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Abstract..
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Kriging-based approximation is a useful tool to ap-

proximate the output of complex functions given noisy

observations. Our objective is to determine the rates

of convergence of the Best Linear Unbiased Predictor

(BLUP) when the number of observations is large in

a kriging framework.
.

Introduction..
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The goal is to build a surrogate model of a function

f (x) given noisy observations of it. In a kriging

context, we suppose that f (x) is a realization of a

Gaussian process Z (x) with known mean and known

covariance kernel k(x , y). We denote the ns noisy ob-

servations (yi = f (xi) + εi)i=1,...,ns with εi ∼ N (0, nτ ).

The BLUP of f (x) is:

f̂ (x) = k(x)T (K + nτ I)−1yns

where yns = (yi)i=1,...,ns, k(x)T = k(x ,D) and K =

k(D,D). Its Mean Squared Error (MSE) - also called

kriging variance - is:

σ2(x) = k(x , x)− kT (x)(K + nτ I)−1k(x)

.

Theorem (Convergence of the MSE)..
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Let us consider Z (x) a Gaussian random field with

known mean and with covariance kernel k(x , y) ∈

C0(Q × Q), Q a compact subspace of R
d . Let us

consider D ⊂ Q an experimental design set constitut-

ing by ns independent random points (xi)1≤i≤ns

sampled with the probability measure µ(x) supported

on Q. If we consider the eigenvalues (λp)p≥0 sorted

in decreasing order and the corresponding eigenfunc-

tions (φp(x))p≥0 of the Hilbert-Schmidt’s integral

operator Tµ,k :

(Tµ,k f )(x) =

∫

Q

k(x , y)f (y) dµ(y)

Then, for non-degenerate kernel, we have the follow-

ing convergence in probability when n → ∞ :

σ2(x) →
∑

p≥0

(

τλp

τ + sλp

)

φp(x)
2

Furthermore, for degenerate kernel, i.e. with a finite

number p̄ of non zero eigenvalues, the convergence

is almost sure.
.

Proposition (Convergence of the IMSEµ)..
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With the same assumptions as in the pre-

vious theorem, for non-degenerate kernel, we have

the following convergence in probability when n → ∞:

IMSEµ =

∫

Q

σ2(x) dµ(x) →
∑

p≥0

(

τλp

τ + sλp

)

Furthermore, for degenerate kernel, the convergence

is almost sure.
.

Applications: rates of convergence..
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◮ For degenerate kernels the IMSEµ decreases as s−1.

◮ For a fractional Brownian kernel (FBk) with Hurst pa-

rameter H, we have λp ∼ p−(2H+1), when p ≫ 1

[Bronski (2003)]. Therefore, the IMSEµ decreases as

s
1

2H+1
−1.

◮ For a d-D Gaussian kernel (Gk), we have λp .

exp
(

−p
1
d

)

, when p ≫ 1. Therefore, the IMSEµ de-

cay is bounded by s−1logd(s).

◮ For a d-D tensorised Matèrn kernel (Mk) with regular-

ity parameter ν, we have λp ∼ p−2νlog(1 + p)2(d−1)ν,

when p ≫ 1 [Pusev (2011)]. Therefore, the IMSEµ

decreases as s
1
2ν
−1logd−1 (s).

.

Important remark..
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Classical results about Monte-Carlo convergence

give that the variance decay as s−1 whatever the di-

mension. Nevertheless, for non-degenerate kernels

we are in infinite dimension. We observe that in this

case the convergence is slower than s−1. Further-

more, for degenerate kernel, we are in finite dimen-

sion and the IMSE decay as s−1 (i.e. the classical

Monte-Carlo convergence).

.

Numerical illustrations..
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We illustrate here the IMSEµ convergence for different models.

We consider ns = 200, 400, . . . , 2000 and nτ = 1.
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Figure: Realizations of fractional

Brownian motions.
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Figure: Realizations of Gaussian

processes with Matèrn-ν kernels.
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Figure: Convergence rate for FBk with

H=0.3.
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Figure: Convergence rate for FBk with

H=0.9.
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Figure: Convergence rate for 1-D Gk.
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Figure: Convergence rate for 1-D Mk

with ν = 2.
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Figure: Convergence rate for 2-D Gk.
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Key steps for the Proof of the Theorem...
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According to the Mercer theorem, k(x , y) can be written as :

k(x , y) =
∑

p≥0

λpφp(x)φp(y)

1. The degenerate case

For a degenerate kernel, the number p̄ of non zero eigenvalues

is finite. If we denote Λ = diag(λi)1≤i≤p̄ and :

Φ(X ) =







φ(x1)
...

φ(xns)






φ(x) = (φ1(x), . . . , φp̄(x))

we have the following expression for σ2(x) :

σ2(x) = φ(x)

(

Φ(X )TΦ(X )

nτ
+ Λ−1

)

φ(x)T

The points xi being independent and identically distributed

according to the measure µ(x), we then have by the strong law

of large numbers 1
n

∑ns
i=1 φp(xi)φp′(xi) → sδp=p′ when n → ∞.

Therefore, when n → ∞:

σ2(x) →
∑

p≤p̄

(

τλp

τ + sλp

)

φp(x)
2

This proof is presented in [Rasmussen et al. (2006)],

[Picheny (2009)] and [Opper et al. (1999)]. A proof in 1-D

for non-degenerate kernel is given in [Ritter (1996)] but cannot

be extended to higher dimension.

2. Upper bound for σ2(x)

If we denote σ2
LUP(x) the MSE of a Linear Unbiased Predictor

(LUP) and σ2(x) the MSE of the BLUP, we have:

σ2(x) ≤ σ2
LUP(x)

The idea is to find a LUP so that its MSE is a tight upper bound

of σ2(x). We take the LUP k(x)TAyns with A the ns × ns matrix:

A = L−1 +

q
∑

k=1

(−1)k(L−1M)kL−1

with q a finite integer, L and M defined by:

L = nτ I +
∑

p<p∗

λp[φp(xi)φp(xj)]1≤i ,j≤ns

M =
∑

p>p∗

λp[φp(xi)φp(xj)]1≤i ,j≤ns

and p∗ such that sλp∗ < τ . We hence have :

σ2
LUP(x) = k(x , x)−k(x)TL−1k(x)−

2q+1
∑

i=1

(−1)ik(x)T (L−1M)iL−1k(x)

Using the Woodbury formula, the strong law of large numbers

and the continuity of the inverse operator, we obtain the follow-

ing almost sure convergence when n → ∞:

k(x)TL−1k(x) →
∑

p<p∗

sλ2
p

sλp + τ
φp(x)

2 +
s

τ

∑

p>p∗

λ2
pφp(x)

2

Note that we can use the strong law of large numbers since p∗

is finite and independent of n. Then, using the Markov inequal-

ity and the equality
∑

p≥0 λpφp(x)
2 = σ2, we obtain the following

convergence in probability:

k(x)T
(

L−1M
)i

L−1k(x) →
(s

τ

)i+1 ∑

p>p∗

λi+2
p φp(x)

2

Note that we cannot use the strong law of large numbers

because of the infinite sum in M. Finally, by considering the

asymptotic q → ∞ and the inequality sλp∗ < τ , we obtain the

following convergence in probability:

lim sup
n→∞

σ2(x) ≤
∑

p≥0

(

τλp

τ + sλp

)

φp(x)
2

3. Lower bound for σ2(x)

Let us consider the Karhunen-Loève decomposition of Z (x):

Z (x) =
∑

p≥0

Zp

√

λpφp(x)

If we denote ai(x) the coefficient of the BLUP associate to Z (x),

we have:

σ2(x) =
∑

p≥0

λp

(

φp(x)−

n
∑

i=1

ai(x)φp(xi)

)2

For a fixed p̄, the following inequality holds:

σ2(x) ≥ E





(

Z̃ (x)−

n
∑

i=1

ai(x)Z̃ (xi)

)2




with Z̃ (x) =
∑

p≤p̄ Zp

√

λpφp(x). A fortiori, denoting by σ̃2(x) the

MSE of the BLUP of Z̃ (x), we have σ2(x) ≥ σ̃2(x). Since Z̃ (x)

has degenerate kernel, ∀p̄ > 0 we know that the MSE of its

BLUP converges almost surely as n → ∞. By considering the

limit p̄ → ∞, we obtain:

lim inf
n→∞

σ2(x) ≥
∑

p≥0

(

τλp

τ + sλp

)

φp(x)
2

�
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