Reduced basis metamodels for sensitivity analysis

<u>Alexandre Janon</u>, Maëlle Nodet, Clémentine Prieur Université Grenoble 1 / Laboratoire Jean Kuntzmann / INRIA

Journées du GDR MASCOT-NUM, 21 mars 2012

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Context: Global sensitivity analysis

- Input parameters: $\mu = (\mu_1, \dots, \mu_p)$ independent random variables of known distribution.
- Quantity of interest: $Y = f(\mu)$.
- For i = 1, ..., p, we consider the i^{th} Sobol index:

$$S_i = \frac{\operatorname{Var}\left(\mathsf{E}(Y|\mu_i)\right)}{\operatorname{Var}Y}$$

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

 This index quantifies, on a scale from 0 to 1, the fraction of variance in Y explained by uncertainty on µ_i.

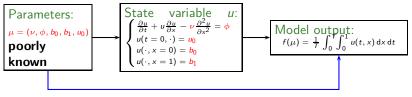
Context: Model with uncertain parameters

For us:

$$Y = f(\mu) = f(u(\mu)),$$

where $u(\mu)$ satisfies a μ -parametrized PDE (boundary/boundary-initial value problem).

Example:



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

computer code

Context: Monte-Carlo estimation

- In general, S_i can not be analytically computed.
- It has to be **estimated**, using a sample of outputs.
- Monte-Carlo: {μ^k} and {μ^{'k}}: are two N-sized samples of μ's distribution;

$$\widehat{S}_{i} = \frac{\frac{1}{N} \sum_{k=1}^{N} y_{k} y_{k}' - \left(\frac{1}{N} \sum_{k=1}^{N} y_{k}\right) \left(\frac{1}{N} \sum_{k=1}^{N} y_{k}'\right)}{\frac{1}{N} \sum_{k=1}^{N} (y_{k})^{2} - \left(\frac{1}{N} \sum_{k=1}^{N} y_{k}\right)^{2}}$$

with $y_k = f(\mu^k), \ y'_k = f(\mu_1'^k, \mu_2'^k, \dots, \mu_{i-1}'^k, \mu_i^k, \mu_{i+1}'^k, \dots, \mu_p'^k)$

- This requires 2N code calls → the use of a metamodel (surrogate model, response surface, emulator...) is justified.
- We aim at quantifying the total estimation error, caused by:
 - the Monte-Carlo estimation;
 - the replacement of the original model by the metamodel.

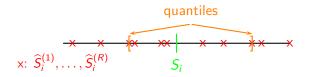
Outline

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- Monte-Carlo error quantification
- Metamodel: reduced basis method
- Combined confidence intervals
- Simulation parameters choice
- Numerical results

Monte-Carlo error "Standard" approach

- $\widehat{S}_i = \widehat{S}_i(\mathcal{E})$ where $\mathcal{E} = (\{\mu^k\}, \{\mu'^k\})$ are iid. random samples of μ 's distribution.
- To quantify the error between \widehat{S}_i and S_i , we compute $\widehat{S}_i(\mathcal{E})$ for several independent samples $\mathcal{E}^{(1)}, \ldots, \mathcal{E}^{(R)}$.
- We hence get a sample of replications $\mathcal{R} = \{\widehat{S}_i^{(1)}, \dots, \widehat{S}_i^{(R)}\}$ of \widehat{S}_i .



• We deduce an (approximate) confidence interval of chosen level.

A D N A 目 N A E N A E N A B N A C N

Monte-Carlo error Bootstrap approach

- **Problem:** the *R* replications of \hat{S}_i require $2N \times R$ evaluations of *f*.
- In the bootstrap approach:
 - we draw a couple of samples:

$$\mathcal{E} = \left(\{\mu^k\}_{k=1,...,N}, \{\mu'^k\}_{k=1,...,N} \right)$$

for r = 1,..., R, we compute the rth replication \$\hat{S}_i^{(r)}\$ on the bootstrap resample couple:

 $\mathcal{E}^{(r)} = \left(\{\mu^k\}_{k \in L_r}, \{\mu'^k\}_{k \in L_r} \right)$ where L_r is a list *list* sampled with replacement from $\{1, \ldots, N\}$;

- The replication set is then used as before.
- These R replications can be computed using the 2N evaluations of f on the points of E.

Monte-Carlo error Asymptotic approach

• We have a central limit theorem:

$$\sqrt{N}(\widehat{S}_i-S_i) \xrightarrow[N\to\infty]{\mathcal{L}} \mathcal{N}\left(0,\sigma_S^2\right),$$

where

$$\sigma_{S}^{2} = \frac{\operatorname{Var}\left((Y - \mathsf{E}(Y))\left[(Y' - \mathsf{E}(Y)) - S_{i}(Y - \mathsf{E}(Y))\right]\right)}{\left(\operatorname{Var}Y\right)^{2}},$$

- for: $Y' = f(\mu'_1, \mu'_2, ..., \mu'_{i-1}, \mu_i, \mu'_{i+1}, ..., \mu'_p)$, (μ, μ') iid. μ -distributed variables.
- The asymptotic variance σ²_S can be "naturally" estimated, which leads to an asymptotic confidence interval:

$$\left]\widehat{S}_{i}\mp\frac{\widehat{\sigma}_{S}}{\sqrt{N}}\right|$$

Metamodel choice

- Non intrusive metamodels: we have at hand an input-output sample {(µ¹, f(µ¹)), ..., (µⁿ, f(µⁿ))}
 - Kriging/RKHS interpolation, Non-intrusive polynomial chaos decomposition.
- **Intrusive metamodels:** we work on the equations satisfied by the state variable(s).
 - Polynomial chaos decomposition, Reduced basis metamodels.
 - Con: we have to know and be able to analyze this equation.
 - Pros:
 - More efficiency is expected.
 - We can expect to have a certified error bound between metamodel output and original output.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

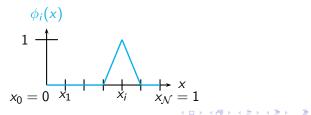
• We now focus on reduced basis methods.

Reduced basis introduction Classical finite element resolution

• Let our unknown $u: [0; 1] \rightarrow \mathbb{R}$ be such that:

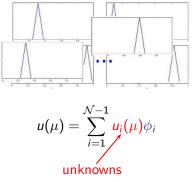
$$\begin{cases} -\mu_1 u'' + \mu_2 u = 1\\ u(0) = u(1) = 0 \end{cases} \text{ ie. } \begin{cases} \mu_1 \int_0^1 u' v' + \mu_2 \int_0^1 u v = \int_0^1 v \ \forall v \ (*)\\ u(0) = u(1) = 0 \end{cases}$$

- Numerical resolution:
 - we look for u as a linear combination of \mathcal{N} basis functions: $u = \sum_{i=1}^{\mathcal{N}-1} u_i \phi_i$ satisfying (*) for $v = \phi_1, \dots, \phi_{\mathcal{N}-1}$.
 - We obtain a linear system whose unknowns are the u_i's.

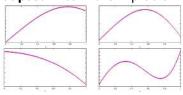


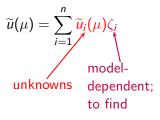
Reduced basis metamodel: Principle

Classical code: *u* is searched in a large dimension space, **not specifically tailored** for the problem.



Metamodel: \tilde{u} is searched in a smaller dimension space, **adapted** to the problem.





◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ つへぐ

Typically, for a 1D problem: $\mathcal{N} \simeq 100$, $n \simeq 10$.

Reduced basis: Offline and online phases

- Offline phase:
 - Choose a reduced basis $\{\zeta_1, \ldots, \zeta_n\}$.
 - Preassemble the parameter-independent parts of the equation.

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

- Online phase:
 - Assemble and solve the $n \times n$ linear system.

Reduced basis: Generalizations

 More generally, the reduced basis method can be applied to PDEs under variational form:

$$a(u(\mu), v; \mu) = b(v) \ \forall v \in X$$

where X is a functional space, b is a linear form, and $a(\cdot, \cdot; \mu)$ is a bilinear form satisfying:

$$\mathsf{a}(w,v;\mu) = \sum_{q=1}^Q \Theta_q(\mu) \mathsf{a}_q(w,v) \quad (*)$$

where Θ_q are functions, and a_q bilinear forms.

It can also be generalized (under some hypotheses, and at a certain cost), to time-dependent problems, nonlinear problems, and those who can not exactly be cast under form (*).

Reduced basis choice Proper orthogonal decomposition (POD)

We are looking for an *orthonormal* basis ζ₁,..., ζ_n which minimizes:

$$\int_{\mu} ||u(\mu) - \Pi_{\zeta_1, \dots, \zeta_n} u(\mu)||^2 \, \mathrm{d}\mu$$

where $\Pi_{\zeta_1,\ldots,\zeta_n}$ is an orthogonal projector on Vect $\{\zeta_1,\ldots,\zeta_n\}$.

In practice, the integral is replaced by a discrete sum:

$$\sum_{\mu\in\Xi}||u(\mu)-\Pi_{\zeta_1,\ldots,\zeta_n}u(\mu)||^2$$

where Ξ is a finite sample of μ 's distribution.

 We get a constrained minimization problem, which can be solved by computing u(µ) for all µ ∈ Ξ and the resolution of an eigenvalue problem of size #Ξ.

Error bound

- Under coercivity hypotheses, we can get an upper bound of the error between $u(\mu)$ and $\tilde{u}(\mu)$.
- This bound is explicitly computable with an offline/online efficient procedure.
- We can deduce a bound $\epsilon(\mu)$ on the output error:

$$\left|f(\mu) - \widetilde{f}(\mu)\right| \leq \epsilon(\mu) \quad \forall \mu$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Back to Sobol indices' estimation

- We wish to take into account:
 - sampling error
 - and metamodel error
- The estimator is a function of sampled model outputs:

$$\widehat{S}_{i} = \Psi(\{y_{k}\}_{k=1,...,N}, \{y'_{k}\}_{k=1,...,N})$$

- We have, for all k: $y_k \in [\tilde{y}_k \epsilon_k; \tilde{y}_k + \epsilon_k]$ where $\tilde{y}_k = \tilde{f}(\mu_k), \epsilon_k = \epsilon(\mu_k)$; and so with 's.
- For:

$$\widehat{S}_{i}^{m} = \min_{\substack{y_{k} \in [\widetilde{y}_{k} - \epsilon_{k}; \widetilde{y}_{k} + \epsilon_{k}], \\ y_{k}' \in [\widetilde{y}_{k}' - \epsilon_{k}'; \widetilde{y}_{k}' + \epsilon_{k}']}} \Psi\left(\{y_{k}\}_{k=1,\dots,N}, \{y_{k}'\}_{k=1,\dots,N}\right)$$

$$\widehat{S}_{i}^{M} = \max_{\substack{y_{k} \in [\widetilde{y}_{k} - \epsilon_{k}; \widetilde{y}_{k}' + \epsilon_{k}], \\ y_{k}' \in [\widetilde{y}_{k}' - \epsilon_{k}'; \widetilde{y}_{k}' + \epsilon_{k}']}} \Psi\left(\{y_{k}\}_{k=1,\dots,N}, \{y_{k}'\}_{k=1,\dots,N}\right)$$

We have:

 $\widehat{S}_i^m \leq \widehat{S}_i \leq \widehat{S}_i^M$

Back to Sobol indices' estimation

We have:

 $\widehat{S}_{i}^{m} \leq \widehat{S}_{i} \leq \widehat{S}_{i}^{M}$ bounds that are functions of metamodel output and metamodel output bound

- Bootstrap on \widehat{S}_i^m and \widehat{S}_i^M
 - \rightarrow *combined* confidence intervals taking into account:
 - sampling error
 - and metamodel error

Optimal parameters choice Context

We have two simulation parameters:

• Reduced basis size: $n \in \mathbb{N}^*$ Increase *n* decreases metamodel error and increases computation time.

• Sample size: $N \in \mathbb{N}^*$

Increase N decreases sampling error and increases comp. time.

 \rightarrow We look for an "optimal" combination of *n* and *N*.

Optimal parameters choice Errors and computation time model

- Computation time is proportional to:
 - N (we do 2N metamodel output evaluations)
 - and n³ (metamodel cost is dominated by a n × n linear system solve)

- We suppose that combined confidence interval width is the sum of:
 - a term $\frac{s_{\alpha}}{\sqrt{N}}$, where $s_{\alpha} > 0$;
 - a term $\frac{C}{a^n}$, where C > 0 and a > 1.

Optimal parameters choice Errors and computation time model

The optimal n* and N* are given by the argmin of N × n³, constrained by:

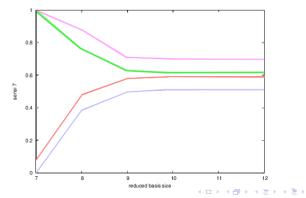
$$\frac{s_{\alpha}}{\sqrt{N}} + \frac{C}{a^n} = P$$

where P > 0 is the desired width for the combined confidence interval.

- In practice:
 - we estimate s_α, C and a by regressing combined CI widths for some values of n and N;
 - we solve for n^* and N^* .

Numerical results

- Benchmark PDE: viscous, time-dependent, 1D Burgers equation.
- **Parameters:** viscosity, Fourier coefficients of boundary and initial values.
- Confidence interval for a Sobol index, for different reduced bases sizes and fixed sample sizes:



э

Reduction in computation times

- Comparison with classical code-based estimation: factor 5 to 6 in computation time, with equal certified precision.
- Comparison with a non-intrusive metamodelling approach: more precise result, obtained in shorter time.
- We took full advantage from:
 - model properties
 - theoretical work required to design the metamodel code and the error bound

Conclusion

- Uncertainty quantification and sensitivity analysis require a large number of code calls.
- Using a metamodel can lessen the required amount of computation, at the expense of some approximation.
- We have an approach to precisely quantify this approximation, in order to:
 - guarantee the obtained numerical estimation
 - choose in an optimal way the estimation parameters
- Perspectives:
 - apply the methodology on different models;
 - improve reduced basis choice by taking the temporal structure and/or the quantity of interest.