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Context: Global sensitivity analysis

• Input parameters: µ = (µ1, . . . , µp) independent random
variables of known distribution.

• Quantity of interest: Y = f (µ).

• For i = 1, . . . , p, we consider the i th Sobol index:

Si =
Var (E(Y |µi))

VarY

• This index quantifies, on a scale from 0 to 1, the fraction of
variance in Y explained by uncertainty on µi .



Context: Model with uncertain parameters

• For us:

Y = f (µ) = f (u(µ)),

where u(µ) satisfies a µ-parametrized PDE
(boundary/boundary-initial value problem).

• Example:

Parameters:
µ = (ν, φ, b0, b1, u0)

poorly

known

State variable u:



∂u
∂t

+ u ∂u
∂x

− ν ∂
2u

∂x2
= φ

u(t = 0, ·) = u0

u(·, x = 0) = b0

u(·, x = 1) = b1

Model output:
f (µ) = 1

T

∫
T

0

∫
1

0
u(t, x) dx dt

computer code



Context: Monte-Carlo estimation

• In general, Si can not be analytically computed.

• It has to be estimated, using a sample of outputs.

• Monte-Carlo: {µk} and {µ′k}: are two N-sized samples of µ’s
distribution;
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with yk = f (µk), y ′
k = f (µ′k

1 , µ′k
2 , . . . , µ′k

i−1, µk
i , µ′k

i+1, . . . , µ′k
p )

• This requires 2N code calls → the use of a metamodel

(surrogate model, response surface, emulator...) is justified.

• We aim at quantifying the total estimation error, caused by:
• the Monte-Carlo estimation;
• the replacement of the original model by the metamodel.
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Monte-Carlo error
"Standard" approach

• Ŝi = Ŝi (E) where E =
(
{µk}, {µ′k}

)
are iid. random samples

of µ’s distribution.

• To quantify the error between Ŝi and Si , we compute Ŝi(E)
for several independent samples E(1), . . . , E(R).

• We hence get a sample of replications R = {Ŝ
(1)
i , . . . , Ŝ

(R)
i }

of Ŝi .

Si

xx x xxxx x xx x[ ]

quantiles

x: Ŝ
(1)
i , . . . , Ŝ

(R)
i

• We deduce an (approximate) confidence interval of chosen
level.



Monte-Carlo error
Bootstrap approach

• Problem: the R replications of Ŝi require 2N×R evaluations
of f .

• In the bootstrap approach:
• we draw a couple of samples:

E =
(
{µk}k=1,...,N , {µ′k}k=1,...,N

)

• for r = 1, . . . , R , we compute the r th replication Ŝ
(r)
i on the

bootstrap resample couple:

E(r) =
(
{µk}k∈Lr

, {µ′k}k∈Lr

)

where Lr is a list list sampled with replacement from
{1, . . . , N};

• The replication set is then used as before.

• These R replications can be computed using the 2N

evaluations of f on the points of E .



Monte-Carlo error
Asymptotic approach

• We have a central limit theorem:

√
N(Ŝi − Si)

L→
N→∞

N
(
0, σ2

S

)
,

where

σ2
S =

Var ((Y − E(Y )) [(Y ′ − E(Y )) − Si(Y − E(Y ))])

(VarY )2
,

for: Y ′ = f (µ′
1, µ′

2, . . . , µ′
i−1, µi , µ′

i+1, . . . , µ′
p), (µ, µ′) iid.

µ-distributed variables.

• The asymptotic variance σ2
S can be “naturally” estimated,

which leads to an asymptotic confidence interval:
]
Ŝi ∓ σ̂S√

N

[



Metamodel choice

• Non intrusive metamodels: we have at hand an
input-output sample {(µ1, f (µ1)), . . . , (µn, f (µn))}

• Kriging/RKHS interpolation, Non-intrusive polynomial chaos
decomposition.

• Intrusive metamodels: we work on the equations satisfied
by the state variable(s).

• Polynomial chaos decomposition, Reduced basis metamodels.
• Con: we have to know and be able to analyze this equation.
• Pros:

• More efficiency is expected.

• We can expect to have a certified error bound between

metamodel output and original output.

• We now focus on reduced basis methods.



Reduced basis introduction
Classical finite element resolution

• Let our unknown u : [0; 1] → R be such that:

{
−µ1u′′ + µ2u = 1
u(0) = u(1) = 0

ie.

{
µ1

∫ 1
0 u′v ′ + µ2

∫ 1
0 uv =

∫ 1
0 v ∀v (∗)

u(0) = u(1) = 0

• Numerical resolution:

• we look for u as a linear combination of N basis functions:
u =

∑N −1

i=1 uiφi satisfying (∗) for v = φ1, . . . , φN −1.
• We obtain a linear system whose unknowns are the ui ’s.

x

φi (x)

1

x1 xi xN = 1x0 = 0



Reduced basis metamodel: Principle
Classical code: u is searched
in a large dimension space, not

specifically tailored for the
problem.

u(µ) =
N −1∑

i=1

ui(µ)φi

unknowns

Metamodel: ũ is searched
in a smaller dimension space,
adapted to the problem.

ũ(µ) =
n∑

i=1

ũi(µ)ζi

unknowns
model-
dependent;
to find

Typically, for a 1D problem: N ≃ 100, n ≃ 10.



Reduced basis: Offline and online phases

• Offline phase:
• Choose a reduced basis {ζ1, . . . , ζn}.
• Preassemble the parameter-independent parts of the equation.

• Online phase:
• Assemble and solve the n × n linear system.



Reduced basis: Generalizations

• More generally, the reduced basis method can be applied to
PDEs under variational form:

a(u(µ), v ;µ) = b(v) ∀v ∈ X

where X is a functional space, b is a linear form, and a(·, ·;µ)
is a bilinear form satisfying:

a(w , v ;µ) =
Q∑

q=1

Θq(µ)aq(w , v) (∗)

where Θq are functions, and aq bilinear forms.

• It can also be generalized (under some hypotheses, and at a
certain cost), to time-dependent problems, nonlinear problems,
and those who can not exactly be cast under form (∗).



Reduced basis choice
Proper orthogonal decomposition (POD)

• We are looking for an orthonormal basis ζ1, . . . , ζn which
minimizes: ∫

µ
||u(µ) − Πζ1,...,ζn

u(µ)||2 dµ

where Πζ1,...,ζn
is an orthogonal projector on Vect{ζ1, . . . , ζn}.

• In practice, the integral is replaced by a discrete sum:

∑

µ∈Ξ

||u(µ) − Πζ1,...,ζn
u(µ)||2

where Ξ is a finite sample of µ’s distribution.

• We get a constrained minimization problem, which can be
solved by computing u(µ) for all µ ∈ Ξ and the resolution of
an eigenvalue problem of size #Ξ.



Error bound

• Under coercivity hypotheses, we can get an upper bound of
the error between u(µ) and ũ(µ).

• This bound is explicitly computable with an offline/online
efficient procedure.

• We can deduce a bound ǫ(µ) on the output error:

∣∣∣f (µ) − f̃ (µ)
∣∣∣ ≤ ǫ(µ) ∀µ



Back to Sobol indices’ estimation
• We wish to take into account:

• sampling error
• and metamodel error

• The estimator is a function of sampled model outputs:

Ŝi = Ψ
({yk}k=1,...,N , {y ′

k}k=1,...,N

)

• We have, for all k: yk ∈ [ỹk − ǫk ; ỹk + ǫk ] where
ỹk = f̃ (µk), ǫk = ǫ(µk); and so with ′s.

• For:

Ŝm
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)

We have:
Ŝm

i ≤ Ŝi ≤ ŜM
i



Back to Sobol indices’ estimation

• We have:
Ŝm

i ≤ Ŝi ≤ ŜM
i

bounds that are functions of metamodel

output and metamodel output bound

• Bootstrap on Ŝm
i and ŜM

i
→ combined confidence intervals taking into account:

• sampling error
• and metamodel error



Optimal parameters choice
Context

We have two simulation parameters:

• Reduced basis size: n ∈ N
∗

Increase n decreases metamodel error and increases
computation time.

• Sample size: N ∈ N
∗

Increase N decreases sampling error and increases comp. time.

→ We look for an “optimal” combination of n and N.



Optimal parameters choice
Errors and computation time model

• Computation time is proportional to:

• N (we do 2N metamodel output evaluations)
• and n3 (metamodel cost is dominated by a n × n linear system

solve)

• We suppose that combined confidence interval width is the
sum of:

• a term sα√
N

, where sα > 0;

• a term C
an , where C > 0 and a > 1.



Optimal parameters choice
Errors and computation time model

• The optimal n∗ and N∗ are given by the argmin of N × n3,
constrained by:

sα√
N

+
C

an
= P

where P > 0 is the desired width for the combined confidence
interval.

• In practice:
• we estimate sα, C and a by regressing combined CI widths for

some values of n and N ;
• we solve for n∗ and N∗.



Numerical results

• Benchmark PDE: viscous, time-dependent, 1D Burgers
equation.

• Parameters: viscosity, Fourier coefficients of boundary and
initial values.

• Confidence interval for a Sobol index, for different reduced
bases sizes and fixed sample sizes:



Reduction in computation times

• Comparison with classical code-based estimation:

factor 5 to 6 in computation time, with equal certified
precision.

• Comparison with a non-intrusive metamodelling

approach:

more precise result, obtained in shorter time.

• We took full advantage from:

• model properties

• theoretical work required to design the metamodel code and
the error bound



Conclusion

• Uncertainty quantification and sensitivity analysis require a
large number of code calls.

• Using a metamodel can lessen the required amount of
computation, at the expense of some approximation.

• We have an approach to precisely quantify this approximation,
in order to:

• guarantee the obtained numerical estimation
• choose in an optimal way the estimation parameters

• Perspectives:

• apply the methodology on different models;
• improve reduced basis choice by taking the temporal structure

and/or the quantity of interest.


