Reduced basis metamodels for sensitivity analysis

Alexandre Janon, Maëlle Nodet, Clémentine Prieur Université Grenoble 1 / Laboratoire Jean Kuntzmann / INRIA

Journées du GDR MASCOT-NUM, 21 mars 2012

Context: Global sensitivity analysis

- Input parameters: $\mu=\left(\mu_{1}, \ldots, \mu_{p}\right)$ independent random variables of known distribution.
- Quantity of interest: $Y=f(\mu)$.
- For $i=1, \ldots, p$, we consider the $i^{\text {th }}$ Sobol index:

$$
S_{i}=\frac{\operatorname{Var}\left(\mathbf{E}\left(Y \mid \mu_{i}\right)\right)}{\operatorname{Var} Y}
$$

- This index quantifies, on a scale from 0 to 1 , the fraction of variance in Y explained by uncertainty on μ_{i}.

Context: Model with uncertain parameters

- For us:

$$
Y=f(\mu)=f(u(\mu))
$$

where $u(\mu)$ satisfies a μ-parametrized PDE (boundary/boundary-initial value problem).

- Example:

Context: Monte-Carlo estimation

- In general, S_{i} can not be analytically computed.
- It has to be estimated, using a sample of outputs.
- Monte-Carlo: $\left\{\mu^{k}\right\}$ and $\left\{\mu^{\prime k}\right\}$: are two N-sized samples of μ 's distribution;

$$
\widehat{S}_{i}=\frac{\frac{1}{N} \sum_{k=1}^{N} y_{k} y_{k}^{\prime}-\left(\frac{1}{N} \sum_{k=1}^{N} y_{k}\right)\left(\frac{1}{N} \sum_{k=1}^{N} y_{k}^{\prime}\right)}{\frac{1}{N} \sum_{k=1}^{N}\left(y_{k}\right)^{2}-\left(\frac{1}{N} \sum_{k=1}^{N} y_{k}\right)^{2}}
$$

with $y_{k}=f\left(\mu^{k}\right), y_{k}^{\prime}=f\left(\mu_{1}^{\prime k}, \mu_{2}^{\prime k}, \ldots, \mu_{i-1}^{\prime k}, \mu_{i}^{k}, \mu_{i+1}^{\prime k}, \ldots, \mu_{p}^{\prime k}\right)$

- This requires $2 N$ code calls \rightarrow the use of a metamodel (surrogate model, response surface, emulator...) is justified.
- We aim at quantifying the total estimation error, caused by:
- the Monte-Carlo estimation;
- the replacement of the original model by the metamodel.

Outline

- Monte-Carlo error quantification
- Metamodel: reduced basis method
- Combined confidence intervals
- Simulation parameters choice
- Numerical results

Monte-Carlo error "Standard" approach

- $\widehat{S}_{i}=\widehat{S}_{i}(\mathcal{E})$ where $\mathcal{E}=\left(\left\{\mu^{k}\right\},\left\{\mu^{\prime k}\right\}\right)$ are iid. random samples of μ 's distribution.
- To quantify the error between \widehat{S}_{i} and S_{i}, we compute $\widehat{S}_{i}(\mathcal{E})$ for several independent samples $\mathcal{E}^{(1)}, \ldots, \mathcal{E}^{(R)}$.
- We hence get a sample of replications $\mathcal{R}=\left\{\hat{S}_{i}^{(1)}, \ldots, \widehat{S}_{i}^{(R)}\right\}$ of \widehat{S}_{i}.

- We deduce an (approximate) confidence interval of chosen level.

Monte-Carlo error

Bootstrap approach

- Problem: the R replications of \widehat{S}_{i} require $2 N \times R$ evaluations of f.
- In the bootstrap approach:
- we draw a couple of samples:

$$
\mathcal{E}=\left(\left\{\mu^{k}\right\}_{k=1, \ldots, N},\left\{\mu^{\prime k}\right\}_{k=1, \ldots, N}\right)
$$

- for $r=1, \ldots, R$, we compute the $r^{\text {th }}$ replication $\widehat{S}_{i}^{(r)}$ on the bootstrap resample couple:

$$
\mathcal{E}^{(r)}=\left(\left\{\mu^{k}\right\}_{k \in L_{r}},\left\{\mu^{\prime k}\right\}_{k \in L_{r}}\right)
$$

where L_{r} is a list list sampled with replacement from $\{1, \ldots, N\}$;

- The replication set is then used as before.
- These R replications can be computed using the $2 N$ evaluations of f on the points of \mathcal{E}.

Monte-Carlo error

Asymptotic approach

- We have a central limit theorem:

$$
\sqrt{N}\left(\widehat{S}_{i}-S_{i}\right) \underset{N \rightarrow \infty}{\mathcal{L}} \mathcal{N}\left(0, \sigma_{S}^{2}\right),
$$

where

$$
\sigma_{S}^{2}=\frac{\operatorname{Var}\left((Y-\mathbf{E}(Y))\left[\left(Y^{\prime}-\mathbf{E}(Y)\right)-S_{i}(Y-\mathbf{E}(Y))\right]\right)}{(\operatorname{Var} Y)^{2}}
$$

for: $Y^{\prime}=f\left(\mu_{1}^{\prime}, \mu_{2}^{\prime}, \ldots, \mu_{i-1}^{\prime}, \mu_{i}, \mu_{i+1}^{\prime}, \ldots, \mu_{p}^{\prime}\right),\left(\mu, \mu^{\prime}\right)$ iid. μ-distributed variables.

- The asymptotic variance σ_{S}^{2} can be "naturally" estimated, which leads to an asymptotic confidence interval:

$$
] \widehat{S}_{i} \mp \frac{\widehat{\sigma}_{S}}{\sqrt{N}}[
$$

Metamodel choice

- Non intrusive metamodels: we have at hand an input-output sample $\left\{\left(\mu^{1}, f\left(\mu^{1}\right)\right), \ldots,\left(\mu^{n}, f\left(\mu^{n}\right)\right)\right\}$
- Kriging/RKHS interpolation, Non-intrusive polynomial chaos decomposition.
- Intrusive metamodels: we work on the equations satisfied by the state variable(s).
- Polynomial chaos decomposition, Reduced basis metamodels.
- Con: we have to know and be able to analyze this equation.
- Pros:
- More efficiency is expected.
- We can expect to have a certified error bound between metamodel output and original output.
- We now focus on reduced basis methods.

Reduced basis introduction Classical finite element resolution

- Let our unknown $u:[0 ; 1] \rightarrow \mathbb{R}$ be such that:

$$
\left\{\begin{array} { l }
{ - \mu _ { 1 } u ^ { \prime \prime } + \mu _ { 2 } u = 1 } \\
{ u (0) = u (1) = 0 }
\end{array} \quad \text { ie. } \left\{\begin{array}{l}
\mu_{1} \int_{0}^{1} u^{\prime} v^{\prime}+\mu_{2} \int_{0}^{1} u v=\int_{0}^{1} v \forall v \quad(*) \\
u(0)=u(1)=0
\end{array}\right.\right.
$$

- Numerical resolution:
- we look for u as a linear combination of \mathcal{N} basis functions: $u=\sum_{i=1}^{\mathcal{N}-1} u_{i} \phi_{i}$ satisfying $(*)$ for $v=\phi_{1}, \ldots, \phi_{\mathcal{N}-1}$.
- We obtain a linear system whose unknowns are the u_{i} 's.

Reduced basis metamodel: Principle

Classical code: u is searched in a large dimension space, not specifically tailored for the problem.

$$
u(\mu)=\sum_{i=1}^{\mathcal{N}-1} u_{i}(\mu) \phi_{i}
$$

unknowns

Metamodel: \widetilde{u} is searched in a smaller dimension space, adapted to the problem.

$\widetilde{u}(\mu)=\sum_{i=1}^{n} \widetilde{u}_{i}(\mu) \zeta_{i}$
unknowns dependent; to find

Typically, for a 1D problem: $\mathcal{N} \simeq 100, n \simeq 10$.

Reduced basis: Offline and online phases

- Offline phase:
- Choose a reduced basis $\left\{\zeta_{1}, \ldots, \zeta_{n}\right\}$.
- Preassemble the parameter-independent parts of the equation.
- Online phase:
- Assemble and solve the $n \times n$ linear system.

Reduced basis: Generalizations

- More generally, the reduced basis method can be applied to PDEs under variational form:

$$
a(u(\mu), v ; \mu)=b(v) \forall v \in X
$$

where X is a functional space, b is a linear form, and $a(\cdot, \cdot ; \mu)$ is a bilinear form satisfying:

$$
a(w, v ; \mu)=\sum_{q=1}^{Q} \Theta_{q}(\mu) a_{q}(w, v) \quad(*)
$$

where Θ_{q} are functions, and a_{q} bilinear forms.

- It can also be generalized (under some hypotheses, and at a certain cost), to time-dependent problems, nonlinear problems, and those who can not exactly be cast under form ($*$).

Reduced basis choice Proper orthogonal decomposition (POD)

- We are looking for an orthonormal basis $\zeta_{1}, \ldots, \zeta_{n}$ which minimizes:

$$
\int_{\mu}\left\|u(\mu)-\Pi_{\zeta_{1}, \ldots, \zeta_{n}} u(\mu)\right\|^{2} \mathrm{~d} \mu
$$

where $\Pi_{\zeta_{1}, \ldots, \zeta_{n}}$ is an orthogonal projector on $\operatorname{Vect}\left\{\zeta_{1}, \ldots, \zeta_{n}\right\}$.

- In practice, the integral is replaced by a discrete sum:

$$
\sum_{\mu \in \equiv}\left\|u(\mu)-\Pi_{\zeta_{1}, \ldots, \zeta_{n}} u(\mu)\right\|^{2}
$$

where $\overline{\text { is a finite sample of } \mu \text { 's distribution. }}$

- We get a constrained minimization problem, which can be solved by computing $u(\mu)$ for all $\mu \in$ 三 and the resolution of an eigenvalue problem of size \#三.

Error bound

- Under coercivity hypotheses, we can get an upper bound of the error between $u(\mu)$ and $\widetilde{u}(\mu)$.
- This bound is explicitly computable with an offline/online efficient procedure.
- We can deduce a bound $\epsilon(\mu)$ on the output error:

$$
|f(\mu)-\widetilde{f}(\mu)| \leq \epsilon(\mu) \quad \forall \mu
$$

Back to Sobol indices' estimation

- We wish to take into account:
- sampling error
- and metamodel error
- The estimator is a function of sampled model outputs:

$$
\widehat{S}_{i}=\Psi\left(\left\{y_{k}\right\}_{k=1, \ldots, N},\left\{y_{k}^{\prime}\right\}_{k=1, \ldots, N}\right)
$$

- We have, for all $k: y_{k} \in\left[\widetilde{y}_{k}-\epsilon_{k} ; \widetilde{y}_{k}+\epsilon_{k}\right]$ where $\widetilde{y}_{k}=\widetilde{f}\left(\mu_{k}\right), \epsilon_{k}=\epsilon\left(\mu_{k}\right)$; and so with 's.
- For:

$$
\begin{aligned}
& \widehat{S}_{i}^{m}=\min _{\substack{y_{k} \in\left[\widetilde{y}_{k}-\epsilon_{k} ; \widetilde{y}_{k}+\epsilon_{k}\right], y_{k}^{\prime} \in\left[y_{k}^{\prime}-\epsilon_{k}^{\prime} ; y_{k}^{\prime}+\epsilon_{k}^{\prime}\right]}} \Psi\left(\left\{y_{k}\right\}_{k=1, \ldots, N},\left\{y_{k}^{\prime}\right\}_{k=1, \ldots, N}\right) \\
& \widehat{S}_{i}^{M}=\max _{\substack{y_{k} \in\left[\widetilde{y}_{k}-\epsilon_{k} ; \widetilde{y}_{k}+\epsilon_{k}\right], y_{k}^{\prime} \in\left[\widetilde{y}_{k}^{\prime}-\epsilon_{k}^{\prime} ; \breve{y}_{k}^{\prime}+\epsilon_{k}^{\prime}\right]}} \Psi\left(\left\{y_{k}\right\}_{k=1, \ldots, N},\left\{y_{k}^{\prime}\right\}_{k=1, \ldots, N}\right)
\end{aligned}
$$

We have:

$$
\widehat{S}_{i}^{m} \leq \widehat{S}_{i} \leq \widehat{S}_{i}^{M}
$$

Back to Sobol indices' estimation

- We have:

$$
\begin{aligned}
& \qquad \widehat{S}_{i}^{m} \leq \widehat{S}_{i} \leq \widehat{S}_{i}^{M} \\
& \text { bounds that are functions of metamodel } \\
& \text { output and metamodel output bound }
\end{aligned}
$$

- Bootstrap on \widehat{S}_{i}^{m} and \widehat{S}_{i}^{M}
\rightarrow combined confidence intervals taking into account:
- sampling error
- and metamodel error

Optimal parameters choice Context

We have two simulation parameters:

- Reduced basis size: $n \in \mathbb{N}^{*}$ Increase n decreases metamodel error and increases computation time.
- Sample size: $N \in \mathbb{N}^{*}$

Increase N decreases sampling error and increases comp. time.
\rightarrow We look for an "optimal" combination of n and N.

Optimal parameters choice Errors and computation time model

- Computation time is proportional to:
- N (we do $2 N$ metamodel output evaluations)
- and n^{3} (metamodel cost is dominated by a $n \times n$ linear system solve)
- We suppose that combined confidence interval width is the sum of:
- a term $\frac{s_{\alpha}}{\sqrt{N}}$, where $s_{\alpha}>0$;
- a term $\frac{C}{a^{n}}$, where $C>0$ and $a>1$.

Optimal parameters choice Errors and computation time model

- The optimal n^{*} and N^{*} are given by the argmin of $N \times n^{3}$, constrained by:

$$
\frac{s_{\alpha}}{\sqrt{N}}+\frac{C}{a^{n}}=P
$$

where $P>0$ is the desired width for the combined confidence interval.

- In practice:
- we estimate s_{α}, C and a by regressing combined Cl widths for some values of n and N;
- we solve for n^{*} and N^{*}.

Numerical results

- Benchmark PDE: viscous, time-dependent, 1D Burgers equation.
- Parameters: viscosity, Fourier coefficients of boundary and initial values.
- Confidence interval for a Sobol index, for different reduced bases sizes and fixed sample sizes:

Reduction in computation times

- Comparison with classical code-based estimation: factor 5 to 6 in computation time, with equal certified precision.
- Comparison with a non-intrusive metamodelling approach: more precise result, obtained in shorter time.
- We took full advantage from:
- model properties
- theoretical work required to design the metamodel code and the error bound

Conclusion

- Uncertainty quantification and sensitivity analysis require a large number of code calls.
- Using a metamodel can lessen the required amount of computation, at the expense of some approximation.
- We have an approach to precisely quantify this approximation, in order to:
- guarantee the obtained numerical estimation
- choose in an optimal way the estimation parameters
- Perspectives:
- apply the methodology on different models;
- improve reduced basis choice by taking the temporal structure and/or the quantity of interest.

