selection of hyperparameters for kernel methods

• Fusion from heterogeneous data sources (Lanckriet et al., 2004a)

• Two strategies for kernel combinations:

– Uniform combination ⇔ ℓ2-norm

– Sparse combination ⇔ ℓ1-norm

– MKL always leads to more interpretable models

– MKL does not always lead to better predictive performance

∗ In particular, with few well-designed kernels

∗ Be careful with normalization of kernels (Bach et al., 2004b)



Caltech101 database (Fei-Fei et al., 2006)



Kernel combination for Caltech101 (Varma and Ray, 2007)

Classification accuracies

1- NN SVM (1 vs. 1) SVM (1 vs. all)

Shape GB1 39.67 ± 1.02 57.33 ± 0.94 62.98 ± 0.70

Shape GB2 45.23 ± 0.96 59.30 ± 1.00 61.53 ± 0.57

Self Similarity 40.09 ± 0.98 55.10 ± 1.05 60.83 ± 0.84

PHOG 180 32.01 ± 0.89 48.83 ± 0.78 49.93 ± 0.52

PHOG 360 31.17 ± 0.98 50.63 ± 0.88 52.44 ± 0.85

PHOWColour 32.79 ± 0.92 40.84 ± 0.78 43.44 ± 1.46

PHOWGray 42.08 ± 0.81 52.83 ± 1.00 57.00 ± 0.30

MKL Block ℓ1 77.72 ± 0.94 83.78 ± 0.39

(Varma and Ray, 2007) 81.54 ± 1.08 89.56 ± 0.59



Applications of multiple kernel learning

• Selection of hyperparameters for kernel methods

• Fusion from heterogeneous data sources (Lanckriet et al., 2004a)

• Two strategies for kernel combinations:

– Uniform combination ⇔ ℓ2-norm

– Sparse combination ⇔ ℓ1-norm

– MKL always leads to more interpretable models

– MKL does not always lead to better predictive performance

∗ In particular, with few well-designed kernels

∗ Be careful with normalization of kernels (Bach et al., 2004b)



Applications of multiple kernel learning

• Selection of hyperparameters for kernel methods

• Fusion from heterogeneous data sources (Lanckriet et al., 2004a)

• Two strategies for kernel combinations:

– Uniform combination ⇔ ℓ2-norm

– Sparse combination ⇔ ℓ1-norm

– MKL always leads to more interpretable models

– MKL does not always lead to better predictive performance

∗ In particular, with few well-designed kernels

∗ Be careful with normalization of kernels (Bach et al., 2004b)

• Sparse methods: new possibilities and new features



Non-linear variable selection

• Given x = (x1, . . . , xq) ∈ R
q, find function f(x1, . . . , xq) which

depends only on a few variables

• Sparse generalized additive models (e.g., MKL):

– restricted to f(x1, . . . , xq) = f1(x1) + · · ·+ fq(xq)

• Cosso (Lin and Zhang, 2006):

– restricted to f(x1, . . . , xq) =
∑

J⊂{1,...,q}, |J|62

fJ(xJ)



Non-linear variable selection

• Given x = (x1, . . . , xq) ∈ R
q, find function f(x1, . . . , xq) which

depends only on a few variables

• Sparse generalized additive models (e.g., MKL):

– restricted to f(x1, . . . , xq) = f1(x1) + · · ·+ fq(xq)

• Cosso (Lin and Zhang, 2006):

– restricted to f(x1, . . . , xq) =
∑

J⊂{1,...,q}, |J|62

fJ(xJ)

• Universally consistent non-linear selection requires all 2q subsets

f(x1, . . . , xq) =
∑

J⊂{1,...,q}

fJ(xJ)



Restricting the set of active kernels (Bach, 2008c)

• V is endowed with a directed acyclic graph (DAG) structure:

select a kernel only after all of its ancestors have been selected

• Gaussian kernels: V = power set of {1, . . . , q} with inclusion DAG

– Select a subset only after all its subsets have been selected

23 341413 24

123 234124 134

1234

12

1 2 3 4



DAG-adapted norm (Zhao et al., 2009; Bach, 2008c)

• Graph-based structured regularization

– D(v) is the set of descendants of v ∈ V :

∑

v∈V

‖wD(v)‖2 =
∑

v∈V





∑

t∈D(v)

‖wt‖22





1/2

• Main property: If v is selected, so are all its ancestors

• Hierarchical kernel learning (Bach, 2008c) :

– polynomial-time algorithm for this norm

– necessary/sufficient conditions for consistent kernel selection

– Scaling between p, q, n for consistency

– Applications to variable selection or other kernels



Outline

• Sparse linear estimation with the ℓ1-norm

– Convex optimization and algorithms

– Theoretical results

• Groups of features

– Non-linearity: Multiple kernel learning

• Sparse methods on matrices

– Multi-task learning

– Matrix factorization (low-rank, sparse PCA, dictionary learning)

• Structured sparsity

– Overlapping groups and hierarchies
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