
Sparse methods in machine learning - II
Matrix Sparsity - Structured Sparsity

Francis Bach - Guillaume Obozinski

Sierra project team - INRIA - ENS - Paris

Mascot-Num, March 2012

Sparse methods in machine learning 1/69



Outline

1 Matrix Sparsity
Learning on matrices
Forms of sparsity for matrices
Multivariate learning and row sparsity
Sparse spectrum
Sparse Principal Component Analysis
Dictionary learning, image denoising and inpainting

2 Structured sparsity
Overview
Sparsity patterns stable by union
Sparse Structured PCA
Hierarchical Dictionary Learning

3 Conclusion

Sparse methods in machine learning 2/69









Learning on matrices - Multi-task learning

k prediction tasks on same covariates x ∈ R
p

Each model parameterized by: wk ∈ R
p, 1 ≤ k ≤ K
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Many applications

Multi-category classification (one task per class) (Amit et al., 2007)

Share parameters between various tasks

similar to fixed effect/random effect models (Raudenbush and Bryk,
2002)
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Learning on matrices - Image denoising

Simultaneously denoise all patches of a given image

Example from Mairal et al. (2009b)
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Two types of sparsity for matrices M ∈ R
n×p

I - Directly on the elements of M

Many zero elements: Mij = 0

M

Many zero rows (or columns):
(Mi1, . . . ,Mip) = 0

M
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Two types of sparsity for matrices M ∈ R
n×p

II - Through a factorization of M = UV
⊤

M = UV⊤, U ∈ R
n×m and V ∈ R

n×m

Low rank: m small

=

T

U

V

M

Sparse decomposition: U sparse

U= VM
T

Same as dictionary learning with notations M = X ,V = D and
A = U⊤.
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Applications for simultaneous selection

Multi-class image classification (Quattoni et al., 2008)
→ algorithms for the regularization by a sum of ℓ∞-norm (ℓ1/ℓ∞).
→ increase in performance

Multi-class tumor classification based on gene expression
data (Obozinski et al., 2009)
→ smaller gene signatures

Source localization in M/EEG inverse problems from several
experiments (Gramfort, 2010)
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Rank constraints and sparsity of the spectrum

Rank

Given a matrix M ∈ R
n×p

Singular value decomposition (SVD): M = U Diag(s)V⊤

where U,V orthogonal, s ∈ R
m
+ are singular values

Rank(M) = ‖s‖0

Rank of M is the minimum size m of all factorizations of M into
M = UV⊤, U ∈ R

n×m and V ∈ R
p×m
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Rank(M) = ‖s‖0

Rank of M is the minimum size m of all factorizations of M into
M = UV⊤, U ∈ R

n×m and V ∈ R
p×m

Rank constrained Learning

min
W∈Rp×k

L(W ) s.t. rank(W ) ≤ m

Examples:

Collaborative filtering

Multi-task learning with task parameters assumed in a low
dimensional subspace (Argyriou et al., 2009)
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Low-rank via factorization

Reduced-rank multivariate regression

min
W
‖Y − XW ‖2F s.t. rank(W ) ≤ k

Well studied (Anderson, 1951; Izenman, 1975; Reinsel and Velu,
1998)

Is solved directly using the SVD (by OLS + SVD + projection)

General factorization

min
U∈Rp×m,V∈Rk×m

L(UV⊤)

Still non-convex but convex w.r.t. U and V separately

Optimization by alternating procedures
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Trace norm relaxation

With SVD W = UDiag(s)V⊤, rank(W ) = ‖s‖0
Relax
−→ ‖s‖1.

M 7→ ‖s‖1 is actually a unitary invariant norm: the trace norm,
nuclear norm or unitary norm

Write it M 7→ ‖M‖tr

Dual norm to the spectral norm ‖M‖2 = ‖s‖∞

Trace norm regularization

min
W∈Rp×k

L(W ) + λ‖W ‖tr
Convex problem

Algorithms:

Proximal methods
Iterated Reweighted Least-Square (Argyriou et al., 2009)
Common bottleneck: require iterative SVD

Sparse methods in machine learning 16/69



Trace norm and collaborative filtering

min
M∈Rp×n

∑

(i ,j)∈S

‖Mij −M0
ij‖

2
2 + λ‖M‖tr

semi-definite program (Fazel et al., 2001)

see also max-margin approaches to CF (Srebro et al., 2005)

Statistical results:

High-dimensional inference for noisy matrix completion (Srebro
et al., 2005; Candès and Plan, 2009)
May recover entire matrix from slightly more entries than the
minimum of the two dimensions
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Two different views of PCA
Given data matrix X = (x⊤1 , . . . , x⊤n )⊤ ∈ R

n×p,
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p maximizing

variance:

maxv∈Rp v⊤X⊤X v

s.t. ‖v‖2 ≤ 1

→ deflate and iterate to obtain
more components.
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For regular PCA, the two views are equivalent!
Not true if constraints on u, v change

Sparse methods in machine learning 19/69



Sparse PCA - Analysis view

Add sparsity constraint:

max
‖v‖2=1, ‖v‖06k

v⊤X⊤X v
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Sparse PCA - Analysis view

Add sparsity constraint:

max
‖v‖2=1, ‖v‖06k

v⊤X⊤X v

Convex relaxation DSPCA (d’Aspremont et al., 2007)

relaxed into max
‖v‖2=1, ‖v‖16k1/2

v⊤X⊤X v

then relaxed into max
M<0, tr(M)=1, 1⊤|M|16k

tr(X⊤XM), using M = vv⊤.
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v⊤X⊤X v

Convex relaxation DSPCA (d’Aspremont et al., 2007)

relaxed into max
‖v‖2=1, ‖v‖16k1/2

v⊤X⊤X v

then relaxed into max
M<0, tr(M)=1, 1⊤|M|16k

tr(X⊤XM), using M = vv⊤.

Requires deflation for multiple components (Mackey, 2009)

More refined convex relaxation (d’Aspremont et al., 2008)

Analysis of non-convex formulation (Moghaddam et al., 2006)
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Sparse PCA - Synthesis view
Find V = [v1, . . . , vm] ∈ R

p×n sparse and U = [u1, . . . , um] ∈ R
n×n s.t.

n∑

i=1

∥∥∥∥xi −
m∑

j=1

uijvj

∥∥∥∥
2

2

is small ⇔ ‖X − UV⊤‖2F , is small

Sparse matrix factorization (Witten et al., 2009; Bach et al., 2008)

Penalize columns vi of V by the ℓ1-norm for sparsity

Penalize columns ui of U by the ℓ2-norm to avoid trivial solutions

min
U,V
‖X − UV⊤‖2F +

λ

2

m∑

i=1

{
‖ui‖

2
2 + ‖vi‖

2
1

}

min
U,V
‖X − UV⊤‖2F + λ

∑

i

‖ui‖2‖vi‖1

min
U,V
‖X − UV⊤‖2F + λ

∑

i

‖vi‖1 s.t. ‖ui‖2 ≤ 1

yield the same solutions for ujv
⊤
j (Bach et al., 2008).
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Efficient algorithms for sparse matrix factorization
Focus on previous formulation:

min
U,V
‖X − UV⊤‖2F + λ

∑

i

‖vj‖1 s.t. ‖uj‖2 ≤ 1

Problem is convex in U and V separately, but not jointly.
→ Alternating scheme: optimize U and V in turn.

Even better: use simple column updates (Lee et al., 2007; Witten

et al., 2009):

With X̃ = X −
∑

j ′ 6=j

ujv
⊤
j , we have

either uj ←
X̃ vj

‖X̃ vj‖
or vj ← argminv ‖X

⊤uj − v‖22 + λ‖v‖1

requires no matrix inversion
+ can take advantage of efficient algorithms for Lasso
can use warm start + active sets
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Sparse PCA - Synthesis view II

“Sparse projector” (Zou et al., 2006)

Find Ṽ = [ṽ1, . . . , ṽm] ∈ R
p×n and V = [v1, . . . , vm] ∈ R

p×n such that

min
Ṽ ,V

n∑

i=1

‖xi − Ṽ V⊤xi‖
2
2 + λ1‖V ‖1 + λ2‖V ‖

2
F

such that Ṽ⊤Ṽ = Ip

The data should be reconstructed from sparse projections

Non-convex formulation → alternating minimization
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Dictionary Learning

min
A∈Rk×n

D∈Rp×k

n∑

i=1

(
‖xi −Dαi‖

2
2 + λ‖αi‖1

)
s.t. ∀j , ‖dj‖2 ≤ 1.

As before not jointly convex but convex in each dj and αj

Alternating scheme becomes slow for large signal databases ...

[→ ] use Stochastic Optimization / Online learning (Mairal et al.,
2009a)

can handle potentially infinite datasets

can adapt to dynamic training sets
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Inpainting a 12-Mpixel photograph

Sparse methods in machine learning 27/69



Inpainting a 12-Mpixel photograph

Sparse methods in machine learning 28/69



Inpainting a 12-Mpixel photograph

Sparse methods in machine learning 29/69
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Sparsity with Structure

Notion emerged very recently through the work of several authors:
Yuan and Lin (2006), Zhao et al. (2009), Baraniuk et al. (2008), Bach (2008), Jacob

et al. (2009), Jenatton et al. (2009), Jenatton et al. (2010b), He and Carin (2009),

Huang et al. (2009).

The support is sparse but we have prior information about its
structure.

The variables should be selected in groups.

The variables lie in a hierarchy.

The variables lie on a graph or network and the support should be
localized or densely connected on the graph.

The variables are pixels of an image and form rectangles or convex
shapes.
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Biological markers for cancer

Metastasis prognosis: Predict if a tumor will
produce metastases.

Gene expression in tumor Metastasis?

✓
...

...

✕

?

Can we predict metastasis and identify few predictive genes?
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Biological pathways as relevant groups of genes

Predictive genes are naturally grouped in biological pathways

Correspond to genes participating in same biological mechanisms

Contain often very correlated genes

The pathways form overlapping groups

Ultimately relevant to the biologist

⇒ Instead of selecting genes individually, select entire pathways.

The support is a union of overlapping groups.
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A new “overlap” norm

Equivalent reformulation




min
w ,v

L(w) + λ
∑

g∈G

‖vg‖2

w =
∑

g∈G vg

supp (vg ) ⊆ g .

= min
w

L(w) + λΩoverlap(w)

with

Ωoverlap(w)
∆
=





min
v

∑

g∈G

‖vg‖2

w =
∑

g∈G vg

supp (vg ) ⊆ g .

(∗)
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Overlap and group unity balls

Balls for ΩG
group(·) (middle) and ΩG

overlap(·) (right) for the groups

G = {{1, 2}, {2, 3}} where w2 is represented as the vertical coordinate. Left:

group-lasso (G = {{1, 2}, {3}}), for comparison.
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Results

Breast cancer data

Gene expression data for 8, 141 genes in 295 breast cancer tumors.

Canonical pathways from MSigDB containing 639 groups of genes,
637 of which involve genes from our study.

Method ℓ1 ΩG
overlap(.)

Misclassification error 0.38± 0.04 0.36± 0.03
Number of pathways involved 148, 58, 183 6, 5, 78
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Structured matrix factorizations - Many instances

M = UV⊤, U ∈ R
n×m and V ∈ R

p×m

Structure on U and/or V

Low-rank: U and V have few columns
Dictionary learning / sparse PCA: U or V has many zeros
Clustering (k-means): U ∈ {0, 1}n×m, U1 = 1
Pointwise positivity: non negative matrix factorization (NMF)
Specific patterns of zeros
etc.

Many applications

e.g., source separation (Févotte et al., 2009), exploratory data
analysis
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From SPCA to SSPCA

Sparse PCA:

min
A∈Rk×n

D∈Rp×k

n∑

i=1

‖xi −Dαi‖
2
2 + λ

k∑

j=1

‖dj‖1 s.t. ∀j , ‖αj‖2 ≤ 1.

Sparse structured PCA

min
A∈Rk×n

D∈Rp×k

n∑

i=1

‖xi −Dαi‖
2
2 + λ

k∑

j=1

Ω(dj) s.t. ∀j , ‖αj‖2 ≤ 1.

No orthogonality

Not jointly convex but convex in each dj and αj

⇒ efficient block-coordinate descent algorithms
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Faces

Faces

A basis to decompose faces?

Eigenfaces

Find parts?

Localized components

NMF (Lee and Seung, 1999)
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Faces

Faces NMF
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Sparse Structured PCA (Jenatton, Obozinski and Bach (2009))

Learning sparse and structured dictionary elements:

min
A∈Rk×n

D∈Rp×k

n∑

i=1

‖xi −Dαi‖
2
2 + λ

p∑

j=1

Ω(dj) s.t. ∀i , ‖αi‖2 ≤ 1

Structure of the dictionary elements determined by the choice of G
(and thus Ω)

Efficient learning procedures through variational formulation.

Reweighted ℓ2:
∑

g∈G

‖yg‖2 = min
ηg>0,g∈G

1

2

∑

g∈G

{
‖yg‖

2
2

ηg
+ ηg

}
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Faces

AR Face database

100 individuals (50 W/50 M)

For each

14 non-occluded
12 occluded
lateral illuminations
reduced resolution to 38× 27
pixels
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Decomposition of faces

SPCA SSPCA
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Decomposition of faces II

SPCA SSPCA
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k-NN classification based on decompositions
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Hierarchical Topic Models for text corpora

Flat Topic Model

Each document xj is modeled through word counts:
xij = nb of occurrences of word i in document j , x⊤j 1 = nj ,
θ=topic proportions, D=topic word frequencies

Model xj as. xj ∼M(Dθ, nj)

Low-rank matrix factorization of word-document matrix

Multinomial PCA (Buntine and Perttu, 2003)

Bayesian approach: Latent Dirichlet Allocation (Blei et al., 2003)

Hierarchical Model: Organise the topics in a tree ?

Previous approaches: non-parametric Bayesian methods
(Hierarchical Chinese Restaurant Process and nested Dirichlet
Process): Blei et al. (2004)

Can we obtain a similar model with structured matrix
factorization?
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Hierarchical Norm

(Jenatton, Mairal, Obozinski and Bach, 2010)

Structure on codes α (not on dictionary D)

Hierarchical penalization: Ω(α) =
∑

g∈G ‖αg‖2 where groups g in
G are equal to set of descendants of some nodes in a tree

Variable selected after its ancestors (Zhao et al., 2009; Bach, 2008)
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Hierarchical Dictionary Learning

Efficient Optimization

min
A∈Rk×n

D∈Rp×k

n∑

i=1

‖xi −Dαi‖
2
2 + λΩ(αi ) s.t. ∀j , ‖dj‖2 ≤ 1.

Proximal methods

Requires solving minα∈Rp
1
2‖y −α‖22 + λΩ(α)

Can we do this for tree-structured norms?
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Tree-structured groups

Proposition (Jenatton et al., 2010a)

If G is a tree-structured set of groups, i.e.,

g ∩ g ′ 6= ∅ ⇒ g ⊂ g ′ or g ′ ⊂ g ,

If the groups are sorted from the leaves to the root,

If Πg is

the proximal operator wg 7→ Proxµ‖·‖q
(wg ) on the subspace

corresponding to group g and
the identity on the orthogonal

Then the proximal operator for Ω is the composition of all operators
from the leaves to the root.

ProxµΩ = Πgm ◦ . . . ◦ Πg1 . (1)

→ Tree-structured regularization : Efficient linear time algorithm
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Tree of Topics

NIPS abstracts

1714
documents

8274 words
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Classification based on topics

Comparison on predicting newsgroup article subjects

20 newsgroup articles (1425 documents, 13312 words)
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Hierarchical dictionary for image patches
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Summary

Sparse linear estimation with ℓ1-regularization

Convex optimization and algorithms

Theoretical results

Group sparsity

Block norm

Multiple Kernel Learning

Matrix Sparsity

Row sparsity for Multivariate Learning

Low rank, SPCA and Dictionary Learning

Structured Sparsity

Overlapping groups and supports stable by union or intersection

SSPCA and Hierarchical Dictionary Learning
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Conclusions

Sparse methods are not limited to regression

High-dimension

Sparse methods performs well with very many predictors:

Can algorithms tackle log(p) = o(n) for n > 100?

Performance

Inducing sparsity does not always improve predictive performance

Sparsity is a prior

“Problems are sparse if you look at them the right way”

Capture structure

Structured sparsity enhances interpretability

Norm design: make the right norm for your problem
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